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Abstract

Two classic “phase transitions” in discrete mathematics are the emergence of a giant
component in a random graph as the density of edges increases, and the transition of a
random 2-SAT formula from satisfiable to unsatisfiable as the density of clauses increases.
The random-graph result has been extended to the case of prescribed degree sequences,
where the almost-sure nonexistence or existence of a giant component is related to a simple
property of the degree sequence. We similarly extend the satisfiability result, by relating
the almost-sure satisfiability or unsatisfiability of a random 2-SAT formula to an analogous
property of a prescribed literal sequence.

1 Introduction

There is considerable interest at present in displaying sharp transitions of probabilistic properties
in combinatorial settings. One case of interest is that of random k-SAT formulae. In this note
we discuss a model of random 2-SAT. In the standard model we have n variables z1,z2,... , T,
and m random clauses. This model is quite well understood. Chvatél and Reed [4] showed that
if m = en, ¢ < 1 constant then a random instance is satisfiable with high probability (whp)
and that if ¢ > 1 then a random instance is unsatisfiable whp. This result was sharpened by
Goerdt [8], Fernandez de la Vega [7] and Verhoeven [12]. The tightest results are due to Bollobds,
Borgs, Chayes, Kim and Wilson [3].

Just as in the case of the existence of a giant component in a random graph, Molloy and
Reed [9], we can obtain interesting results by considering models in which the number of occur-
rences of each literal is prescribed.

Let the set of literals be L = {z1,Z1,... ,Zn,ZTn}. A 2-SAT formula F is then a set of m
distinct clauses C1,Cs,... ,Cy,, where each C; is a 2-element subset of L (we exclude clauses in
which the 2 literals are identical, i.e., loops). A truth assignment o is a mapping o : L — {0,1}
which satisfies o(z;)+0(Z;) =1for j =1,2,... ,n. o satisfies F if 6(C;) > 1fori =1,2,... ,m.
(Here o(C) = o(w1) + o(ws) if C = {w1,w2}).

For w € L let dp(w) denote the degree or the number of times w appears in the formula F.

Suppose now that we fix the degree sequence d = dy,d1, ... ,dn,d, and let

Qq = {F : dF(QZZ) = di,dF(:fi) = CL’, 1=1,2,... ,’I’L} .
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Let Ag = max{dl,Jl,... ,dn,Jn} and
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where m is the number of claus_es in F'.
We can assume that d; + d; > 1 for all 7. Otherwise we can remove that variable from
consideration. Thus D; > n. Our random model is that

F is chosen uniformly at random from 4.
The degree sequence d is proper if
e Ag < n® where a < 1/13 is a constant.
e D =2m,i.e., D is even.
We prove the following criterion for satisfiability:
Theorem 1. Let d be proper and let 0 < € < 1 be constant. Then

(a) If 2D < (1 — €)D; then
P(F is satisfiable) — 1.

(b) If 2D5 > (]. + C)Dl then
P(F is unsatisfiable) — 1.

For example in the case of m = cn randomly chosen clauses we find that D; = 2cn and whp
D, =~ c®>n, and we obtain the result of [4].

2 Proof of the theorem

Graphical Representation
Given a formula F = {{uj,v;}: j=1,2,... ,m} we define a digraph I' = I'(F') = (L, A) where
A = {(4j,v5), (Tj,u;): j=1,2,...,m}. (If we€ L then @ is defined as follows: if w = z; then
@ = Z; and if w = Z; then @w = z;.)

It is well known (see for example Aspvall, Plass and Tarjan [1]) that F' is unsatisfiable if and
only if there is a variable x; such that ['r contains a directed path from z; to Z; and a directed
path from Z; to z;.

Configuration Model

Our model for generating a random F € (g is based on the configuration model for graphs,
Bollobds [2]. We have a universe Z consisting of D; points, partitioned into subsets Z(z),z € L,
with |Z(z;)| = di, |Z(%:)| = diy i = 1,2,... ,n. “Inversely” to Z(z), define ¢ : Z — L by
¢(w) =z ff w € Z(z). Let ¥ denote the set of configurations: partitions of Z into m disjoint
2-element sets. From a configuration P € ¥, we construct a formula Fp as follows: for each 2-
element set S = {p, ¢} € P we create a clause Cs = {¢(p), #(¢)}. In the configuration model we
choose P uniformly at random from ¥ and let Fp be our random formula. Fp may not be simple,
i.e., it may contain repeated clauses and/or clauses which contain 2 copies of the same literal. If
however P is simple, then Fp is uniformly sampled from 4: each simple formula is represented
by exactly [}, d;'d;! distinct configurations. We will first study the likely satisfiability of Fp,
and later, in Section 3, show how to deal with the issue of simplicity.
There is an algorithmic description of the generation of P which can be useful:



Algorithm CONSTRUCT
begin
Py:=0;Ry:=2Z
Fori=1tomdo
begin
Choose u; € R;_1 arbitrarily
Choose v; uniformly at random from R;_; \ {u;}
P;:= P, 1 U{{us,vi}}; Ri = Ry 1\ {wi,vi}
end
Output P := P,,.
end

2.1 Case 1: 2D, < (1 —€)Dy

A bicycle is a sequence of clauses {u, w1}, {wi, w2}, ..., {@Wr,v} where wy,ws,...,w, are
distinct literals and u € {w;, w;}, v € {w;,w;} for some 1 <i,j <r.

Chvétal and Reed [4] argue that if an instance is infeasible then it contains a bicycle. We
will show that whp I'(Fp) does not contain any bicycles. It is convenient first show that whp
I'(Fp) does not contain any long paths. Then we can restrict our attention to small bicycles.

Claim 2. I'(Fp) has no long directed paths whp.

Proof of Claim 2
Let ko = ’73671 log n] and let X be the number of directed paths of length kg — 1 in I'(Fp). In
the estimation of P(w; — wy — - -+ — wy, € I') below, we are implicitly using CONSTRUCT with

the initial sequence u;,us, ... , taken from Z(w;), then Z(ws) and so on.
E(X,) < Z P(w; = wy — -+ = wg, €T)
Wi, Wk EL
< 3 d(wy)d(ws)  d(wz)d(ws)
D, -1 D, —3
Wi,... ,kaEL
« d(ka*l)d(wko) (1)
Dy —2ko+3
Az ko— 1
< ——d AT
< 2 pan X 1 5%
W1, Wk W2,-ee  Who —1 =2
__niAd 2D, \*7?
= Dy — 2k \ Dy — 2k
< (1+o(1)nAd(1 - o2

= o(1).

So, whp, I' has no directed path of length > k.
End of proof of Claim 2.

Using Claim 2 we see that we need only consider the existence of bicycles of length r < 2ky.



So, if Y,. is the number of bicycles of length r and ¥ = Zfioz Y, then
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since Ag = o(n'/?).
This verifies Part (a) of Theorem 1 in respect of the random formula Fp. We translate this
result to uniformly chosen formulae in Section 3.

2.2 Case 2: 2Dy > (14 ¢€)D,

For w € L we let span(w) = {v: T'(Fp) contains a directed path from w to v}. We show that
whp there exists a literal w and variables z,y such that z,Z € span(w) and y,§ € span(®).
This forces the formula to be unsatisfiable since

w=2zAZTand © = yAJ. (3)

We do this by arguing that we can whp find a pair w,w such that both span(w), span()
are “large” and that whp large spans contain complementary pairs.

We work in terms of the configuration model and consider the following algorithm. We have
z € Z and generate points reachable from z at the same time as we generate P via CONSTRUCT.

In the execution of the algorithm SPAN(z, Z) the elements of Z are partitioned into

e Ap: paired-up points — Ap = () initially.
e Ar: live points — Ap, = {z} initially.
e Ay: untouched points — Ay = Z \ {z} initially.

At a general step we arbitrarily choose z' € Ay, move it to Ap and randomly pair it with an
element 2" of A, U Ay. We place 2z’ into Ap. Suppose now that 2’ € Z(u) and 2"’ € Z(v). We
consider that we have created a clause {u, v} and if any points of Z(v)\ Ap are in Ay, we move
them to Ar. We repeat such steps until Az, = (), and we denote the final value of Ap by R, z.

The span of literal w can be computed as follows. First, as a minor detail, we generalize SPAN
so that for z ¢ Z we define R, z = 0. Let Z(w) = {21, 22,... ,24}. Then we run SPAN(zy, Z),
let Zy = Z\ R,, z, run SPAN(22, Z1), let Zy = Z1 \ R, z,, run SPAN(z3, Z2) and so on. span(w)
is w together with the set of literals A for which )\ appears as v in a general step.

We have to consider a sequence of truncated executions of SPAN, denoted by TSPAN. We add
the extra stopping condition:

|AL| > b= A%logn.



If this occurs we say that z is large. We let R, 7 be as in SPAN. We run this sequence searching
for a pair of large points z, 2’ where z € Z(w) and 2z’ € Z(w) for some literal w.

To this end we let Z = {z1,22,... ,22m} Where if §; = min{d;,d;},j = 1,2,... ,n, the
first 26, points are from Z(z1) U Z(Z1), the next 205 points are from Z(z3) U Z(Z2) and so on.
Furthermore, the points corresponding to a particular variable alternate between the variable
and its complement. For example, Z(z1) = {z1,23,...,225,-1},2(Z1) = {22,24,..., 226, }
The ordering of the points Z;,j > 2(61 + --- + 6,) is arbitrary. We run TSPAN(z1,Z), let
Zy = Z \ R,, z, run TSPAN(22,Z1), let Z, = Z; \ R., z,, run TSPAN(z3, Z>) and so on. When
we run TSPAN(zq, Z1) for example, we re-set Ap < {22} and Ay < Z; \ {22}. We let Ap grow
naturally.

Note that our assumptions imply that there are at least n' 2
(djd; < n?®* for all j and Dy > n).

Now consider the change O in the size of Ay, after ¢ general steps.

® values of 7 for which §; > 1

E(©;) > -1+ Di(w2 — 2tA?) > (4)
1

N

provided t = o(n/A?). B
Explanation: —1 due to 2’ being removed from Ar. Let d; = |Z(z;) \ Ap|, d; = |Z(z;) \ Ap]|

for j =1,2,...,n. The expected number of new members of Ay, is then ﬁ 2?21 d;-J;-.
Now consider the execution of TSPAN(zg, Zx_1), for some k such that kb? = o(n/AZ%). Let
the sequence of sizes of Ay, be Yy = 1,Y7,...,. Then in general we have
Vi-2<Y <Y +A (5)
and
E(Y;+1 — Y] | previous history) > g (6)

Suppose now that we consider a modified process which proceeds as follows: If Y; reaches zero
before reaching b then we undo all the pairings and start again with new random pairings at each
step. This constitutes a sequence of Bernouilli trials (= executions of TSPAN(zg, Zx_1)) whose
probability of success p is to be estimated. This is to be considered as a thought experiment
used to estimate p and not a way of generating a favourable formula.

It follows from (5), (6) and Chernoff bounds that

P(vi<il)<e v (7)
b= =P T wia
Putting s = 4¢'b we see that

P (sz < b) < 672(10gn)2.
This implies that whp there is a successful trial within the first s trials. (At this point we should
deal with the events z; ¢ Zj_1. The size of Ap will be O(s2blogn) and the probability that 2, €
Ap is O(|Ap|A/n) = o(1/s) with our assumptions.) This then implies that if & = o(n/(b*A?))
then

P(z, is large | the outcomes of TSPAN(z;, Z;—1),
1

1<i<k) > —.

=t ) - 2s

So for a successive pair zx_1, 2z, with k = o(n/(b2A2)),

P(zr_1, 2z are both large | the outcomes of

1
TSPAN(Zi,Zi_l), 1<i<k-— ].) > 4—2 (9)
S



It follows that

P(3k < s?A%logn : zop_1, 22k are both large)
< nAY4 (10)
(Note that our assumptions imply s2A2logn = o(n/(b?A?)).)

We now show that if during the execution of SPAN(z, Z) the size of Ay, reaches b then whp
it reaches £y = n/(A%logn). Indeed,

P(|AL| fails to reach £y | |AL| reaches b)

< e /A7 (11)

This follows directly from (4), (7) by taking t = 4e~ 4.

Now assume that | X | reaches £y and consider the set V; of variables v for which Z(v), Z(v) C
Ay at the stage when |Xp| first reaches £5. We choose V; C V4 such that |V;| = n% and
d(v),d(v) # 0 for v € V1. Then

PfveVi: R, zNZ(v)#0 and
R. 7z N Z(v) #0)

(Lo — 2195 A)%d(v)d(D)
S H (1 - D2
veVp 1
06572
< —(1—-o0(1
< o {00 o) sy )
.04

< e (12)

Explanation: The probability that R, z N Z(v) # 0 is at least % and conditional on this,

the probability that R, z N Z(7) # 0 is at least %. As we run through V; the factor ¢, in the
numerator decreases by at most 2n6A.

In summary, (10) shows that we will whp find a pair of complementary literals, both having
a large span and then (11), (12) imply that both of these spans contain a complementary pair,
verifying the existence of w, z,y such that (3) holds.

The next section requires us to give an estimate of the probability that Fp is satisfiable in
part (b). Adding the failure probabilities from (10), (11) and (12) we get a failure probability
of order

n7A2/4 + 6721'1,/(A‘1 Inn) + efn's‘r’/(AG(lnn)2) < n7A2/5. (13)

3 Uniform Sampling

We have now proved Theorem 1, but for random formulas F' generated according to the config-
uration model, rather than for simple random formulas F' chosen uniformly from Q4.

If d satisfies Y . ,(d? + d?) = O(m), then the expected number of repeated clauses, and
clauses with a repeated literal, is O(1), and there is a positive probability that there are none
and the formula is simple. In that case, the high-probability results for the configuration model
imply high-probability results for the uniform model F' € Q4.

To obtain the same conclusion with a weaker constraint on the degree sequence, namely for
all proper degree sequences with 2D, < (1 — €)D;, we use the idea of switchings; see [10, 11, 5].
Observe that Fp is simple iff the following multi-graph G = G(P) is simple. The vertex set of
G is L. It contains an edge {¢(z), #(y)} for every pair {z,y} € P.



The following algorithm removes loops and repeated clauses: assume some total ordering on
the points Z such that each Z(z) forms an interval. A non-loop pair {u,v}, u < v is redundant
in P € ¥ if P contains another pair {u/,v'}, v’ < v’ with ¢(v') = ¢(u), p(v') = ¢(v) and u < v'.

Algorithm SIMPLIFY
begin
Construct P using CONSTRUCT.
Let the a loops and b redundant clauses be
enumerated as {u;,v;} C Z,i=1,2,... ,a+b.
If a + b > 2n%® then terminate — FAILURE.
Fori=1toa+bdo
begin
Choose {z,y} randomly from P — Step A.
Replace the two pairs {u;, v;},{z,y} by
{ui,z}, {vi,y}, where u; < v; and we choose
randomly the order z < y or = > y.
end
If Fp is not simple then terminate — FAILURE.
end

Let @ denote the output of SIMPLIFY.

It follows by routine calculation that the probability the algorithm terminates in failure is
0(1). Let ¥* denote the set of configurations P € ¥ for which Fp is simple. For a proof of
the (graph version of the) following lemma see e.g. McKay [10] or Cooper, Frieze, Reed and
Riordan [6].

Lemma 3. There ezists ¥ C ¥* such that

(a)

(b) )
P(Qe ) =1-0(1)

(c) For all P,P; € ﬁl,
P(Q=P)
P(Q = P,)
It follows from Lemma 3 that we need only prove the equivalent of Theorem 1 with @ in

place of F.
Consider the proof of Claim 2. We argue that in (1), we can replace the terms

d(w;)d(w;11) d(w;)d(w;+1) An2e 2
D1—2i++1 by D1—2i—:1 +O<< n )) (14)

=1+ 0(1).

The extra term comes from considering the chance that the arc (w;, w;11) is created by SIMPLIFY.
For this to happen, (i) one of w; or w;;+; must be incident with a redundant pair or a loop,
and (ii) the other one must be incident with a pair {z,y} chosen in Step A. (We say that
{a, b} is incident with {c,d} if the corresponding edges are incident in the graph G(P), i.e.,

if {¢(a),d(d)} N{g(c),d(d)} # 0.) Events (i) and (ii) each occur with probability O (A"h),

n

and are approximately independent of one another. The bound on the extra term applies in
the context of Claim 2, where the relevant probabilities are conditioned upon the existence of



previous arcs in a path under consideration: there are only O(logn) arcs in each path considered,
and the new arc is by definition disjoint from the old ones. The correction in (14) does not affect
the conclusion of Claim 2.

A similar correction can be applied in the rest of the proof of Theorem 1(a). In this case the

AnZa
n

last two terms in (2) should be given a slightly larger correction, +O ( ): condition (i) may
be implied by the existence of a previous arc, so we simply bound its probability by 1, while the
probability of condition (ii) is as in the preceding paragraph.

For Theorem 1(b) we need (13) and

> e=0(8%), (15)

Indeed, (13) and (15) imply that
P(F is satisfiable)
= P(Fp is satisfiable | P is simple)
P(Fp is satisfiable) / P(P is simple)
eO(AZ)n—A2/5

o(1).

For a proof of (a graph version of) (15), see [6].
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