
Understanding the Slowdown of Large Jobs in an M/GI/1
System ∗

Mor Harchol-Balter† Karl Sigman‡ Adam Wierman§

ABSTRACT

We explore the performance of an M/GI/1 queue under various

scheduling policies from the perspective of a new metric: the it

slowdown experienced by largest jobs. We consider scheduling

policies that bias against large jobs, towards large jobs, and those

that are fair, e.g., Processor-Sharing. We prove that as job size in-

creases to infinity, all work conserving policies converge almost

surely with respect to this metric to no more than1/(1−ρ), where

ρ denotes load. We also find that the expected slowdown under any

work conserving policy can be made arbitrarily close to that under

Processor-Sharing, for all job sizes that are sufficiently large.

1. INTRODUCTION

It is well-known that choosing the right scheduling algorithm

can have a big impact on performance, both in theory and in prac-

tice. For example, changing the scheduling algorithm in a CPU

from Processor-Sharing (PS) to a scheduling policy that biases to-

wards small jobs, such as Shortest-Remaining-Processing-Time-

First (SRPT), or a scheduling policy that biases towards young jobs,

such as Least-Attained-Service (LAS), can improve mean response

time (a.k.a. sojourn time) dramatically.

However, less well understood is the performance impact of dif-

ferent scheduling policies on large jobs. For example, how does

a policy that biases towards small jobs, such as SRPT, compare

against a policy that biases towards large jobs, such as Longest-

Remaining-Processing-Time-First (LRPT), when the performance

∗This is a brief introduction to our recent Technical Report CMU-

CS-02-118.
†Carnegie Mellon University, Computer Science Department.

Email: harchol@cs.cmu.edu. This work was supported by NSF

Career Grant CCR-0133077 and by Pittsburgh Digital Greenhouse

Grant 01-1.
‡Columbia University, Department of Industrial Engineering and

Operations Research. Email: sigman@ieor.columbia.edu
§Carnegie Mellon University, Computer Science Department.

Email: acw@cs.cmu.edu.

metric is the response time of the large jobs?

Throughout we limit our discussion to a stable M/GI/1 queue

with load ρ < 1 and arrival rateλ. We show that allwork con-

servingscheduling policies have the same performance as PS with

respect to large jobs. In particular, we show that the slowdown as

job size tends to infinity under any work conserving policy is at

most 1
1−ρ almost surely; even for policies that clearly bias against

large jobs. We also consider the expected slowdown for jobs that

are not the very largest. We show that all “sufficiently-large” jobs

have slowdown arbitrarily close to that of PS, where the definition

of “sufficiently-large” depends onρ and includes most jobs pro-

videdρ is not too high.

A job’s size(service requirement) will be denoted by the random

variableX and will be chosen i.i.d. from a continuous distribution

with finite meanandfinite variance. We will useT to denote the

steady-state response time (a.k.a. sojourn time) andT(x) to denote

the steady-state response time for a job of sizex; a customer arriv-

ing in steady-state bringing a service time of lengthx has a response

time T(x).

DEFINITION 1.1. For any given policy, the slowdown,S, is de-

fined as response time divided by job size, namely,S= T(X)
X . The

slowdown for a job of sizex, S(x), is thus given by

S(x) =
T(x)

x
.

The expected slowdown for a job of sizex, E[S(x)], is given by

E[S(x)] =
E[T(x)]

x
.

Mean slowdown is often used as a measure of system perfor-

mance as opposed to the more traditional mean response time for

two reasons [1, 2, 3]. First, it is desirable that a job’s response

time be correlated with its size (processing requirement). We’d like

small jobs to have small response times and big jobs to have big

response times. A second reason why we care about mean slow-

down is that it is more representative of the performance of a large

fraction of jobs.



Let us now introduce the scheduling policies investigated in this

article:

Processor-Sharing (PS):Under PS the processor is shared fairly

among all jobs currently in the system [5]. It is well known that for

an M/GI/1/PS queue,E[S(x)]PS= 1
1−ρ . This says that for any given

load ρ < 1, under PS scheduling, all jobs have the same expected

slowdown; hence PS isfair.

Shortest-Remaining-Processing-Time-First (SRPT):Under SRPT,

at every moment of time, the server is processing that job with

the shortest remaining processing time. The SRPT policy is well-

known to be optimal for minimizing mean response time [4].

Preemptive-Last-Come-First-Served (P-LCFS):Under P-LCFS,

whenever a new arrival enters the system, it immediately preempts

the job in service. Only when that arrival completes does the pre-

empted job get to resume service.

Least-Attained-Service (LAS):Under LAS the job with the least

attained service gets the processor to itself. If several jobs all have

the least attained service, they time-share the processor via PS. This

is a very practical policy, since a job’sage(attained service) is al-

ways known, although it’s size may not be known.

Longest-Remaining-Processing-Time-First (LRPT):Under LRPT,

at every moment of time, the server is processing the job with the

longest remaining processing time. If multiple jobs in the system

have the same remaining processing time, they time-share the pro-

cessor via PS. Since the LRPT policy biases towards thelongest

jobs, it is of little practical value.

2. RESULTS

THEOREM 2.1. As x → ∞, expected slowdown for SRPT, P-

LCFS, LAS, and LRPT is the same as for PS:

lim
x→∞

E[S(x)]SRPT = lim
x→∞

E[S(x)]P−LCFS= lim
x→∞

E[S(x)]LAS

= lim
x→∞

E[S(x)]LRPT =
1

1−ρ
.

That is, the expected slowdown for the largest job is the same un-

der policies that bias towards short jobs, policies that bias towards

long jobs, and policies that treat all jobs fairly.

THEOREM 2.2. For any work conserving scheduling policy

lim
x→∞

E[S(x)]≤ 1
1−ρ

.

If the policy is also non-preemptive, thenE[S(x)]→ 1 asx→ ∞.

REMARK 2.1. Theorem 2.2 does not extend to policies that are

not work conserving. In fact, for everyz∈ [1,∞) there is a non

work conserving policy such thatE[S(x)]→ z asx→ ∞.

REMARK 2.2. The 1
1−ρ bound in Theorem 2.2 is tight. In fact,

for everyz∈ [1, 1
1−ρ ] there is a work conserving policy such that

E[S(x)]→ zasx→ ∞.

The above remarks show that the metriclimx→∞ E[S(x)] defines

a taxonomy on all scheduling policies. Non work conserving poli-

cies have a value in[1,∞) under this metric. Preemptive work con-

serving policies have a value in[1, 1
1−ρ ] under this metric. Non-

preemptive work conserving policies all have a value of1 under

this metric. Each class is complete in that for each value in the

range, there exists a policy with that value.

Until now we have concentrated on the limiting behavior as the

job sizex→ ∞. We now show that for all “sufficiently large” jobs,

under any work conserving policy the performance can be made

arbitrarily close to that under PS. LetV be the amount of work in

the system when a job arrives, i.e.E[V] = λE[X2]
2(1−ρ) .

THEOREM 2.3. Fix ε > 0. Under any work conserving schedul-

ing policyP, if x≥ 1
ε E[V], then

E[S(x)]P ≤ (1+ ε)E[S(x)]PS=
1+ ε
1−ρ

.

If the policy is also non-preemptive andx≥ 1
ε(1−ρ)E[V], then

E[S(x)]P ≤ 1+ ε

Finally we state stronger versions of Theorem 2.1 and Theo-

rem 2.2:

THEOREM 2.4. Under Processor-Sharing it holds a.s. that

lim
x→∞

S(x)PS=
1

1−ρ
.

THEOREM 2.5. Under work conserving scheduling policies it

holds a.s. (assuming the limit exists) that

lim
x→∞

S(x)≤ 1
1−ρ

.

If the policy is also non-preemptive, then the limit does exist and

S(x) a.s.→ 1 asx→ ∞.

3. REFERENCES

[1] Baily, Foster, Hoang, Jette, Klingner, Kramer, Macaluso,

Messina, Nielsen, Reed, Rudolph, Smith, Tomkins, Towns,

and Vildibill. Valuation of ultra-scale computing systems.

White Paper, 1999.

[2] Allen B. Downey. A parallel workload model and its

implications for processor allocation. InProceedings of High

Performance Distributed Computing, pages 112–123, August

1997.



[3] M. Harchol-Balter and A. Downey. Exploiting process

lifetime distributions for dynamic load balancing.ACM

Transactions on Computer Systems, 15(3), 1997.

[4] Linus E. Schrage and Louis W. Miller. The queue M/G/1 with

the shortest remaining processing time discipline.Operations

Research, 14:670–684, 1966.

[5] Ronald W. Wolff.Stochastic Modeling and the Theory of

Queues. Prentice Hall, 1989.


