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Abstract

Two classic \phase transitions" in discrete mathematics are the emergence of a giant

component in a random graph as the density of edges increases, and the transition of a

random 2-SAT formula from satis�able to unsatis�able as the density of clauses increases.

The random-graph result has been extended to the case of prescribed degree sequences,

where the almost-sure nonexistence or existence of a giant component is related to a simple

property of the degree sequence. We similarly extend the satis�ability result, by relating

the almost-sure satis�ability or unsatis�ability of a random 2-SAT formula to an analogous

property of a prescribed literal sequence.

1 Introduction

There is considerable interest at present in displaying sharp transitions of probabilistic properties
in combinatorial settings. One case of interest is that of random k-SAT formulae. In this note
we discuss a model of random 2-SAT. In the standard model we have n variables x1; x2; : : : ; xn
and m random clauses. This model is quite well understood. Chvat�al and Reed [4] showed that
if m = cn, c < 1 constant then a random instance is satis�able with high probability (whp)
and that if c > 1 then a random instance is unsatis�able whp. This result was sharpened by
Goerdt [8], Fernandez de la Vega [7] and Verhoeven [12]. The tightest results are due to Bollob�as,
Borgs, Chayes, Kim and Wilson [3].

Just as in the case of the existence of a giant component in a random graph, Molloy and
Reed [9], we can obtain interesting results by considering models in which the number of occur-
rences of each literal is prescribed.

Let the set of literals be L = fx1; �x1; : : : ; xn; �xng. A 2-SAT formula F is then a set of m
distinct clauses C1; C2; : : : ; Cm where each Ci is a 2-element subset of L (we exclude clauses in
which the 2 literals are identical, i.e., loops). A truth assignment � is a mapping � : L! f0; 1g
which satis�es �(xj)+�(�xj) = 1 for j = 1; 2; : : : ; n. � satis�es F if �(Ci) � 1 for i = 1; 2; : : : ;m.
(Here �(C) = �(w1) + �(w2) if C = fw1; w2g).

For w 2 L let dF (w) denote the degree or the number of times w appears in the formula F .
Suppose now that we �x the degree sequence d = d1; �d1; : : : ; dn; �dn and let


d =
�
F : dF (xi) = di; dF (�xi) = �di; i = 1; 2; : : : ; n

	
:
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Let �d = max
�
d1; �d1; : : : ; dn; �dn

	
and

D1 =
nX
i=1

(di + �di) = 2m

D2 =
nX
i=1

di �di

where m is the number of clauses in F .
We can assume that di + �di � 1 for all i. Otherwise we can remove that variable from

consideration. Thus D1 � n. Our random model is that

F is chosen uniformly at random from 
d.

The degree sequence d is proper if

� �d � n� where � < 1=13 is a constant.

� D1 = 2m, i.e., D1 is even.

We prove the following criterion for satis�ability:

Theorem 1. Let d be proper and let 0 < � < 1 be constant. Then

(a) If 2D2 < (1� �)D1 then

P(F is satis�able)! 1:

(b) If 2D2 > (1 + �)D1 then

P(F is unsatis�able)! 1:

For example in the case of m = cn randomly chosen clauses we �nd that D1 = 2cn and whp
D2 � c2n, and we obtain the result of [4].

2 Proof of the theorem

Graphical Representation

Given a formula F = ffuj ; vjg : j = 1; 2; : : : ;mg we de�ne a digraph � = �(F ) = (L;A) where
A = f(�uj ; vj); (�vj ; uj) : j = 1; 2; : : : ;mg. (If w 2 L then �w is de�ned as follows: if w = xj then
�w = �xj and if w = �xj then �w = xj .)

It is well known (see for example Aspvall, Plass and Tarjan [1]) that F is unsatis�able if and
only if there is a variable xj such that �F contains a directed path from xj to �xj and a directed
path from �xj to xj .

Con�guration Model

Our model for generating a random F 2 
d is based on the con�guration model for graphs,
Bollob�as [2]. We have a universe Z consisting of D1 points, partitioned into subsets Z(x); x 2 L,
with jZ(xi)j = di, jZ(�xi)j = �di, i = 1; 2; : : : ; n. \Inversely" to Z(x), de�ne � : Z ! L by
�(w) = x i� w 2 Z(x). Let 	 denote the set of con�gurations : partitions of Z into m disjoint
2-element sets. From a con�guration P 2 	, we construct a formula FP as follows: for each 2-
element set S = fp; qg 2 P we create a clause CS = f�(p); �(q)g. In the con�guration model we
choose P uniformly at random from 	 and let FP be our random formula. FP may not be simple,
i.e., it may contain repeated clauses and/or clauses which contain 2 copies of the same literal. If
however P is simple, then FP is uniformly sampled from 
d: each simple formula is represented
by exactly

Qn
i=1 di!

�di! distinct con�gurations. We will �rst study the likely satis�ability of FP ,
and later, in Section 3, show how to deal with the issue of simplicity.

There is an algorithmic description of the generation of P which can be useful:
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Algorithm construct

begin
P0 := ;; R0 := Z
For i = 1 to m do
begin

Choose ui 2 Ri�1 arbitrarily

Choose vi uniformly at random from Ri�1 n fuig
Pi := Pi�1 [ ffui; vigg; Ri := Ri�1 n fui; vig

end
Output P := Pm.

end

2.1 Case 1: 2D2 < (1� �)D1

A bicycle is a sequence of clauses fu;w1g ; f �w1; w2g ; : : : ; f �wr; vg where w1; w2; : : : ; wr are
distinct literals and u 2 fwi; �wig, v 2 fwj ; �wjg for some 1 � i; j � r.

Chv�atal and Reed [4] argue that if an instance is infeasible then it contains a bicycle. We
will show that whp �(FP ) does not contain any bicycles. It is convenient �rst show that whp
�(FP ) does not contain any long paths. Then we can restrict our attention to small bicycles.

Claim 2. �(FP ) has no long directed paths whp.

Proof of Claim 2
Let k0 =

�
3��1 logn

�
and let X0 be the number of directed paths of length k0 � 1 in �(FP ). In

the estimation of P(w1 ! w2 ! � � � ! wk0 2 �) below, we are implicitly using construct with
the initial sequence u1; u2; : : : ; taken from Z( �w1), then Z( �w2) and so on.

E(X0) �
X

w1;::: ;wk0
2L

P(w1 ! w2 ! � � � ! wk0 2 �)

�
X

w1;::: ;wk0
2L

d( �w1)d(w2)

D1 � 1
�
d( �w2)d(w3)

D1 � 3
� � � �

�
d( �wk0�1)d(wk0)

D1 � 2k0 + 3
(1)

�
X

w1;wk0

�2
d

D1 � 2k0

X
w2;::: ;wk0�1

k0�1Y
i=2

d(wi)d( �wi)

D1 � 2k0

�
n2�2

d

D1 � 2k0

�
2D2

D1 � 2k0

�k0�2
� (1 + o(1))n�2

d(1� �)k0�2

= o(1):

So, whp, � has no directed path of length � k0.
End of proof of Claim 2.

Using Claim 2 we see that we need only consider the existence of bicycles of length r � 2k0.
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So, if Yr is the number of bicycles of length r and Y =
P2k0

r=2 Yr then

E(Y ) �
2k0X
r=2

X
w1;::: ;wr2L

�i;�j

d( �w1)d(w2)

D1 � 1
�
d( �w2)d(w3)

D1 � 3
�

� � � �
d( �wr�1)d(wr)

D1 � 2r + 5

�
�dd(w1)

D1 � 2r + 3

�dd( �wr)

D1 � 2r + 1
(2)

� (1 + o(1))
4�2

d

D1
�

�
2k0X
r=2

X
w1;::: ;wr2L

r2
rY

i=1

d(wi)d( �wi)

D1

= (1 + o(1))
4�2

d

D1

2k0X
r=2

r2
�
2D2

D1

�r
= o(1)

since �d = o(n1=2).
This veri�es Part (a) of Theorem 1 in respect of the random formula FP . We translate this

result to uniformly chosen formulae in Section 3.

2.2 Case 2: 2D2 > (1 + �)D1

For w 2 L we let span(w) = fv : �(FP ) contains a directed path from w to vg. We show that
whp there exists a literal w and variables x; y such that x; �x 2 span(w) and y; �y 2 span( �w).
This forces the formula to be unsatis�able since

w =) x ^ �x and �w =) y ^ �y: (3)

We do this by arguing that we can whp �nd a pair w; �w such that both span(w); span( �w)
are \large" and that whp large spans contain complementary pairs.

We work in terms of the con�guration model and consider the following algorithm. We have
z 2 Z and generate points reachable from z at the same time as we generate P via construct.

In the execution of the algorithm span(z; Z) the elements of Z are partitioned into

� AP : paired-up points | AP = ; initially.

� AL: live points | AL = fzg initially.

� AU : untouched points | AU = Z n fzg initially.

At a general step we arbitrarily choose z0 2 AL, move it to AP and randomly pair it with an
element z00 of AL [AU . We place z00 into AP . Suppose now that z0 2 Z(u) and z00 2 Z(v). We
consider that we have created a clause fu; vg and if any points of Z(�v) nAP are in AU , we move
them to AL. We repeat such steps until AL = ;, and we denote the �nal value of AP by Rz;Z .

The span of literal w can be computed as follows. First, as a minor detail, we generalize span
so that for z =2 Z we de�ne Rz;Z = ;. Let Z( �w) = fz1; z2; : : : ; zdg. Then we run span(z1; Z),
let Z1 = Z nRz1;Z , run span(z2; Z1), let Z2 = Z1 nRz2;Z1

, run span(z3; Z2) and so on. span(w)
is w together with the set of literals � for which � appears as v in a general step.

We have to consider a sequence of truncated executions of span, denoted by tspan. We add
the extra stopping condition:

jALj � b = �2 logn:
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If this occurs we say that z is large. We let Rz;Z be as in span. We run this sequence searching
for a pair of large points z; z0 where z 2 Z(w) and z0 2 Z( �w) for some literal w.

To this end we let Z = fz1; z2; : : : ; z2mg where if Æj = min
�
dj ; �dj

	
; j = 1; 2; : : : ; n, the

�rst 2Æ1 points are from Z(x1) [ Z(�x1), the next 2Æ2 points are from Z(x2) [ Z(�x2) and so on.
Furthermore, the points corresponding to a particular variable alternate between the variable
and its complement. For example, Z(x1) = fz1; z3; : : : ; z2Æ1�1g ; Z(�x1) = fz2; z4; : : : ; z2Æ1g.
The ordering of the points Zj ; j > 2(Æ1 + � � � + Æn) is arbitrary. We run tspan(z1; Z), let
Z1 = Z n Rz1;Z , run tspan(z2; Z1), let Z2 = Z1 n Rz2;Z1

, run tspan(z3; Z2) and so on. When
we run tspan(z2; Z1) for example, we re-set AL  fz2g and AU  Z1 n fz2g. We let AP grow
naturally.

Note that our assumptions imply that there are at least n1�2� values of i for which Æi � 1
(dj �dj � n2� for all j and D2 > n).

Now consider the change �t in the size of AL after t general steps.

E(�t) � �1 +
1

D1
(2D2 � 2t�2) �

�

2
(4)

provided t = o(n=�2).
Explanation: �1 due to z0 being removed from AL. Let d

0

j = jZ(xj) n AP j; �d0j = jZ(xj) n AP j

for j = 1; 2; : : : ; n. The expected number of new members of AL is then 1
D1�2t

Pn
j=1 d

0

j
�d0j .

Now consider the execution of tspan(zk; Zk�1), for some k such that kb2 = o(n=�2). Let
the sequence of sizes of AL be Y0 = 1; Y1; : : : ;. Then in general we have

Yl � 2 � Yl+1 � Yl +� (5)

and

E(Yl+1 � Yl j previous history) �
�

2
: (6)

Suppose now that we consider a modi�ed process which proceeds as follows: If Yt reaches zero
before reaching b then we undo all the pairings and start again with new random pairings at each
step. This constitutes a sequence of Bernouilli trials (= executions of tspan(zk; Zk�1)) whose
probability of success p is to be estimated. This is to be considered as a thought experiment
used to estimate p and not a way of generating a favourable formula.

It follows from (5), (6) and Cherno� bounds that

P
�
Yl �

�

4
l
�
� exp

�
�

�2l2

8l�2

�
(7)

Putting s = 4��1b we see that

P (Ys � b) � e�2(logn)
2

:

This implies that whp there is a successful trial within the �rst s trials. (At this point we should
deal with the events zk =2 Zk�1. The size of AP will be O(s2b logn) and the probability that zk 2
AP is O(jAP j�=n) = o(1=s) with our assumptions.) This then implies that if k = o(n=(b2�2))
then

P(zk is large j the outcomes of tspan(zi; Zi�1);

1 � i < k) �
1

2s
: (8)

So for a successive pair zk�1; zk with k = o(n=(b2�2)),

P(zk�1; zk are both large j the outcomes of

tspan(zi; Zi�1); 1 � i < k � 1) �
1

4s2
: (9)
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It follows that

P(@k � s2�2 logn : z2k�1; z2k are both large)

� n��
2=4: (10)

(Note that our assumptions imply s2�2 logn = o(n=(b2�2)).)
We now show that if during the execution of span(z; Z) the size of AL reaches b then whp

it reaches `0 = n=(�2 logn). Indeed,

P(jALj fails to reach `0 jALj reaches b)

� e�2`0=�
2

: (11)

This follows directly from (4), (7) by taking t = 4��1`0.
Now assume that jXLj reaches `0 and consider the set V0 of variables v for which Z(v); Z(�v) �

AU at the stage when jXLj �rst reaches `0. We choose V1 � V0 such that jV1j = n:65 and
d(v); d(�v) 6= 0 for v 2 V1. Then

P(@v 2 V1 : Rz;Z \ Z(v) 6= ; and

Rz;Z \ Z(�v) 6= ;)

�
Y
v2V0

�
1�

(`0 � 2n:65�)2d(v)d(�v)

D2
1

�

� exp

�
�(1� o(1))

n:65n2

�4(logn)2(n�)2

�

� e�n
:04

: (12)

Explanation: The probability that Rz;Z \ Z(v) 6= ; is at least
d(v)`0
D1

and conditional on this,

the probability that Rz;Z \Z(�v) 6= ; is at least
d(�v)`0
D1

. As we run through V1 the factor `0 in the

numerator decreases by at most 2n:65�.
In summary, (10) shows that we will whp �nd a pair of complementary literals, both having

a large span and then (11), (12) imply that both of these spans contain a complementary pair,
verifying the existence of w; x; y such that (3) holds.

The next section requires us to give an estimate of the probability that FP is satis�able in
part (b). Adding the failure probabilities from (10), (11) and (12) we get a failure probability
of order

n��
2=4 + e�2n=(�

4 lnn) + e�n
:65=(�6(lnn)2) � n��

2=5: (13)

3 Uniform Sampling

We have now proved Theorem 1, but for random formulas F generated according to the con�g-
uration model, rather than for simple random formulas F chosen uniformly from 
d.

If d satis�es
Pn

i=1(d
2
i +

�d2i ) = O(m), then the expected number of repeated clauses, and
clauses with a repeated literal, is O(1), and there is a positive probability that there are none
and the formula is simple. In that case, the high-probability results for the con�guration model
imply high-probability results for the uniform model F 2 
d.

To obtain the same conclusion with a weaker constraint on the degree sequence, namely for
all proper degree sequences with 2D2 < (1� �)D1, we use the idea of switchings; see [10, 11, 5].
Observe that FP is simple i� the following multi-graph G = G(P ) is simple. The vertex set of
G is L. It contains an edge f�(x); �(y)g for every pair fx; yg 2 P .
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The following algorithm removes loops and repeated clauses: assume some total ordering on
the points Z such that each Z(x) forms an interval. A non-loop pair fu; vg; u < v is redundant
in P 2 	 if P contains another pair fu0; v0g; u0 < v0 with �(u0) = �(u); �(v0) = �(v) and u < u0.

Algorithm simplify

begin
Construct P using construct.
Let the a loops and b redundant clauses be
enumerated as fui; vig � Z; i = 1; 2; : : : ; a+ b.

If a+ b � 2n2� then terminate | FAILURE.
For i = 1 to a+ b do
begin

Choose fx; yg randomly from P { Step A.
Replace the two pairs fui; vig; fx; yg by
fui; xg; fvi; yg, where ui < vi and we choose
randomly the order x < y or x > y.

end
If FP is not simple then terminate | FAILURE.

end

Let Q denote the output of simplify.
It follows by routine calculation that the probability the algorithm terminates in failure is

o(1). Let 	? denote the set of con�gurations P 2 	 for which FP is simple. For a proof of
the (graph version of the) following lemma see e.g. McKay [10] or Cooper, Frieze, Reed and
Riordan [6].

Lemma 3. There exists ~	 � 	? such that

(a)

j~	j

j	?j
= 1� o(1):

(b)
P(Q 2 ~	) = 1� o(1):

(c) For all P1; P2 2 ~	,
P(Q = P1)

P(Q = P2)
= 1� o(1):

It follows from Lemma 3 that we need only prove the equivalent of Theorem 1 with Q in
place of F .

Consider the proof of Claim 2. We argue that in (1), we can replace the terms

d( �wi)d(wi+1)

D1 � 2i+ 1
by

d( �wi)d(wi+1)

D1 � 2i+ 1
+O

 �
�n2�

n

�2
!
: (14)

The extra term comes from considering the chance that the arc (wi; wi+1) is created by simplify.
For this to happen, (i) one of �wi or wi+1 must be incident with a redundant pair or a loop,
and (ii) the other one must be incident with a pair fx; yg chosen in Step A. (We say that
fa; bg is incident with fc; dg if the corresponding edges are incident in the graph G(P ), i.e.,

if f�(a); �(b)g \ f�(c); �(d)g 6= ;.) Events (i) and (ii) each occur with probability O
�
�n2�

n

�
,

and are approximately independent of one another. The bound on the extra term applies in
the context of Claim 2, where the relevant probabilities are conditioned upon the existence of
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previous arcs in a path under consideration: there are only O(logn) arcs in each path considered,
and the new arc is by de�nition disjoint from the old ones. The correction in (14) does not a�ect
the conclusion of Claim 2.

A similar correction can be applied in the rest of the proof of Theorem 1(a). In this case the

last two terms in (2) should be given a slightly larger correction, +O
�
�n2�

n

�
: condition (i) may

be implied by the existence of a previous arc, so we simply bound its probability by 1, while the
probability of condition (ii) is as in the preceding paragraph.

For Theorem 1(b) we need (13) and

j	?j

j	j
� e�O(�

2): (15)

Indeed, (13) and (15) imply that

P(F is satis�able)

= P(FP is satis�able j P is simple)

� P(FP is satis�able) = P(P is simple)

� eO(�
2)n��

2=5

= o(1):

For a proof of (a graph version of) (15), see [6].
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