Scheduling for Flow-Time with Admission
Control*

Nikhil Bansal!, Avrim Blum!, Shuchi Chawla'!, and Kedar Dhamdhere!

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213,
USA. {nikhil,avrim,shuchi,kedar}@cs.cmu.edu

Abstract. We consider the problem of scheduling jobs on a single ma-
chine with preemption, when the server is allowed to reject jobs at some
penalty. We consider minimizing two objectives: total flow time and total
job-idle time (the idle time of a job is the flow time minus the processing
time). We give 2-competitive online algorithms for the two objectives
and extend some of our results to the case of weighted flow time and
machines with varying speeds. We also give a resource augmentation re-
sult for the case of arbitrary penalties achieving a competitive ratio of
O(X(log W +1og C)*) using a (1+¢) speed processor. Finally, we present
a number of lower bounds for both the case of uniform and arbitrary
penalties.

1 Introduction

Consider a large distributed system with multiple machines and multiple
users who submit jobs to these machines. The users want their jobs to be
completed as quickly as possible, but they may not have exact knowledge
of the current loads of the processors, or the jobs submitted by other users
in the past or near future. However, let us assume that each user has a
rough estimate of the typical time she should expect to wait for a job to
be completed. One natural approach to such a scenario is that when a
user submits a job to a machine, she informs the machine of her estimate
of the waiting time if she were to send the job elsewhere. We call this
quantity the penalty of a job. The machine then might service the job,
in which case the cost to the user is the flow time of the job (the time
elapsed since the job was submitted). Or else the machine might reject
the job, possibly after the job has been sitting on its queue for some
time, in which case the cost to the user is the penalty of the job plus the
time spent by the user waiting on this machine so far.

To take a more human example, instead of users and processors, consider
journal editors and referees. When an editor sends a paper to a referee,
ideally she would like a report within some reasonable amount of time.
Less ideally, she would like an immediate response that the referee is
too busy to do it. But even worse is a response of this sort that comes 6
months later after the referee originally agreed to do the report. However,

* This research was supported in part by NSF grants CCR-0105488, NSF-ITR, CCR-
0122581, NSF-ITR 11S5-0121678, and an IBM Graduate Fellowship.

from the referee’s point of view, it might be that he thought he would
have time when he received the request, but then a large number of
other tasks arrived and saying no to the report (or to some other task)
is needed to cut his losses.

Motivated by these scenarios, in this paper we consider this problem
from the point of view of a single machine (or researcher/referee) that
wants to be a good sport and minimize the total cost to users submitting
jobs to that machine. That is, it wants to minimize the total time jobs
spend on its “to-do list” (flow time) plus rejection penalties.!
Specifically, we consider the problem of scheduling on a single machine
to minimize flow time (also job-idle time) when jobs can be rejected at
some cost. Each job j has a release time r;, a processing time p;, and we
may at any time cancel a job at cost ¢;. For most of the paper, we focus
on the special case that the cancellation costs are all equal to some fixed
value ¢ — even this case turns out to be nontrivial — though we give
some results for general ¢; as well. In this paper, we consider clairvoyant
algorithms, that is, whenever a job is released, its size and penalty is
revealed.

In the flow-time measure, we pay for the total time a job is in the system.
So, if a job arrives at time 1 and we finish it by time 7, we pay 6 units. If
we choose to cancel a job, the cancellation cost is added on. Flow-time
is equivalent to saying that at each time step, we pay for the number
of jobs currently in the system (i.e., the current size of the machine’s
to-do list). In the job-idle time measure, we pay at each time step for
the number of jobs currently in the system minus one (the one we are
currently working on), or zero if there are no jobs in the system. Because
job idle time is smaller than flow time, it is a strictly harder problem
to approximate, and can even be zero if jobs are sufficiently well-spaced.
Preemption is allowed, so we can think of the processor as deciding at
each time step how it wants to best use the next unit of time. Note that
for the flow-time measure, we can right away reject jobs that have size
more than ¢, because if scheduled, these add at least ¢ to the flow-time.
However, this is not true for the job-idle time measure.

To get a feel for this problem, notice that we can model the classic ski-
rental problem as follows. Two unit-size jobs arrive at time 0. Then, at
each time step, another unit-size job arrives. If the process continues
for less than ¢ time units, the optimal solution is not to reject any job.
However, if it continues for ¢ or more time units, then it would be op-
timal to reject one of the two jobs at the start. In fact, this example
immediately gives a factor 2 lower bound for deterministic algorithms
for job-idle time, and a factor 3/2 lower bound for flow time.

To get a further feel for the problem, consider the following online al-
gorithm that one might expect to be constant-competitive, but in fact
does not work: Schedule jobs using the Shortest Remaining Processing
Time (SRPT) policy (the optimal algorithm when rejections are not al-
lowed), but whenever a job has been in the system for more than ¢ time
units, reject this job, incurring an additional ¢ cost. Now consider the

! However, to be clear, we are ignoring issues such as what effect some scheduling
policy might have on the rest of the system, or how the users ought to behave, etc.

behavior of this algorithm on the following input: m unit size jobs arrive
at time 0, where m < ¢, and subsequently one unit size job arrives in
every time step for n steps. SRPT (breaking ties in favor of jobs arriving
earlier) will schedule every job within m time units of its arrival. Thus,
the proposed algorithm does not reject any job, incurring a cost of mn,
while Opt rejects m — 1 jobs in the beginning, incurring a cost of only
n + (m — 1)c. This gives a competitive ratio of m as n — oo.

A complaint one might have about the job-idle time measure is that it
gives the machine credit for time spent processing jobs that are later
rejected. For example, if we get a job at time 0, work on it for 3 time
units, and reject it at time 5, we pay ¢ + 2 rather than ¢ + 5. A natural
alternative would be to define the cost so that no credit is given for time
spent processing jobs that end up getting rejected. Unfortunately, that
definition makes it impossible to achieve any finite competitive ratio. In
particular, if a very large job arrives at time 0, we cannot reject it since
it may be the only job and OPT would be 0; but, then if unit-size jobs
appear at every time step starting at time tc, we have committed to cost
tc whereas OPT could have rejected the big job at the start for a cost of
only c.

The main results of this paper are as follows: In section 2, we give
a 2-competitive online algorithm for flow time and job-idle time with
penalty. Note that, for job-idle time, this matches the simple lower bound
given above. The online algorithm is extended to an O(log® W) algorithm
for weighted flow time in Section 3, where W is the ratio between the
maximum and minimum weight of any job. In Section 4 we give lower
bounds for the problem with arbitrary rejection penalties and also give
a O((log W +1log C)?) competitive algorithm using a (1+ €) speed pro-
cessor in the resource augmentation model, where C' is the ratio between
the maximum and the minimum penalty for any job.

1.1 Related Previous Work

Flow time is a widely used criterion for measuring performance of schedul-
ing algorithms. For the unweighted case, it has been long known [1] that
the Shortest Remaining Processing Time (SRPT) policy is optimal for
this problem. The weighted problem is known to be much harder. Re-
cently Chekuri et al [2, 3] gave the first non trivial semi-online algorithm
for the problem that achieves a competitive ratio of O(log® P). Here P
is the ratio of the maximum size of any job to the minimum size of
any job. Bansal et al [4] give another online algorithm achieving a ra-
tio of O(log W), and a semi-online algorithm which is O(log n + log P)
competitive. Also related is the work of Becchetti et al [5], who give a
(1 4+ 1/€) competitive algorithm for weighted flow time using a (1 + ¢)
speed processor.

Admission control has been studied for a long time in circuit routing
problems (see, e.g., [6]). In these problems, the focus is typically on
approximately maximizing the throughput of the network. In scheduling
problems, the model of rejection with penalty was first introduced by
Bartal et al [7]. They considered the problem of minimizing makespan
on multiple machines with rejection and gave a 1 + ¢ approximation for

the problem where ¢ is the golden ratio. Variants of this problem have
been subsequently studied by [8,9]. Seiden [8] extends the problem to a
pre-emptive model and improves the ratio obtained by [7] to 2.38.

More closely related to our work is the model considered by Engels et al
[10]. They consider the problem of minimizing weighted completion time
with rejections. However, there are some significant differences between
their work and ours. First, their metric is different. Second, they only
consider the offline problem and give a constant factor approximation
for a special case of the problem using LP techniques.

1.2 Notation and Definitions

We consider the problem of online pre-emptive scheduling of jobs so as to
minimize flow time with rejections or job idle time with rejections. Jobs
arrive online; their processing time is revealed as they arrive. A problem
instance J consists of n jobs and a penalty c. Each job j is characterized
by its release time r; and its processing time p;. P denotes the ratio of
the maximum processing time to the minimum processing time.

At any point of time an algorithm can schedule or reject any job released
before that time. For a given schedule S, at any time ¢, a job is called
active if it has not been finished or rejected yet. The completion time «;
of a job is the time at which a job is finished or rejected.

The flow time of a job is the total time that the job spends in the system,
fi = k; —rj. The flow time of a schedule S denoted by F(S) is the sum
of flow times of all jobs. Similarly, the job idle time of a job is the total
time that the job spends in queue not being processed. This is f; —p; if
the job is never rejected, or f; —(the duration for which it was scheduled)
otherwise. The job idle time of a schedule denoted by I(S) is the sum
of job idle times of all jobs. For a given algorithm A, let R4 be the set
of jobs that were rejected and let Sa be the schedule produced. Then,
the flow time with rejections of the algorithm is given by F(S4) +c|Ra|.
Similarly the job idle time with rejections of the algorithm is given by
I(Sa) +c|Ral.

We use A to denote our algorithms and the cost incurred by them. We
denote the Optimal algorithm and its cost by Opt.

In the weighted problem, every job has a weight w; associated with it.
Here, the objective is to minimize weighted flow time with rejections.
This is given by > (w;f;) + ¢|Ra|. W denotes the ratio of weights of
the highest weight class and the least weight class. As in the unweighted
case, the weight of a job is revealed when the job is released.

We also consider the case when different jobs have different penalties.
In this case, we use ¢; to denote the penalty of job j. ¢ denotes the
maximum penalty and ¢nmin the minimum penalty. We use C' to denote
the ratio ¢maz/Cmin.

Our algorithms do not assume knowledge of C, W or P. Finally, by a
stream of jobs of size z, we mean a string of jobs each of size z, arriving
every x units of time.

1.3 Preliminaries

We first consider some properties of the optimal solution (Opt) which
will be useful in deriving our results.

Fact 1 If Opt rejects a job j, it is rejected the moment it arrives.

Fact 2 Given the set of jobs that Opt rejects, the remaining jobs must
be serviced in Shortest Remaining Processing Time (SRPT) order.

Fact 3 In the uniform penalty model, if a job j is rejected, then it must
be the job that currently has the largest remaining time.

2 An Online Algorithm

In this section, we will give online algorithms for minimizing flow time
and job idle time with rejections.

2.1 Minimizing Flow Time

Flow time of a schedule can be expressed as the sum over all time steps
of the number of jobs in the system at that time step. Let ¢ be a counter
that counts the flow time accumulated until the current time step. The
following algorithm achieves 2-competitiveness for flow time with rejec-
tions:

The Online Algorithm. Starting with ¢ = 0, at every time step,
increment ¢ by the number of active jobs in the system at that time
step. Whenever ¢ crosses a multiple of ¢, reject the job with the largest
remaining time. Schedule active jobs in SRPT order.

Let the schedule produced by the above algorithm be S and the set of
rejected jobs be R.

Lemma 1. The cost of the algorithm is < 2¢.

Proof. This follows from the behavior of the algorithm. In particular,
F(S) is equal to the final value in the counter ¢, and the total rejection
cost c|R| is also at most ¢ because |R| increases by one (a job is rejected)
every time ¢ gets incremented by c.

The above lemma implies that to get a 2-approximation, we only need
to show that ¢ < Opt. Let us use another counter ¢ to account for the
cost of Opt. We will show that the cost of Opt is at least ¥ and at every
point of time ¢ > ¢. This will prove the result.

The counter i) works as follows: Whenever Opt rejects a job, i gets
incremented by c. At other times, if ¢ = 1, then ¢ and v increase at the
same rate (i.e. ¥ stays equal to ¢). At all other times ¢ stays constant.
By design, we have the following:

Fact 4 At all points of time, ¥ > ¢.

Let k = L%J — L%J Let n, and n, denote the number of active jobs in
Opt and A respectively. Arrange and index the jobs in Opt and A in the
order of decreasing remaining time. Let us call the k longest jobs of A
marked. We will now prove the following:

Lemma 2. At all times no, > ng — k.

Lemma 2 will imply Opt > v (and thus, 2-competitiveness) by the fol-
lowing argument: Whenever ¢ increases by ¢, Opt spends the same cost
in rejecting a job. When 1 increases at the same rate as ¢, we have that
1) = ¢. In this case k = 0 and thus Opt has at least as many jobs in
system as the online algorithm. Since the increase in ¢ (and thus ¢) ac-
counts for the flow time accrued by the online algorithm, this is less than
the flow time accrued by Opt. Thus the cost of Opt is bounded below by
1) and we are done.

We will prove Lemma 2 by induction over time. For this we will need to
establish a suffix lemma. We will ignore the marked jobs while forming
suffixes.

Let P,(i) (called a suffix) denote the sum of remaining times of jobs
i,...,no in Opt. Let P,(i) denote the sum of remaining times of jobs
i+k,...,ngin A (i,...,n, —k among the unmarked jobs). For instance,
Figure 1 below shows the suffices for i = 2 and k = 2.

Algorithm A Opt
Marked Jobs S = \
k=2 SSSssesesea I
- [] P((Z) ={Total rem.
[[sizeofjobsz...no}
P{2) ={Totd L
rem. size of]
jobsk+2..ng n=6 n=5

Jobs arranged in decreasing order of remaining processing time

Fig. 1. Notation used in proof of Theorem 1

Lemma 3. At all times, for all i, Py(i) < P,(1).

Proof. (of Lemma 2 using Lemma 3) Using i = n, — k, we have P,(n, —
k) > Py(ng — k) > 0. Therefore, n, > ng — k.

Proof. (Lemma 3) We prove the statement by induction over the various
events in the system. Suppose the result holds at some time ¢. First
consider the simpler case of no arrivals. Furthermore, assume that the
value of k does not change from time ¢ to ¢t + 1. Then, as A always works
on the job ng, P,(i) decreases by 1 for each i < n, — k and by 0 for
i > ng — k. Since P, (i) decreases by at most 1, the result holds for this
case.

If the value of k changes between ¢t and ¢t + 1, then since there are no
arrivals (by assumption), it must be the case that A rejects some job(s)
and k decreases. However, note that rejection of jobs by A does not affect
any suffix under A (due to the way P, (%) is defined). Thus the argument
in the previous paragraph applies to this case.

We now consider the arrival of a job J at time ¢. If J is rejected by Opt,
the suffixes of Opt remain unchanged and the value of k increases by 1.
If J gets marked under A, none of the suffixes under A change either,
and hence the invariant remains true. If J does not get marked, some
other job with a higher remaining time than J must get marked. Thus
the suffixes of A can only decrease.

If J is not rejected by Opt, we argue as follows: Consider the situation
just before the arrival of J. Let C be the set of unmarked jobs under A
and D the set of all jobs under Opt. On arrival of J, clearly J gets added
to D. If J is unmarked under A it gets added to C else if it gets marked
then a previously marked job J' € A, with a smaller remaining time than
J gets added to C. In either case, the result follows from Lemma 4 (see
Proposition A.7, Page 120 in [11] or Page 63 in [12]), which is a result
about suffixes of sorted sequences, by setting C =C, D =D, d' = J and
d=Jor J.

Lemma 4. Let C ={c1 > c2 > ...} and D ={d1 > da> > ...} be sorted
sequences of non-negative numbers. We say that C < D if Ej>i0j <

Zj>i d; for alli =1,2,.... Let CU{c'} be the sorted sequence obtained
inserting ¢ in C. Then, C <D and ¢ <d = CU{d} <DU{d'}.

Thus we have the following theorem:

Theorem 1. The above online algorithm is 2-competitive with respect
to Opt for the problem of minimizing flow time with rejections.

2.2 Minimizing Job Idle Time

Firstly note that the job idle time of a schedule can by computed by
adding the contribution of the jobs waiting in the queue (that is, every
job except the one that is being worked upon, contributes 1) at every
time step.

The same online algorithm as in the previous case works for minimizing
job idle time with the small modification that the counter ¢ now incre-
ments by the number of waiting jobs at every time step. The analysis is
similar and gives us the following theorem:

Theorem 2. The above online algorithm is 2-competitive with respect
to Opt for the problem of minimizing job idle time with rejections.

2.3 Varying Server Speeds

For a researcher managing his/her to-do list, one typically has different
amounts of time available on different days. We can model this as a
processor whose speed changes over time in some unpredictable fashion
(i.e., the online algorithm does not know what future speeds will be in
advance). This type of scenario can easily fool some online algorithms:
e.g., if the algorithm immediately rejected any job of size > ¢ according
to the current speed, then this would produce an unbounded competitive
ratio if the processor immediately sped up by a large factor.

However, our algorithm gives a 2-approximation for this case as well. The
only effect of varying processor speed on the problem is to change sizes
of jobs as time progresses. Let us look at the problem from a different
angle: the job sizes stay the same, but time moves at a faster or slower
pace. The only effect this has on our algorithm is to change the time
points at which we update the counters ¢ and 1. However, notice that
our algorithm is locally optimal: at all points of time the counter v is at
most the cost of Opt, and ¢ < v, irrespective of whether the counters
are updated more or less often. Thus the same result holds.

2.4 Lower Bounds

We now give a matching lower bound of 2 for waiting time and 1.5 for
flow time, on the competitive ratio of any deterministic online algorithm.
Consider the following example: Two jobs of size 1 arrive at ¢ = 0. The
adversary gives a stream of unit size jobs starting at ¢ = 1 until the
algorithm rejects a job.

Let = be the time when the algorithm first rejects a job. In the waiting
time model, the cost of the algorithm is x + ¢. The cost of the optimum
is min(c, z), since it can either reject a job in the beginning, or not reject
at all. Thus we have a competitive ratio of 2.

The same example gives a bound of 1.5 for flow time. Note that the
cost of the online algorithm is 2z + ¢, while that of the optimum is
min(z + ¢, 2z).

Theorem 3. No online algorithm can achieve a competitive ratio of less
than 2 for minimizing waiting time with rejections or a competitive ratio
of less than 1.5 for minimizing flow time with rejections.

3 Weighted flow time with weighted penalties

In this section we consider the minimization of weighted flow time with
admission control. We assume that each job has a weight associated with
it. Without loss of generality, we can assume that the weights are powers
of 2. This is because rounding up the weights to the nearest power of 2
increases the competitive ratio by at most a factor of 2. Let a1,az2, ..., ar
denote the different possible weights, corresponding to weight classes
1,2,...,k. Let W be the ratio of maximum to minimum weight. Then,
by our assumption, k is at most log W. We will consider the following two
models for penalty. The general case of arbitrary penalties is considered
in the next section.

Uniform penalty: Jobs in each weight class have the same penalty
¢ of rejection.
Proportional penalty: Jobs in weight class j have rejection penalty
a;c.
For both these cases, we give an O(log® W) competitive algorithm. This
algorithm is based on the Balanced SRPT algorithm due to Bansal et
al. [4]. We modify their algorithm to incorporate admission control. The
modified algorithm is described below.
Algorithm Description: As jobs arrive online, they are classified ac-
cording to their weight class. Consider the weight class that has the min-
imum total remaining time of jobs. Ties are resolved in favor of higher
weight classes. At each time step, we pick the job in this weight class
with smallest remaining time and schedule it.
Let ¢ be a counter that counts the total weighted flow time accumulated
until current time step. For each weight class j, whenever ¢ crosses the
penalty ¢ (resp. ajc), we reject a job with the largest remaining time
from this class.
Analysis: We will imitate the analysis of the weighted flow time algo-
rithm. First we give an upper bound on the cost incurred by the algo-
rithm. Let F'(S) be the final value of counter ¢. The cost of rejection,
c|R|, is bounded by k¢, because rejections |R;| in weight class j increase
by 1 every time ¢ increases by c;. Thus we have,

Lemma 5. The total cost of the algorithm is < (k+ 1)¢

In order to lower bound the cost of optimal offline algorithm, we use a
counter t. The counter ¢ works as follows: Whenever Opt rejects a job
of weight class j, 1 gets incremented by c;. At other times, if ¢ = ¢, then
¢ and ¢ increase at the same rate (i.e. ¥ stays equal to ¢), otherwise, ¢
stays constant. By design, we have the following:

Fact 5 At all points of time, b > ¢.

Now we show that ¢ is a lower bound on k-Opt. Let m; = L%J — L%J
In both Opt and our algorithm, arrange active jobs in each weight class in
decreasing order of remaining processing time. We call the first m; jobs
of weight class j in our algorithm as marked. Now ignoring the marked
jobs, we can use theorem 2 from Bansal et al. [4]. We get the following:

Lemma 6. The total weight of unmarked jobs in our algorithm is no
more than k times the total weight of jobs in Opt.

Proof. (Sketch) The proof follows along the lines of lemma 2 in Bansal
et al. [4]. Their proof works in this case if we only consider the set of
unmarked jobs in our algorithm. However, due to rejections, we need to
check a few more cases.

We first restate their lemma in terms suitable for our purpose. Let B(j, 1)
and P(4,1) denote a prefiz of the jobs in our algorithm and Opt algo-
rithm respectively. Then, we define the suffixes B(j,1) = J, — B(j,1) and
P(j,1) = J, — P(j,1), where J, and J, are the current sets of jobs in our
algorithm and the Opt algorithm respectively.

Lemma 7. ([4]) The total remaining time of the jobs in the suffiz B(j,1)
is smaller than the total remaining time of the jobs in P(j,1).

We now consider the cases that are not handled by Bansal et al.’s proof.
If a job of weight class j arrives and Opt rejects it, then the set of jobs
with Opt does not change. On the other hand, m; increases by at least 1.
In our algorithm, if the new job is among top m; jobs in its weight class,
then it is marked and set of unmarked jobs remains the same. If the new
job does not get marked, the suffixes of our algorithm can only decrease,
since some other job with higher remaining time must get marked.
Similarly, when our algorithm rejects a job of class j, then the number
of marked jobs m; reduces by 1. However, the rejected job had highest
remaining time in the class j. Hence none of the suffixes change.

Thus, we have established that the suffixes in our algorithm are smaller
than the corresponding suffixes in the Opt algorithm at all times. The
argument from Theorem 2 in [4] gives us the result that weight of un-
marked jobs in our algorithm is at most k - Opt.

To finish the argument, note that when the Opt algorithm rejects a job
of weight class j, Opt increases by c¢;j. And 1 increases by kc;. On the
other hand, when ¢ and ¢ increase together, we have ¢ = ¢. There are
no marked jobs, since m; = 0 for all 5. The increase in ¢ per time step is
same as the weight of all jobs in our algorithm. As we saw in the Lemma
6, this is at most k times the total weight of jobs in Opt algorithm. Thus,
the total increase in ¢ is bounded by k - Opt.

In conjunction with Lemma 5, this gives us O(log® W) competitiveness.

4 Weighted Flow time with Arbitrary Penalties

In this section we will consider the case when different jobs have different
weights and different penalties of rejection. First we will show that even
for the simpler case of minimizing unweighted flow time with two different
penalties, no algorithm can obtain a competitive ratio of less than ni
or less than C'2. A similar bound holds even if there are two different
penalties and the arrival times of high penalty jobs are known in advance.
Then we will give an online algorithm that achieves a competitive ratio
of O(L(log W +log C)?) using a processor of speed (1 +€).

4.1 Lower Bounds

Theorem 4. For the problem of minimizing flow time or job idle time
with rejection, and arbitrary penalties, no (randomized) online algorithm
can achieve a competitive ratio of less than ni or C%. Even when there
are only two different penalties and the algorithm has knowledge of the
high penalty jobs, no online (randomized) algorithm can achieve a com-
petitive ratio of less than ns.

Proof. (Sketch) Consider the following scenario for a deterministic algo-
rithm. The adversary gives two streams, each beginning at time ¢t = 0.

Stream1 consists of k2 jobs, each of size 1 and penalty k2. Stream2 con-
sists of k jobs each of size k and infinite penalty.

Depending on the remaining work of the online algorithm by time k2,
the adversary decides to give a third stream of jobs, or no more jobs.
Stream 3 consists of m = k* jobs, each of size 1 and infinite penalty.
Let y denote the total remaining work of jobs of Stream2 that are left
at time ¢ = k*. The adversary gives Stream3 if y > k?/2.

In either case, one can show that the ratio of the optimal cost to the
online cost is at £2(k), which implies a competitive ratio of 2(n'/*). Due
to lack of space, the details are deferred to the full version.

Clearly, the lower bound extends to the randomized case, as the adver-
sary can simply send Stream3 with probability 1/2. Finally, to obtain a
lower bound on competitive ratio in terms of C, we simply replace the
infinite penalties of jobs in Stream2 and Stream3 by penalties of k*.
The bound for the case when the high penalty jobs are known is similar
and deferred to the full version of the paper.

4.2 Algorithm with Resource Augmentation

Now we will give a resource augmentation result for the weighted case
with arbitrary penalties. The resource augmentation model is the one
introduced Kalyanasundaram and Pruhs [13], where the online algorithm
is provided a (1 + €) times faster processor than the optimum offline
adversary.

Consider first, a fractional model where we can reject a fraction of a job.
Rejecting a fraction f of job j has a penalty of fc;. The contribution to
the flow time is also fractional: If an f fraction of a job is remaining at
time ¢, it contributes fw; to the weighted flow time at that moment.
Given an instance of the original problem, create a new instance as fol-
lows: Replace a job j of size pj, weight w; and penalty c¢;, with ¢; jobs,
each of weight wj/c;, size pj/c; and penalty 1.

Using the O(log? W) competitive algorithm for the case of arbitrary
weights and uniform penalty, we can solve this fractional version of the
original instance to within O((log W + log C)?). Now we use a (1 + ¢)
speed processor to convert the fractional schedule back to a schedule for
the original metric without too much blowup in cost, as described below.
Denote the fractional schedule output in the first step by Sr. The algo-
rithm works as follows: If Sr rejects more than an €/2 fraction of some
job, reject the job completely. Else, whenever Sr works on a job, work
on the same job with a (1 + €) speed processor. Notice that when the
faster processor finishes the job, Sr still has 1 —€/2 —1/(1 + €) = O(e)
fraction of the job present.

We lose at most 2/¢ times more than S in rejection penalties, and at
most O(1/e) in accounting for flow time. Thus we have the following
theorem:

Theorem 5. The above algorithm is O(%(log W + log C)*)-competitive
for the problem of minimizing weighted flow time with arbitrary penalties
on a (1 + €)-speed processor.

5 Conclusion

In this paper, we give online algorithms for the problems of minimizing
flow time and job idle time when rejections are allowed at some penalty,
and examine a number of problem variants. There are several problems
left open by our work. It would be interesting to close the gap between
the 1.5 lower bound and our 2-competitive algorithm for minimizing flow
time with uniform penalties. The hardness of the offline version for the

case of flow-time with uniform penalties is also not known?.

References

1. Smith, W.: Various optimizers for single stage production. Naval
Research Logistics Quarterly 3 (1956) 59-66

2. Chekuri, C., Khanna, S.: Approximation schemes for preemptive
weighted flow time. ACM Symposium on Theory of Computing
(STOC) (2002)

3. Chekuri, C., Khanna, S., Zhu, A.: Algorithms for weighted flow time.
STOC (2001)

4. Bansal, N., Dhamdhere, K.: Minimizing weighted flow time. In:
ACM-SIAM Symposium on Discrete Algorithms (SODA). (2003)
508-516

5. Becchetti, L., Leonardi, S., Spaccamela, A.M., Pruhs, K.: On-
line weighted flow time and deadline scheduling. In: RANDOM-
APPROX. (2001) 36-47

6. Borodin, A., El-Yaniv, R.: On-Line Computation and Competitive
Analysis. Cambridge University Press (1998)

7. Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J.,
Stougie, L.: Multiprocessor scheduling with rejection. In: ACM-
SIAM Symposium on Discrete Algorithms (SODA). (1996)

8. Seiden, S.S.: Preemptive multiprocessor scheduling with rejection.
Theoretical Computer Science 262 (2001) 437-458

9. Hoogeveen, H., Skutella, M., Woeginger, G.: Preemptive scheduling
with rejection. European Symposium on Algorithms (2000)

10. Engels, D., Karger, D., Kolliopoulos, S., Sengupta, S., Uma, R.,
Wein, J.: Techniques for scheduling with rejection. European Sym-
posium on Algorithms (1998) 490-501

11. Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and
Its Applications. Academic Press (1979)

12. Hardy, G., Littlewood, J.E., Polya, G.: Inequalities. Cambridge
University Press (1952)

13. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoy-
ance. JACM 47 (2000) 617-643

2 We can give a quasi-polynomial time approximation scheme (a 1 4 ¢ approximation
with running time n®{°# "/62)). This is deferred to the full version of the paper.

This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice

