
Compact Representations of Separable Graphs ∗

Daniel K. Blandford Guy E. Blelloch Ian A. Kash
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

{blandford,blelloch,iak}@cs.cmu.edu

Abstract

We consider the problem of representing graphs com-
pactly while supporting queries efficiently. In particular
we describe a data structure for representing n-vertex
unlabeled graphs that satisfy an O(nc)-separator the-
orem, c < 1. The structure uses O(n) bits, and sup-
ports adjacency and degree queries in constant time,
and neighbor listing in constant time per neighbor. This
generalizes previous results for graphs with constant
genus, such as planar graphs.

We present experimental results using many “real
world” graphs including 3-dimensional finite element
meshes, link graphs of the web, internet router graphs,
VLSI circuits, and street map graphs. Compared to
adjacency lists, our approach reduces space usage by
almost an order of magnitude, while supporting depth-
first traversal in about the same running time.

1 Introduction

Many applications involve representing very large
graphs. In such applications space can be as much of
an issue as time. For example, there has been recent
interest in compactly representing the link structure of
the web for use in various algorithms [4, 1, 25]. Other
applications of large graphs include representing the
meshes used in finite-element simulations, or 3d models
in graphics. For all these applications it is often useful
to support dynamic queries efficiently while maintaining
a compact representation.

For random graphs the space that can be saved by
graph compression is quite limited—the information-
theoretic lower bound for representing a random graph
is Θ(m log n2

m), where n is the number of vertices,
and m is the minimum of the number of edges, or
the number of edges in the complement. This bound
can be matched by using difference encoded adjacency

∗This work was supported in part by the National Science

Foundation as part of the Aladdin Center (www.aladdin.cmu.edu)

under grants CCR-0086093, CCR-0085982, and CCR-0122581.

lists [30], and for sparse graphs the approach only saves
a small constant factor over standard adjacency lists.
Fortunately most graphs in practice are not random,
and considerable savings can be achieved by taking
advantage of structural properties.

Probably the most common structural property
that graphs in practice have is that they have small
separators. A graph has small separators if it and its
subgraphs can be partitioned into two approximately
equally sized parts by removing a relatively small num-
ber of vertices. (The expected separator size of a ran-
dom graph is Θ(m), for m ≥ 2n). Planar graphs,
for example, have O(n1/2) separators [17] and play
an important role in any partitioning of 2-dimensional
space, such as 2-dimensional triangulated meshes. In
fact there has been considerable work on compressing
planar graphs (see related work below). Even graphs
that are not strictly planar because of crossings, such
as telephone and power networks, tend to have small
separators. More generally, nearly all graphs that are
used to represent connections in low dimensional spaces
have small separators. For example most 3-dimensional
meshes have O(n2/3) separators [19], as do most nearest
neighbor graphs in 3-dimensions. Furthermore many
graphs without pre-defined embeddings in low dimen-
sional spaces have small separators [29]. For example,
the link structure of the web has small separators, as
our experiments show.

In this paper we are interested in compact repre-
sentations of separable graphs (a graph is separable
if it is taken from a class of graphs that satisfies an
nc-separator theorem [17] for c < 1). We describe a
representation that uses O(n) bits and supports con-
stant time adjacency and degree queries, and listing of
the neighbors in constant time per neighbor. We as-
sume the graphs are unlabeled—we are free to number
the vertices. Even if a graph is not strictly separable
(e.g. some component cannot be effectively separated)
our algorithm is likely to do well since it will compress
the components that are separable. Our computational

model is a Random-Access-Machine with constant-time
operations on O(log n)-bit words. We take advantage of
the O(log n)-bit parallelism in our algorithms.

Our data structure is based on recursively sepa-
rating a graph and using the separators to renumber
the vertices (first numbering one subgraph, then the
separator vertices, then the other subgraph). Because
of the properties of small separators, most edges will
connect vertices that are close in this numbering. We
take advantage of this property in encoding the edges.
In particular we can store an adjacency list by sorting
the neighbor indices, and storing the differences d be-
tween adjacent pairs in the list using an O(log d)-bit en-
coding. For separable graphs with constant in-degree,
we show that this idea is sufficient for supporting de-
gree and neighbor queries efficiently. For graphs with
non-constant in-degree, this representation is not space-
efficient. We show, however, that by using “shadow
labels” for the vertices and having the adjacency lists
refer to these shadow labels, O(n) bits is sufficient. We
achieve constant-time adjacency queries by directing the
graph so that all vertices have constant in-degree.

The time to construct our representation depends
on the time needed to recursively separate the graph
(all other aspects take linear time). A polylogarithmic
approximation of the separator size is sufficient for
our bounds so the Leighton-Rao separator [15] gives
a polynomial time construction for graphs satisfying
an O(nc), c < 1 edge-separator theorem. For special
graphs more efficient solutions are known, e.g., for
planar graphs [17] and well shaped meshes [19]. In
practice fast heuristics work well for most graphs [13].

We implemented a version of our data structure
without shadow labels and present results on several
graphs from a variety of sources. We compare several
methods for finding separators and for indexing the
structure. As a measure of query times we use the time
taken for a depth-first search. We compare our space
and time to that of adjacency list representations using
both linked lists and arrays. Our query time is about
the same as for the linked list structure, but slower than
arrays. In space we save a factor of up to 10 compared
to linked lists, and 5 compared to arrays. The time
needed to find a good ordering is equivalent to the time
of about 15 depth-first searches.

Related Work. There has been considerable pre-
vious work on compressing unlabeled graphs. Turan [26]
first showed that n-vertex planar graphs can be com-
pressed into O(n) bits. The constant in front of the high
order term was improved by Keeler and Westbrook [14],
and He, Kao and Lu [11] later describe a technique that
is optimal in the first order term. These results gener-
alize to any graph with constant genus [18]. There have

also been many results for sub-classes of planar graphs
such as trees, triangulated meshes or triconnected pla-
nar graphs [14, 10, 23]. For each of these, the constant
in front of the m can be improved over general planar
graphs. For dense graphs, Naor [22] describes a repre-
sentations that reduces a lower order term over what is
required by an adjacency matrix.

None of this work considers implementing fast
queries. Jacobson [12] first showed how planar graphs
can be represented using O(n) bits while permitting
adjacency queries in O(log n) time. Munro and Ra-
man [21] improved the time for adjacency queries to
O(1) time. The constants on the high order term for the
space bound has been improved by Chuang et. al. [6],
and further by Chiang et. al. [5]. All of these techniques
are based on using representations for balanced paren-
theses. It seems unlikely the techniques will extend to
the general case of graphs with small separators.

Using separators to compress graphs has been con-
sidered before. Deo and Litow [7] showed that sepa-
rators can be used to compress graphs with bounded
genus to O(n) bits. He, Kao and Lu [11] use planar-
graph separators to compress planar graphs to the opti-
mal number of bits within a low-order term. Neither of
these techniques, however, support queries. In our pre-
vious work [3] we showed how separators can be used to
compress the bipartite graph representing the mapping
of terms to documents in a document database, such
as used by web search engines. Our use of a separator
tree to number the vertices is similar to the Gaussian
elimination order generated by nested dissection [16]. In
fact, in the special case of constant in-degree we could
use the nested dissection ordering directly—it numbers
the separator vertices after the two recursive calls, but
this does not affect our bounds.

2 Preliminaries

Graph Separators. Let S be a class of graphs
that is closed under the subgraph relation. We say
that S satisfies a f(n)-separator theorem if there are
constants α < 1 and β > 0 such that every graph in S
with n vertices has a cut set with at most βf(n) vertices
that separates the graph into components with at most
αn vertices each [17].

In this paper we are particularly interested in the
compression of classes of graphs for which f(n) is nc

for some c < 1. One such class is the class of planar
graphs, which satisfies a n

1
2 -separator theorem. Our

results will apply to other classes as well: for example,
Miller et al. [19] demonstrated that every well-shaped
mesh in Rd has a separator of size O(n1−1/d). We will
say a graph is separable if it is a member of a class that
satisfies an nc-separator theorem.

A class of graphs has bounded density if every n-
vertex member has O(n) edges. Lipton, Rose, and
Tarjan [16] prove that any class of graphs that satisfies a
n/(log n)1+ε-separator theorem with ε > 0 has bounded
density. Hence separable graphs have bounded density.

Another type of graph separator is an edge separa-
tor. We say that a class of graphs S satisfies a f(n)-edge
separator theorem if there are constants α < 1 and β > 0
such that every graph in S with n vertices has a set of
at most βf(n) edges whose removal separates the graph
into components with at most αn vertices each. Edge
separators are less general than vertex separators: every
graph with an edge separator of size s also has a vertex
separator of size at most s, but no similar bounds hold
for the converse. We will mostly deal with vertex sep-
arators, but we will show simplified results for graphs
with good edge separators.

Without loss of generality we will consider only
graphs in which all vertices have nonzero degree. We
will also assume the existence of a graph separator
algorithm that returns a separator within the O(nc)
bound.

Queries. We will consider three kinds of queries:
adjacency queries, neighborhood queries, and degree
queries. An adjacency query tests whether two ver-
tices are adjacent. A neighborhood query lists all the
neighbors of a given vertex. A degree query returns the
degree of a vertex.

Rank and Select. Our algorithm will require the
use of data structures that support the rank and select
operations [12]. Given S ⊂ 1 . . . n,

Rank(j) returns the number of elements of S that
are less than or equal to j, and

Select(i) returns the ith smallest element in S.
These operations can be implemented to run in constant
time with O(n)-bit data structures [20]. In Section 5
we describe a simpler implementation of a select data
structure which matches these bounds.

Adjacency Tables. Our data structures make use
of an encoding in which we store the neighbors for
each vertex in a difference-encoded adjacency list. We
assume the vertices have integer labels. If a vertex v has
neighbors v1, v2, v3, . . . , vd in sorted order, then the
data structure encodes the differences v1 − v, v2 − v1,
v3 − v2, . . . , vd − vd−1 contiguously in memory as a
sequence of bits. The differences are encoded using the
gamma code [8], which uses 1+2blog dc bits to encode a
difference of size d. The value v1− v might be negative,
so we store a sign bit for that value. At the start of each
encoded list we also store a gamma code for the number
of entries in the list.

We form an adjacency table by concatenating the
adjacency lists together in the order of the vertex labels.

To access the adjacency list for a particular vertex we
need to know its starting location. If we have n vertices
and a total ofO(n) bits in the lists, keeping anO(log(n))
pointer for each vertex would exceed our space bound;
instead, we use a select data structure to store the start
locations using O(n) bits (S is the set of start locations).

Lemma 2.1. An adjacency table supports degree queries
in O(1) time, and neighborhood queries in O(d) time,
where d is the degree of the vertex.

Proof. The select operation allows access to the ad-
jacency list for any vertex in constant time. Any
O(log(n))-bit value v can be decoded in constant time
using O(log(n))-bit words (for example with table
lookup), so it takes O(d) time to decode the contents
of the list.

Lemma 2.2. If the adjacency list for v is gamma-coded,
then adding a neighbor v′ to the list adds O(log(|v−v′|))
bits, changing a neighbor’s position in the list from v′ to
v′′ adds O(log(|v′ − v′′|)) bits, and deleting a neighbor
from the list adds O(1) bits to the structure.

Proof. Follows from the fact that gamma codes require
Θ(log(d)) bits, and since the logarithm function is
concave. We note that deleting a neighbor from an
adjacency list can actually increase the number of bits
by 1.

3 Separators and Neighborhood Queries

Our algorithm builds a separator tree from the target
graph, then uses it to order the vertices. The algorithm
for building the separator tree is given in Figure 1.
Without loss of generality we assume that the graph
separator algorithm always returns a separator with at
least one vertex on each side (unless the target graph
is a clique). If the target is a clique, we assume the
separator contains all but one of the vertices, and that
the remaining vertex is on the left side of the partition.

The algorithm we describe produces a separator tree
in which the separator vertices at one level are included
in both of the subgraphs at the next level [16]. Since
each call to BuildTree partitions the edges, and the
base case contains a single edge, the separator tree will
have one leaf per edge. Consider a single vertex with
degree d. Every time it appears in a separator, its edges
are partitioned into two sets, and the vertex is copied
to both recursive calls. Since the vertex will appear in
d leaves, it must appear in d − 1 separators, so it will
appear in d − 1 internal nodes of the separator tree.
These 2d− 1 total appearances define their own binary
tree for the vertex, which we call the shadow tree for
that vertex. An example is shown in Figure 2.

BuildTree(V,E)
if |E| = 1 then

return V

(Va, Vsep, Vb)← FindSeparator(V,E)
Ea ← {(u, v) ∈ E|u ∈ Va ∨ v ∈ Va}
Eb ← E − Ea
Va,sep ← Va ∪ Vsep
Vb,sep ← Vb ∪ Vsep

Ta ← BuildTree(Va,sep, Ea)
Tb ← BuildTree(Vb,sep, Eb)
return SeparatorTree(Ta, Vsep, Tb)

Figure 1: The BuildTree algorithm, and an example of the partition it produces.

We label the appearance of vertices in the separator
tree recursively: first the vertices on the left, then the
vertices in the separator, then the vertices on the right.
Note that a vertex of degree d will receive 2d− 1 labels:
one for each time it appears in the separator tree (i.e.
one for each node in its shadow tree). We call the label
assigned to the root of a shadow tree the root label, and
use this label as the representative of the vertex. (The
labeling of representatives is sparse, but we can use the
select and rank data structures to efficiently convert it
to a dense representation.) We refer to labels assigned
to the leaves of a shadow tree as the shadow labels of
that vertex. Note that, if a vertex has degree 1, then its
root label will be a shadow label.
Property 3.1. The separator tree of an n-vertex
bounded-density graph is assigned O(n) contiguous la-
bels.

This property holds since a vertex of degree d is
assigned 2d − 1 labels, giving a total of 4m − n labels,
and since m = O(n) for bounded density graphs. If a
graph is separable, then all graphs in the separator tree
have this property.

We will represent graphs using two data structures.
The first, the shadow adjacency table, will map the
root label of each vertex to an adjacency list of shadow
labels. The second, the root-find structure, will map
each shadow label to the label of its root.

The Shadow Adjacency Table. The shadow
adjacency table contains an adjacency list for each
vertex, which is accessed using the root label of the
vertex. If vertices u and v have a shadow labels u′ and
v′, and a leaf of the separator tree contains (u′, v′), then
the adjacency list for v contains u′ and the adjacency
list for u contains v′.

Lemma 3.1. For classes of graphs satisfying an nc-
separator theorem with c < 1, any n-vertex member has
a shadow adjacency table with O(n) bits.

Proof. Consider the adjacency list and shadow tree for
a vertex v of degree d. There is a one-to-one correspon-
dence between the d labels in the adjacency list and the
d leaves of the shadow tree, and the corresponding la-
bels differ by ±1. We charge the difference between each
adjacent pair of adjacency list labels to the least com-
mon ancestor of the corresponding leaves in the shadow
tree. If the ancestor is a separator in a graph with s
vertices, then the difference is O(s) (by property 3.1),
so the gamma code uses O(log(s)) bits. We treat the
first difference in the list, v1 − v, as a special case, and
charge its bits to the root label. Note that this charges
every node in the shadow tree at most twice.

We have charged O(log(s)) bits to every appearance
of a vertex in a separator for a graph with s vertices.
Recall that the target graph has a βnc separator that
guarantees that each side of the partition will contain
at most αn vertices. Let S(n) be an upper bound on
the the number of bits used to encode a graph with n
vertices. If we let α < a < 1 − α, S(n) satisfies the
recurrence:

S(n) ≤ S(an+ βnc) + S(n− an) +O(nc log n)

This recurrence solves to S(n) = O(n) (e.g. using
induction assuming S(n) ≤ k1n − k2n

c′ , c < c′ < 1).
The number of bits to encode the lengths of each list
is bounded by O(n) since the total number of edges is
O(n) and the logarithm is a concave function.

We note that even if the separators are polylogarithmic
approximations of the best cut, the recurrence still
solves to O(n).

Before we describe the root-find structure, we will
discuss two special cases in which it is not needed. For
these cases we only need a single label for each vertex,
and need not generate any shadow labels. The adja-
cency lists point directly to the “representative” label
of the vertex, and we can directly support neighborhood

queries in constant time per neighbor.
The first case is for directed graphs with bounded

in-degree. (We will consider a separator on a directed
graph to be equivalent to that for the corresponding
undirected graph.) In this case, we build an out-edge
adjacency table that, for any vertex v, lists the root
label u corresponding to each out-edge (v, u).

Lemma 3.2. For a class of directed graphs with bounded
in-degree and satisfying an nc-separator theorem, any
n-vertex member can be encoded in O(n) bits using an
out-edge adjacency table.

Proof. A shadow adjacency table uses O(n) bits on this
graph. Discarding the in-edges produces a “shadow out-
edge adjacency table” also using O(n) bits. By Lemma
2.2 the cost of replacing any shadow label v′ with its
root label v is O(log(|v − v′|)) bits. If v appears as a
separator in a graph with s vertices, then this cost is
O(log(s)). Each vertex is charged once for each in-edge
it has. Since a vertex’s in-degree is bounded, this cost
is O(log(s)) per vertex. This gives the same recurrence
as in Lemma 3.1 and hence O(n) additional bits.

The second special case is for undirected graphs
with good edge separators. To label the vertices we use
an edge separator tree rather than the vertex separator
tree produced above. Each vertex appears in one leaf
of the tree and is assigned a label based on an in-order
traversal.

Lemma 3.3. For a class of graphs satisfying an nc-edge
separator theorem, any n-vertex member can be encoded
in O(n) bits using an adjacency table.

Proof. For each edge (u, v) in a separator in a graph
with s vertices, the difference between u and v is O(s),
so the contribution of that edge to the adjacency lists of
u and v is O(log(s)) bits. As above, we charge O(log(s))
to every edge in a separator of a graph with s vertices;
the total is O(n) bits.

The Root-Find Structure. The shadow adja-
cency table can find a set of shadow labels corresponding
to the neighbors of any root label. We now describe a
data structure that maps shadow labels to their root
labels. We begin with a structure that allows us to per-
form lookups in O(min(log(n), d)) time for a vertex of
degree d; we then show how to improve the structure so
that we can perform these lookups in O(1) time.

To allow root lookups, we assign to each label
a pointer to its parent, gamma encoded using the
difference between the two labels, and indexed using
a select data structure. (We use a one-bit token per
label to indicate that it is the root of its shadow tree.)

If the parent of a label is in a separator of a graph
with s vertices, then the pointer use O(log s) bits (by
property 3.1). We charge the two child pointers to the
parent, resulting in the same recurrence as in Lemma 3.1
and O(n) bits. Using parent pointers, we can climb the
tree from a shadow label to its root. The separator tree
is O(log(n)) levels high, and the height of the shadow
tree is less than the number of nodes it contains, so the
total time is O(min(log(n), d)).

To achieve a constant-time bound we use a blocking
structure. We divide the labels into three categories
based on their location in the separator tree. The
category a label is in will determine the size of the
pointer we allocate to each of its two children.

Labels appearing as separators in graphs contain-
ing at least log

1
1−c (n) vertices will go in the first cate-

gory; we allocate a full O(log(n))-bit root pointer for
each of their children. Labels which appear as sep-
arators in graphs containing between log

1
1−c (n) and

log
1

1−c (log
1

1−c (n)) vertices will go in the second cate-
gory; they cannot have any children with a label that
differs by more than O(log

1
1−c (n)), so for their children

we use an O(log log
1

1−c (n)) = O(log(log(n)))-bit off-
set pointer. These pointers will point to the topmost
second-category label that is an ancestor of the child
label in question; that label is guaranteed to have a
first-category parent (if it has a parent at all). Labels
in graphs containing less than nb = log

1
1−c (log

1
1−c (n))

vertices will be considered “leaf labels” and will go in
the third category. Rather than encoding these vertices
explicitly, we will encode the graphs they appear in. We
will consider a maximal block of contiguous leaf labels
to be a “leaf block”.

We examine each leaf block and remove from it all
of the parent pointers that point to locations outside
of the block; labels that had such pointers are marked
as the roots of their shadow trees. We then make a
table that lists all of the distinct leaf blocks in the data
structure, and replace the individual leaf blocks with
pointers into the table. The leaf blocks (with the parent
pointers removed) all have less than nb vertices, so each
individual block requires O(nb) bits to encode. This
means there can be at most O(2knb) distinct leaf blocks,
so the size of the pointer required per leaf block is also
O(nb) bits. There are O(n/nb) pointers, so this is within
our space bound.

We now examine the table, which contains O(2knb)
leaf blocks. We provide each shadow label in each
leaf block with an O(log(nb))-bit pointer to its greatest
ancestor within that block.

To shrink the number of graphs in the table we had
to strip out all parent pointers that pointed out of the

���
�

���
�

���
�

��
�
��
�

�	��	�
�	�

�	��	�
�	�
��
�

��
�

�����
�

�� �� �� ��

���
�

���
�
�	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	�

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

!	!!	!
!	!!	!
!	!!	!
!	!!	!
!	!!	!

"	""	"
"	""	"
"	""	"
"	""	"
"	""	"

#	#	#	##	#	#	##	#	#	##	#	#	##	#	#	##	#	#	##	#	#	##	#	#	##	#	#	##	#	#	##	#	#	##	#	#	##	#	#	#

$	$	$$	$	$$	$	$$	$	$$	$	$$	$	$$	$	$$	$	$$	$	$$	$	$$	$	$$	$	$$	$	$

%	%	%	%%	%	%	%%	%	%	%%	%	%	%%	%	%	%%	%	%	%%	%	%	%%	%	%	%%	%	%	%%	%	%	%%	%	%	%%	%	%	%

&	&	&&	&	&&	&	&&	&	&&	&	&&	&	&&	&	&&	&	&&	&	&&	&	&&	&	&&	&	&

'	''	'
'	''	'
'	''	'

((
((
((

))
))
))
))
)

**
**
**
**
*

Figure 2: The separator tree, and a shadow tree corresponding to a vertex of degree 6.

leaf graphs themselves. We include these pointers as an
appendix to each leaf table pointer. The space for these
pointers has already been charged to first- and second-
category labels in the tree. We index the pointers using
another application of our select data structure. For
each leaf block we also store the label of the first entry
modulo nb (call this vL). We charge this log(nb) space
to the O(nb) space of the table pointer. Each leaf block
therefore contains a table pointer, an appendix, and vL.

Given a shadow label s, we use the following
procedure to find the root of its shadow tree. We first
use the select data structure to find a pointer to the
leaf block L containing s. We compute s − vL modulo
nb to find the index of the entry in L corresponding
to s. That entry contains a pointer to the greatest
ancestor of s in L. If this ancestor is not a root,
we examine the appendix of the leaf block to find the
greatest second-category ancestor s′ of s. We use the
select data structure again to find the greatest first-
category ancestor s′′ of s′ (if needed). These operations
all require constant time.

Lemma 3.4. The root-find structure allows constant-
time lookup of the root label corresponding to any
shadow label, and uses O(n) bits.

Proof Outline. There are O(n/ log(n)) labels that re-
ceive log(n)-bit pointers and O(n/ log(log(n))) labels
that receive O(log(log(n)))-bit pointers; the space for
these pointers is O(n). There are O(n/nb) leaf table
pointers, each using O(nb) bits; this space is also O(n).
The table contains O(2knb) entries, each of which con-
tains nb pointers of O(log(nb)) bits each; the total space
used is O(2knbnb log(nb)) which is sublinear.

The time bound is described above.

4 Adjacency Queries

Using the structures described above, we can find all the
neighbors of a vertex in optimal O(d) time. However,
resolving adjacency queries also takes O(d) time since it
requires decoding the adjacency list of either u or v to

see if it contains the other vertex. To answer adjacency
queries in constant time, we convert the target graph to
a directed graph with bounded in-degree.

Lemma 4.1. If a class of undirected graphs satisfies an
nc-separator theorem, then it is possible to direct the
edges of any graph in that class so that the resulting
graph has bounded in- (or out-) degree.

Proof. We make use of the fact from Section 2 that
any class of graphs satisfying such a theorem must have
bounded density. We present an algorithm that directs
the edges of such a graph so as to ensure that the result
has bounded in-degree.

Given a graph G and a density bound b, our
algorithm first selects the set V of vertices in G that
have degree at most 2b. At least half of the vertices in G
must have this property. Our algorithm greedily directs
all edges that have vertices in V such that those edges
point toward vertices in V . This cannot cause vertices
in V to exceed their in-edge bound, and it does not add
in-edges to vertices that are not in V . Our algorithm
then subtracts V from G and repeats the process on
the remaining graph. When all vertices are eliminated,
the process is complete, and no vertex has an in-degree
greater than 2b.

Theorem 4.1. For a class of graphs satisfying an nc-
separator theorem, any n-vertex member can be repre-
sented in O(n) bits while supporting adjacency queries
and degree queries in O(1) time and neighborhood
queries in O(1) time per neighbor.

Proof. We direct our graph for bounded in-degree using
Lemma 4.1. For neighborhood queries on undirected
graphs we need to store an edge in both directions.
We therefore partition the edges into two sets: those
that point in the direction of bounded in-degree and
those that point in the other direction—these will have
bounded out-degree. For the first set we can use
Lemma 3.2 and skip the root-find structure, if desired.
For the second set we need the root-find structure but

the adjacency lists are constant length. (By Lemma 3.1,
discarding entries can increase the space of the table by
at mostO(1) bit per edge.) For neighborhood queries we
search both tables. This takes O(d) time (Lemmas 2.1
and 3.4). For an adjacency query on vertices u and v,
we need only examine u and v in the second table since
either (u, v) or (v, u) will be in the table. This takes
O(1) time since the lists are constant length. Degree
queries are handled by Lemma 2.1.

5 Experimental Setup

We were interested in analyzing the effectiveness of our
approach and exploring various space time tradeoffs.
We decided to implement the version of our data
structure based on edge separators (see Lemma 3.3)
since the graphs we test have reasonably good edge
separators, and this version avoids the need for the
somewhat complicated root-find structure. In this
section we describe the experimental setup including the
algorithms we used to find separator trees, a heuristic
for improving the ordering given a separator tree, the
select data structures used to index into the adjacency
table, and the graphs used in our experiments. In the
next section we discuss the actual results.

Separator Algorithms. We implemented three
base algorithms for constructing edge-separator trees.
Two of our algorithms are top-down: they begin with a
graph and recursively compute its edge-separators. The
remaining algorithm is bottom-up: it collapses edges of
the graph, combining vertices into multivertices.

The first algorithm we considered, bfs, generates
separators through breadth-first search (BFS). The al-
gorithm finds an “extremal” vertex vn by starting a BFS
at a random vertex and using the last vertex encoun-
tered. The algorithm starts a second BFS at vn and
continues until it has visited half of the vertices in the
graph. This is taken as the partition. We apply the
BFS separator recursively to produce a separator tree.

Our second algorithm, metis, uses the Metis [13]
graph partitioning library to construct a separator tree.
Metis uses a multilevel partitioning technique in which
the graph is coarsened, the coarse graph is partitioned,
and the result is projected back onto the original
graph using Kernighan-Lin refinement. This class of
partitioning heuristic is the best known at this time [28].
We apply Metis recursively to produce a separator tree.

Our third algorithm, bu, begins with the complete
graph and repeatedly collapses edges until a single
vertex remains. There are many heuristics that can
be used to decide in what order to collapse the edges.
After some experimentation, we settled on the priority
metric w(EAB)

s(A)s(B) , where w(EAB) is the number of edges
between the multivertices A and B, and s(A) is the

number of original vertices contains in multivertex
A. The resulting process of collapsing edges creates
a separator tree, in which every two merged vertices
become the children of the resulting multivertex. To
improve performance we also use a variant of bu, which
we call bu-bpq, that uses a bucketed priority queue with
O(log n) buckets.

Child-flipping. There is a certain degree of free-
dom in the way we construct a separator tree: when
we partition a graph, we can arbitrarily decide which
side of the partition will become the left or right child
in the tree. To take advantage of this degree of free-
dom we can use an optimization called “child-flipping”.
A child-flipping algorithm traverses the separator tree,
keeping track of the nodes containing vertices which ap-
pear before and after the current node in the numbering.
(These nodes correspond to the left child of the current
node’s left ancestor and the right child of the current
node’s right ancestor.) If those nodes are NL and NR,
the current node’s children are N1 and N2, and EAB de-
notes the number of edges between the vertices in two
nodes, then our child-flipping heuristic rotates N1 and
N2 to ensure that ENLN1 +EN2NR ≥ ENLN2 +EN1NR .
This heuristic can be applied to any separator tree as a
postprocessing phase.

Codes and Decoding. We use table lookup to
decode multiple gamma codes at once. For a fixed
number of bits kg we create a table of size 2kg . In
each entry we place the number of values that the kg
bits decode to (starting at one end), the actual values,
and the number of bits (≤ kg) to skip over to find the
next codeword (since the next codeword could start in
the current kg bits). If the number of values is 0, then
the codeword does not fit into kg bits and it is decoded
explicitly. In our implementation we limit the number
of words decoded at once to 3, and the magnitude of
each value to fit in 8 bits. This makes it possible to fit
each table entry into 32 bits.

There are several other codes that could be used
instead of gamma codes, including delta [8], Huffman,
and arithmetic codes. We expect some of these could
improve compression, but we leave this for future work.

Indexing structures. Our algorithms use a select
data structure to map the vertex numbers to the bit
position of the start of the appropriate adjacency list.
We will henceforth call this the indexing structure.
We implemented three versions, representing different
tradeoffs between space required and lookup time.

The simplest indexing structure, direct, stores an
array of offset pointers, one for each vertex. Each
pointer used Θ(log(n)) bits, giving a total of Θ(n log(n))
bits. Only one memory access is required to locate the
start of any vertex, making this method very fast. The

Max
Graph Vtxs Edges Degree Source
auto 448695 3314611 37 3D mesh [28]
feocean 143437 409593 6 3D mesh [28]
m14b 214765 1679018 40 3D mesh [28]
ibm17 185495 2235716 150 circuit [2]
ibm18 210613 2221860 173 circuit [2]
CA 1971281 2766607 12 street map [27]
PA 1090920 1541898 9 street map [27]
googleI 916428 5105039 6326 web links [9]
googleO 916428 5105039 456 web links [9]
lucent 112969 181639 423 routers [24]
scan 228298 320168 1937 routers [24]

Figure 3: The graphs used in our experiments.

second structure, semi-direct, uses a one-word pointer
per four vertices and fits three offsets into a second word.
If the offsets don’t all fit, they are stored elsewhere, and
the second word is a pointer to them.

We also implemented a structure, indirect, that
uses optimal O(n) bits and constant time. This is
significantly simpler than the structure of Munro [20].
To index the vertices, we first divide them into blocks
of log(n) vertices each. We divide the blocks into
subblocks, each of which contains a minimal number of
vertices totaling at least k log(n) bits for some constant
k. We store a log(n)-bit pointer to each block in a global
array, and we store an O(log(n))-bit pointer to each
subblock at the start of its parent block. Each block
also contains a bit vector with one bit per vertex. A
vertex’s bit is set to 1 if that vertex is the first in its
subblock. This all requires O(n) bits.

To find the location of any vertex we first perform
an array lookup to find the location of the block con-
taining the target vertex. We then examine that block’s
bit vector to see which subblock the vertex is in, find the
subblock offset using the subblock pointers, and decode
the subblock. This all takes constant time—determining
the subblock and decoding the subblock can both be
implemented using table lookup on Θ(log(n)) bits in
constant time.

Graphs. We drew test graphs for this project
from several sources: 3D Mesh graphs from the online
Graph Partitioning Archive [28], street connectivity
graphs from the Census Bureau Tiger/Line [27], graphs
of router connectivity from the SCAN project [24],
graphs of webpage connectivity from the Google [9]
programming contest data, and circuit graphs from
the ISPD98 Circuit Benchmark Suite [2]. The circuit
graphs were initially hypergraphs; we converted them
to standard graphs by converting each net into a clique.
Properties of these graphs are shown in Figure 5. For
the google graphs we list the number of directed edges,

and we take the degree of a vertex to be the number
of elements in its adjacency list. The I and O postfix
refers to representing the incoming and outgoing edges
respectively.

6 Experimental Results

In analyzing the efficiency of our techniques, there are
three parameters of concern: the query times, the time
to create the structures, and the space usage. The space
usage has two components: the space for the adjacency
lists, and the space for the indexing structure. The time
to create the structure is dominated by time to order
the vertices. There is a time/space tradeoff between
the time used to order the vertices and the space
needed for the adjacency table (spending more time on
ordering produces better compression of the encoded
lists). There is also a space/time tradeoff between
the space used for the indexing structure and the time
needed for queries (using more space for the indexing
structure gives faster query times). Our experiments
demonstrate these tradeoffs.

Our experiments were conducted on a MicroPro,
with an Intel Pentium III 1Ghz CPU, and 512MB
PC133 Memory with 32-bit word size. For the undi-
rected graphs we represent the edge in both directions.
The bits/edge are reported for each direction. The kg
for table lookup is 16.

Figure 4 illustrates the tradeoff between the time
needed to generate an ordering, and the space needed
by the compressed adjacency lists that use that order-
ing. In addition to the separator schemes discussed in
Section 5, we include a very simple ordering based on a
depth-first-search post-order numbering of the graphs.
In general bu-cf and metis-cf produce the highest qual-
ity orderings (cf indicates that it performs child flip-
ping). The bottom up technique (bu-cf), however, is
significantly faster. We include results for bu-bpq (no
child flipping, and approximate priorities) since its or-
dering is almost as good as bu-cf, but is a factor of three
faster. The bfs algorithm does well on regular graphs
but badly on highly irregular graphs.

Figure 5 illustrates the tradeoff between the query
time and the space needed for the indexing structure,
and also compares query times to standard uncom-
pressed data structures. To measure query time we use
the time to execute a depth-first search (DFS). This is
a reasonable measure since it requires visiting all the
edges once. We compare the performance of our rep-
resentations to that of standard linked-list and array-
based graph representations. The linked-list represen-
tation uses two 32-bit words per edge, one for the neigh-
bor label and one for the next pointer in the linked list.
The array-based representation stores the neighbor in-

dfs metis-cf bfs bu-bpq bu-cf Degree
Td Space T/Td Space T/Td Space T/Td Space T/Td Space Space

auto 0.79 9.88 153.11 5.17 27.69 5.96 7.54 5.90 14.59 5.52 0.56
feocean 0.06 13.88 388.83 7.66 61.00 7.62 17.16 8.45 34.83 7.79 1.15
m14b 0.31 10.65 181.41 4.81 32.0 5.85 8.16 5.45 15.32 5.13 0.54
ibm17 0.44 13.01 136.43 6.18 21.38 9.40 11.0 6.79 20.25 6.64 0.36
ibm18 0.48 11.88 129.22 5.72 22.54 8.29 9.5 6.24 17.29 6.13 0.40
CA 0.76 8.41 382.67 4.38 88.22 7.05 14.61 4.90 35.21 4.29 1.66
PA 0.43 8.47 364.06 4.45 79.09 7.03 13.95 4.98 33.02 4.37 1.64
googleI 1.4 7.44 186.91 4.08 47.12 8.68 12.71 4.18 40.96 4.14 0.82
googleO 1.4 11.03 186.91 6.78 47.12 13.11 12.71 6.21 40.96 6.05 0.95
lucent 0.04 7.56 390.75 5.52 55.0 15.24 19.5 5.54 45.75 5.44 1.43
scan 0.12 8.00 280.25 5.94 38.75 18.05 23.33 5.76 81.75 5.66 1.45
Avg 10.02 252.78 5.52 47.26 9.66 13.65 5.86 34.54 5.56 1.00

Figure 4: The performance (time used and compression achieved) of several of our ordering algorithms. Space is
in bits per edge for encoding the edges; Td is in seconds and the other times are normalized to it. The space to
encode the degree of each vertex is listed separately (in bits per edge).

List Array Direct Semi k=1 k=16
T` T/T` T/T` Space T/T` Space T/T` Space T/T` Space

auto 0.60 0.39 0.83 2.17 0.83 1.08 0.98 1.0 1.33 0.4
feocean 0.08 0.53 1.07 5.6 1.09 2.8 1.46 2.36 2.21 0.79
m14b 0.29 0.38 0.81 2.05 0.82 1.02 0.97 0.94 1.30 0.39
ibm17 0.39 0.38 0.83 1.33 0.85 0.7 0.95 0.68 1.12 0.36
ibm18 0.38 0.36 0.80 1.52 0.82 0.79 0.93 0.78 1.14 0.37
CA 0.56 0.60 0.95 11.4 1.03 5.7 1.95 2.87 4.31 1.13
PA 0.31 0.59 0.96 11.32 1.03 5.66 1.94 2.87 4.26 1.11
googleI 0.49 0.48 0.88 5.74 0.92 2.89 1.43 1.78 2.45 0.67
googleO 0.49 0.47 0.98 5.74 1.02 2.88 1.51 2.05 2.36 0.76
lucent 0.03 0.55 1.22 9.95 1.27 4.98 2.11 3.06 3.83 1.11
scan 0.06 0.55 1.20 11.41 1.28 5.73 2.30 3.41 4.36 1.2
Avg 0.48 0.96 6.20 1.00 3.11 1.50 1.98 2.61 0.75

Figure 5: The performance of various direct and indirect indexing schemes. Space is measured in bits per edge;
T` is in seconds and the other times are normalized to it.

dices of each vertex contiguously in one large array with
the lists for the vertices placed one after the other. It
uses one 32-bit word per edge. Both representations
use an array to index the vertices using an additional
32-bit word per vertex. We note that linked lists are
well suited for insertions and deletions, while, like our
representation, arrays are best suited for static graphs.
For all versions of DFS we use one byte (8 bits) per
vertex to mark if it has been visited.

The results show that for the direct and semi-
direct indexing structure our compressed representation
is slightly faster than the linked-list representation.
This is not surprising since although there is overhead
for decoding the adjacency lists, the cache locality is
significantly better (loading a single cache line can

decode many edges). Our representation is slower
than the array-based representation. This is also not
surprising since the array-based representation also has
good spacial locality (the edges of a vertex are adjacent
in memory), but does not have decoding overhead.
We note that the graph sizes are such that for all
representations the graphs fit into physical memory but
do not fit into the cache (except perhaps lucent, scan
and feocean).

The semi-direct indexing structure saves a factor of
two in space over the direct structure while requiring
little extra time. The indirect indexing structure (k =
subblock size) further improves the space overhead, but
significantly increases the running time, especially for
the large k.

Array List bu-cf/semi
Graph time space time space time space
auto 0.24 34.2 0.61 66.2 0.51 7.17
feocean 0.04 37.6 0.08 69.6 0.09 11.75
m14b 0.11 34.1 0.29 66.1 0.24 6.70
ibm17 0.15 33.3 0.40 65.3 0.34 7.72
ibm18 0.14 33.5 0.38 65.5 0.32 7.33
CA 0.34 43.4 0.56 75.4 0.58 11.66
PA 0.19 43.3 0.31 75.3 0.32 11.68
googleI 0.24 37.7 0.49 69.7 0.45 7.86
googleO 0.24 37.7 0.50 69.7 0.51 9.90
lucent 0.02 42.0 0.04 74.0 0.05 11.87
scan 0.04 43.4 0.06 75.4 0.08 12.85

Figure 6: A summary of space and time performance.
Space is in bits per edge and includes both the adjacency
lists and indexing structure. Time is in seconds for a
depth-first search.

Overall when the time for creating the ordering is
not critical, bu-cf ordering with semi-direct indexing
seems to present the best tradeoff between time and
space. Otherwise bu-bpq is likely better. Table 6
summarizes the results for the bu-cf ordering.

References
[1] M. Adler and M. Mitzenmacher. Torwards compress-

ing web graphs. In Data Compression Conference
(DCC), pages 203–212, 2001.

[2] C. J. Alpert. The ISPD circuit benchmark suite. In
ACM International Symposium on Physical Design,
pages 80–85, Apr. 1998.

[3] D. Blandford and G. Blelloch. Index compression
through document reordering. In Data Compression
Conference (DCC), pages 342–351, 2002.

[4] A. Broder, R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the web. WWW9 / Computer
Networks, 33(1–6):309–320, 2000.

[5] Y.-T. Chiang, C.-C. Lin, and H.-I. Lu. Orderly
spanning trees with applications to graph encoding and
graph drawing. In SODA, pages 506–515, 2001.

[6] R. C.-N. Chuang, A. Garg, X. He, M.-Y. Kao, and H.-I.
Lu. Compact encodings of planar graphs via canonical
orderings and multiple parentheses. Lecture Notes in
Computer Science, 1443:118–129, 1998.

[7] Deo and Litow. A structural approach to graph
compression. In MFCS Workshop on Communications,
1998.

[8] P. Elias. Universal codeword sets and representations
of the integers. IEEE Transactions on Information
Theory, IT-21(2):194–203, March 1975.

[9] Google. Google programming contest web data.
http://www.google.com/programming-contest/,
2002.

[10] X. He, M.-Y. Kao, and H.-I. Lu. Linear-time suc-
cinct encodings of planar graphs via canonical order-

ings. SIAM J. on Discrete Mathematics, 12(3):317–
325, 1999.

[11] X. He, M.-Y. Kao, and H.-I. Lu. A fast general
methodology for information-theoretically optimal en-
codings of graphs. SIAM J. Computing, 30(3):838–846,
2000.

[12] G. Jacobson. Space-efficient static trees and graphs.
In 30th FOCS, pages 549–554, 1989.

[13] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs.
Technical Report TR 95-035, 1995.

[14] K. Keeler and J. Westbrook. Short encodings of planar
graphs and maps. Discrete Applied Mathematics,
58:239–252, 1995.

[15] F. T. Leighton and S. Rao. An approximate max-
flow min-cut theorem for uniform multicommodity
flow problems, with applications to approximation
algorithms. In FOCS, pages 422–431, 1988.

[16] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Gener-
alized nested dissection. SIAM Journal on Numerical
Analysis, 16:346–358, 1979.

[17] R. J. Lipton and R. E. Tarjan. A separator theorem for
planar graphs. SIAM J. Applied Mathematics, 36:177–
189, 1979.

[18] H.-I. Lu. Linear-time compression of bounded-genus
graphs into information-theoretically optimal number
of bits. In SODA, pages 223–224, 2002.

[19] G. L. Miller, S.-H. Teng, W. P. Thurston, and S. A.
Vavasis. Separators for sphere-packings and nearest
neighbor graphs. Journal of the ACM, 44:1–29, 1997.

[20] J. I. Munro. Tables. In 16th FST & TCS, volume 1180
of LNCS, pages 37–42. Springer-Verlag, 1996.

[21] J. I. Munro and V. Raman. Succinct representation of
balanced parentheses, static trees and planar graphs.
In 38th FOCS, pages 118–126, 1997.

[22] M. Naor. Succinct representation for general unlabeled
graphs. Discrete Applied Mathematics, 28:303–308,
1990.

[23] J. Rossignac. Edgebreaker: Connectivity compression
for triangle meshes. IEEE Transactions on Visualiza-
tion and Computer Graphics, 5(1):47–61, /1999.

[24] SCAN project. Internet maps. http://www.isi.edu/

scan/mercator/maps.html, 2000.
[25] T. Suel and J. Yuan. Compressing the graph structure

of the web. In Data Compression Conference (DCC),
pages 213–222, 2001.

[26] G. Turán. Succinct representations of graphs. Discrete
Applied Mathematics, 8:289–294, 1984.

[27] U.S. Census Bureau. UA Census 2000 TIGER/Line
file download page. http://www.census.gov/

geo/www/tiger/tigerua/ua_tgr2k.html, 2000.
[28] C. Walshaw. Graph partitioning archive.

http://www.gre.ac.uk/~c.walshaw/partition/,
2002.

[29] D. Watts and S. Strogatz. Collective dynamics of
small-world networks. Nature, 363:202–204, 1998.

[30] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes. Morgan Kaufman, 1999.

