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Abstract

Approximating general distributions by phase-type (PH) distributions is a popular technique in queueing
analysis, since the Markovian property of PH distributions often allows analytical tractability. This paper
proposes an algorithm for mapping a general distributioto a PH distribution where the goal is to find

a PH distribution which matches the first three moments7ofSince efficiency of the algorithm is of
primary importance, we first define a particular subset of the PH distributions, which we refer to as EC
distributions. The class of EC distributions has very few free parameters, which narrows down the search
space, making the algorithm efficient — In fact we provide a closed-form solution for the parameters of the
EC distribution. Our solution is general in that it applies to any distribution whose first three moments can
be matched by a PH distribution. Also, our resulting EC distribution requires a nearly minimal number
of phases, always within one of the minimal number of phases required by any acyclic PH distribution.
Lastly, we discuss numerical stability of our solution.

Keywords. closed form, algorithm, moment matching, Coxian distribution, phase-type distribution,

EC distribution, normalized moment, matrix analytic



1 Introduction

M otivation

There is a very large body of literature on the topic of approximating general distributions by phase-type
(PH) distributions, whose Markovian properties make them far more analytically tractable. Much of this
research has focused on the specific problem of finding an algorithm which maps any general distribution,
G, to a PH distribution P, whereP andG agree on the first three moments. Throughout this paper we say
thatG is well-represented by P if P andG agree on their first three moments. Matching three moments

is desirable because it has been found to lead to sufficient accuracy in modeling many computer systems
[4, 16]. Matching only two moments often does not suffice since the performance of some queueing
models has been shown to be heavily dependent on the third moment of distributions in the model [22, 6].

Moment-matching algorithms are evaluated along four different measures:

The number of moments matched — In general matching more moments is more desirable. Matching

three moments often suffices and is a popular approach.

The efficiency of thealgorithm — It is desirable that the algorithm have short running time. Ideally, one

would like a closed-form solution for the parameters of the matching PH distribution.

The generality of the solution — Ideally the algorithm should work for as broad a class of distributions

as possible.

The minimality of the number of phases — It is desirable that the matching PH distributiaR, have
very few phases. Recall that the goal is to finét @& P H which can replace the input distribution
G in some queueing model, allowing a Markov chain representation of the problem. Since it is
desirable that the state space of this resulting Markov chain be kept small, we want to keep the

number of phases iR low.

This paper proposes a moment-matching algorithm which performs very well along all four of these mea-
sures. Our solution matches three moments, provides a closed form representation of the parameters of the
matching PH distribution, applies to all distributions which can be well-represented by a PH distribution,
and is nearly minimal in the number of phases required.

The general approach for designing moment-matching algorithms is to start by defining aSubset

of the PH distributions, and then match each input distribu@ibto a distribution inS. The reason for



Figure 1: A four-phase PH distribution. There are n = 4 states, where the ith state has exponentially-
distributed service time with rate y;. Wth probability py; we start in the ith state, and the next state is
state j with probability p;;. Each state i has probability p;5 that it will be the last state. The value of the
distribution is the sum of the times spent in each of the states.

limiting the solution to a distribution irf' is that this narrows the search space and thus improves the
efficiency of the algorithm. Observe that PH distributions h@ve?) free parameters, see Figure 1 [14],

while S can be defined to have far fewer free parameters. For all efficient algorithms in the litefature,
was chosen to be some subset of the acyclic PH distributions. One has to be careful in how one defines the
subsetS, however: IfS is too small it may limit the space of distributions which can be well-represénted.
Also, if S is too small it may exclude solutions with minimal number of phases.

In this paper we define a subset of the PH distributions, which we call EC distributions. EC distribu-
tions have only six free parameters which allows us to derive a closed-form solution for these parameters
in terms of the input distributior. The set of EC distributions is general enough, however, that for all dis-
tributionsG € PH there exists an EC distributio;, such thati is well-represented by. Furthermore,
the class of EC distributions is broad enough such that for any distribGtjahat is well-represented by
ann-phase acyclic PH distribution, there exists an EC distribufionith at mostn + 1 phases, such that

G is well-represented by.

Preliminary definitions

Formally, we will use the following definitions:

'For example, a two-phase Coxian distribution has three parameigrg{, p). However the set of two-phase Coxian
distributions is still not large enough to well-represent distributions with squared coefficient of variéBiliy 1, unless the
third moment is6; for distributionsG with C* = 1, the system of equations always gives the solutjan=£ 1/E[G], 2 = 0,
p2 = 0), which is an exponential distribution. As another example, it can also be shown that the generalized Erlang distribution
is not general enough to well-represent all the distributions with low variability (Lemma 9.1).



Definition 1 Adistribution G iswell-represented by a distribution F' if F' and G agree on their first three

moments.

The normalized moments, which were introduced in [15], help provide a simple representation and analysis

of our closed-form solution. Formally, the normalized moments are defined as follows:

Definition 2 Let E[X*] be the k-th moment of a distribution X for & = 1,2,3. The normalized k-th
moment mj; of X for k = 2, 3 is defined to be

my = E[X2] and mf = 7E[X3]
* T (BlX))? ° T E[X]E[X?].

Notice the correspondence to the coefficient of variabilitand skewness: m) = C? + 1 andmj =
YA/12.

Definition 3 PH refersto the set of distributions that are well-represented by a PH distribution.

It is known that a distributiorG is in PH iff its normalized moments satisfiy§’ > m$ > 1[8]. Since
any nonnegative distributio@' satisfiesny > m$ > 1 [11], almost all the nonnegative distributions are

in PH.

Definition 4 OPT(G) is defined to be the minimum number of necessary phases for a distribution G to
be well-represented by an acyclic PH distribution, where an acyclic PH distribution is a PH distribution

in which there is no transition from state i to state j for all 5 > j2

Previous wor k

Prior work has contributed a very large number of moment matching algorithms. While all of these algo-
rithms excel with respect to some of the four measures mentioned earlier (number of moments matched;
generality of the solution; efficiency of the algorithm; and minimality of the number of phases), they all
are deficient in at least one of these measures as explained below.

In cases where matching only two moments suffices, it is possible to achieve solutions which perform
very well along all the other three measures. Sauer and Chandy [17] provide a closed-form solution

for matching two moments of a general distributionf#{. They use a two-branch hyper-exponential

2The number of necessary phases in general PH distributions is not known. As shown in the next section, all the previous
work on efficient algorithms for mapping general distributions concentrates on a subset of acyclic PH distributions.



distribution for matching distributions with squared coefficient of variabiity> 1 and a generalized
Erlang distribution for matching distributions witlf < 1. Marie [13] provides a closed-form solution
for matching two moments of a general distributiorfAft. He uses a two-phase Coxian distribution for
distributions withC? > 1 and a generalized Erlang distribution for distributions vith< 1.

If one is willing to match only a subset of distributions, then again it is possible to achieve solutions
which perform very well along the remaining three measures. Whitt [21] and Altiok [2] focus on only the
set of distributions wittC? > 1 and sufficiently high third moment. They obtain a closed-form solution for
matching three moments of any distribution in this set. Whitt matches to a two-branch hyper-exponential
distribution and Altiok matches to a two-phase Coxian distribution. Telek and Heindl [20] focus on only
the set of distributions witl®? > % and various constraints on the third moment. They obtain a closed-
form solution for matching three moments of any distribution in this set, by using a two-phase Coxian
distribution.

Johnson and Taaffe [8, 7] come closest to achieving all four measures. They provide a closed-form
solution for matching the first three moments of any distributiore P#. They use a mixed Erlang
distribution with common order. Unfortunately, this mixed Erlang distribution does not produce a minimal
solution. Their solution requirexD PT'(G) + 2 phases in the worst case.

In complementary work, Johnson and Taaffe [10, 9] again look at the problem of matching the first
three moments of any distributiad € P#, this time using three types of PH distributions: a mixture of
two Erlang distributions, a Coxian distribution without mass probability at zero, and a general PH distribu-
tion. Their solution is nearly minimal in that it requires at mode7'(G) + 2 phases. Unfortunately, their
algorithm requires solving a nonlinear programing problem and hence is computationally very expensive.

Above we have described the prior work focusing on moment-matching algorithms (three moments),
which is the focus of this paper. There is also a large body of work focusing on fittingh#ipe of an
input distribution using a PH distribution. Of particular recent interest has been work on fitting heavy-
tailed distributions to hyperexponential distributions, see for example the work of [3, 19, 12]. There is also
work which combines the goals of moment matching with the goal of fitting the shape of the distribution,
see for example Schmickler [18] and Johnson [5]. The work above is clearly broader in its goals than
simply matching three moments. Unfortunately there’s a tradeoff: obtaining a more precise fit requires

many more phases. Additionally it can sometimes be very computationally expensive [18, 5].



Theidea behind the EC distribution

In all the prior work on efficient moment-matching algorithms, the approach was to match a general input
distribution G to some subsef of the PH distributions. In this paper, we show that by using the set of EC
distributions as our subs#t we achieve a solution which excels in all four desirable measures mentioned

earlier. We define the EC distributions as follows:

Definition 5 APH distribution is said to be an n-phase EC distribution if with probability 1 — p, the value
is zero, and with probability p, the value is an Erlang-(n — 2) distribution followed by a two-phase Coxian

distribution for integersn > 2 (see Figure 2).

Figure 2:An EC distribution.

We now provide some intuition behind the creation of the EC distribution. Recall that a Coxian dis-
tribution is very good for approximating any distribution with high variability. In particular, a two-phase
Coxian distribution is known to well-represent any distribution that has high second and third moments
(any distributionG that satisfiesn§’ > 2 andm§ > 3m§) [15]. However a Coxian distribution requires
many more phases for approximating distributions with lower second and third moments (e.g. a Coxian
distribution requires at least phases to well-represent a distributiGhwith nf/ < ”T“ for integers
n > 1) [15]. This in turn means that many free parameters are necessary in the solution of matching to a
Coxian distribution, which results in the moment-matching algorithm being inefficient.

By contrast, an Erlang distribution has only two free parameter and is also known to have the least
normalized second moment among all the PH distributions with a fixed number of phases [1]. However
the Erlang distribution is obviously limited in the set of distributions which it can well-represent.

Our approach is therefore to combine the Erlangjstribution with the two-phase Coxian distribution,
allowing us to represent distributions with all ranges of variability, while using only a small number of

phases. Furthermore the fact that the EC distribution has very few free parameters allows us to obtain



a closed-from expression of the parametersy 1y, px1, pxe, px) Of the EC distribution that well-

represents any given distribution ¥ .

Outline of paper

We begin in Section 2 by characterizing the EC distribution in terms of normalized moments. We find that
for the purpose of moment matching it suffices to narrow down the set of EC distributions further from six
free parameters to five free parameters, by optimally fixing one of the parameters.

We next present three variants for closed-form solutions for the remaining free parameters of the EC
distribution, each of which achieves slightly different goals. The first closed-form solution provided, which
we refer to ashe simple solution, (see Section 3) has the advantage of simplicity and readability; however
it does not work for all distributions ifPH (although it works for almost all). This solution requires at
mostOPT(G) + 2 phases. The second closed-form solution provided, which we refertie asproved
solution, (see Section 4) is defined for all the input distributionsPiH and uses at mosV PT'(G) + 1
phases. This solution is only lacking in numerical stability. The third closed-form solution provided, which
we refer to aghe numerically stable solution, (see Section 5) again is defined for all input distributions
in PH. It uses at mosOPT(G) + 2 phases and is numerically stable in that the moments of the EC

distribution are insensitive to a small perturbation in its parameters.

2 Moaotivation for the EC distribution and important properties

The purpose of this section is two fold: to provide a detailed characterization of the EC distribution, and
to discuss a narrowed-down subset of the EC distributions (with only five free parameters) which we will

use in our moment-matching method.

2.1 Motivating story

To motivate the theorem in this section, consider the following story: Suppose one is trying to match the
first three moments of a given distributi@n to a distributionP which consists of a generalized Erlang
distribution (in a generalized Erlang distribution the rates of the exponential phases may differ) followed
by a two-phase Coxian distribution. If the distributiGhhas sufficiently high second and third moments,

then a two-phase Coxian distribution alone suffices and we need zero phases of the generalized Erlang



distribution. If the variability ofG is lower, however, we might try appending a single-phase generalized

Erlang distribution to the two-phase Coxian distribution. If that doesn’t suffice, we might append a two-

phase generalized Erlang distribution to the two-phase Coxian distribution. If our distrilgaitias very

low variability we might be forced to use many phases of the generalized Erlang distribution to get the

variability of P to be low enough. Therefore, to minimize the number of phasé ihseems desirable

to choose the rates of the generalized Erlang distribution so that the overall variabfitis shinimized.
Continuing with our story, one could express the appending of each additional phase of the generalized

Erlang distribution as an “operation” whose goal is to reduce the variabilify pét further. We call this

“Operation A.”

Definition 6 Let X bean arbitrary distribution. Operation A converts X to A(X) such that
AX)=Y + X,

where Y is an exponential distribution independent of X, and the mean of Y is chosen so that the nor-
malized second moment of A(X) is minimized. Also, A™(X) = A(A™ (X)) refers to the distribution
obtained by applying operation A to A !(X) for integers m > 1, where A°(X) = X.

Observe that operatioa in theory allows each successive exponential distribution which is appended
to have a different mean. The following theorem shows that if the exponential distriddtioging ap-
pended by operatiod is chosen so as to minimize the normalized second mome#( &) (as specified
by the definition), then the mean of each succes¥ivis alwaysthe same and is defined by the simple

formula shown in (1). The theorem below further characterizes the normalized mometfit6)of.

Theorem 1 Let A™(X) =Y, + A™ }(X) for m = 1,...,n. Then,
E[Yy] = (m3 —1)E[X] )

for m = 1,...,n. The normalized moments of Z = A"(X) are:

o mf -Dn+1)+1
7 mEmE + (m — L)n (3m + (mF — 1)(mE +2)(n+1) + (mf — 1)*(n+1)?) 3)
3 = )

(mF =1)(n+1)+1) ((m¥ —DHn+1)>



The remainder of this section will prove the above theorem and a corollary.

2.2 Proof of Theorem 1 and a corollary

Proof:[Theorem 1]

We first characterize/ = A(X) =Y + X, whereX is an arbitrary distribution with a finite third mo-

. - . - . H ¥ X 2 2 2
ment andY” is an exponential distribution. The normalized second momett ISfmZZ = 7’"2(;;3; v,

CmX o
wherey = % Sincea%mZZ = w m#% is minimized wheny = mg — 1, namely,
E[Y] = (m; —1)E[X]. (4)

1
mZZ:2—— (5)

and the normalized third moment &gfsatisfies:

1 3(my —1)
z X P)
_ 42 6
s ma (2mi — 1) s X (©)

We next characteriz€ = A"(X) =Y, + A" 1(X): By (5) and (6), (2) and (3) follow from solving
(X)

the following recursive formulas (where we ugeo denotemQAn andB, to denotem?n(X)):

bt = 2= 0
Bt = et ®

The solution for (7) is given by
"= (31 1;(711)71 T)1+ 1 ©

for all n > 1, and the solution for (8) is given by

_ blBl + (bl - 1)(n - ].) (3b1 + (bl - ].)(bl + 2)71 + (bl - 1)2n2)
((bs = D+ 1) (b = D(n— 1) +1)°

(10)

n

foralln > 1. (9) and (10) can be easily verified by substitution into (7) and (8), respectively. This



completes the proof of (2) and (3).
The proof of (1) proceeds by induction. When= 1, (1) follows from (4). Assume that (1) holds

whenn = 1,...,k. Let Z = A¥(X). By (2), which is proved abovepi = % Thus, by (4)
2

(my —1)(k+1)+1
(my —1)k—1

ElYicn] = (mf - DELZ] = ( - 1) (BLX] + ko — DELX]) = (mf - DELX]

Corollary 1 Let Z = A"(X). If X € {F | 2<mf},then Z € {F| 22 < mf < nL 1.

Corollary 1 suggests the number of times that operatlomust be applied toX to bring »# into the
desired range, given the valueaf; . Notice that by choosing to be a two-phase Coxian distribution,

ma can take on any value greater than 2.

Proof:[Corollary 1] By (2), m% is a continuous and monotonically increasing functionmgf. Thus,
the infimum and the supremum off are given by evaluating:§ at the infimum and the supremum,

respectively, ofny . Whenmy — 2, m§ — =2 Whenmy' — oo, m§ — L. =

3 A simple closed-form solution

Theorem 1 implies that the parametgr of the EC distribution can be fixed without excluding the distri-
butions of lowest variability from the set of EC distributions. In the rest of the paper, we congtram

follows:
(11)

and derive closed-form representation of the remaining free parameters 1, 1 x2, px), where these

free parameters will determine;’ and E[X] in (11). Obviously, at least three degrees of freedom are
necessary to match three moments. As we will see, the additional degrees of freedom allow us to accept
all input distributions inP?#, use a smaller number of phases, and achieve numerical stability.

We introduce the following set of distributions to describe the closed-form solutions compactly:



Definition 7 Let Uy, Uy, My, M>, and L be the sets of distributions defined as follows:

Uy = {F|m§>2andmi >2mi -1}, U, ={F|1<m} <2andmi >2mi —1},
My = {F|mi >2andmi =2mi -1}, M, ={F|1<mj <2andm{ =2m} — 1},
L = {F|mi>1landmi <mi <2mj —1}.

Also,letU =U; UUs and M = M; U M.

These sets are illustrated in Figure 3 The next theorem provides the intuition behind the 3étsand
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Figure 3:A classification of distributions. The dotted lines delineate the set of all nonnegative distributions
G (m§ >m§ > 1).

L; namely, for all distributionsX, the distributionsX and A(X) are in the same classification region
(Figure 3).

Theorem 2 Let Z = A™(X) for integersn > 1. If X € U (respectively, X € M, X € L), thenZ € U
(respectively, Z € M, Z € L) for all n > 1.

Proof: We prove the case when= 1. The theorem then follows by induction. LBt= A(X). By (2),

1

X
= 12
and
2m¥ —1 m¥ —1
z : 3 p)
= espectively, <, and > 3
i = respectively,  and 2) X omF — 1) Ty
3my —2
= (respectively, <, and >) mzix
m;

= (respectively, <, and >) 2m7 — 1,

10



where the last equality follows from (12). =

From the detailed characterization4f(X') given in Section 2, it is relatively easy to provide a closed-
form solution for the parameters,(p, 1x1, px2, px) of an EC distributionZ so that a given distribution
G is well-represented bg. Essentially, one just needs to find an appropriagad solveG = A*(X) for
X in terms of normalized moments, which is immediate simncggiven by Corollary 1 and the normalized
moments ofX can be obtained from Theorem 1. A little more effort is necessary to minimize the number

of phases and to guarantee numerical stability.
In this section, we give a simple solution, which assumes the following conditiagi: & € PH~

where
1 .
PH™ = <Uﬂ {F | ma # "1 for integersn > 1})
U ((MU L)N {F | mE # ”—i;mg for integersn > 1}) .
n

ObserveP#H ™ includes almost all distributions i{B#. We also analyze the number of necessary phases:

Theorem 3 The number of phases of the EC distribution provided by the ssimple solution is at most
OPT(G) + 2.

The closed-form solution:

The solution differs according to the classification of the input distribuonWhenG € Uf U My, a
two-phase Coxian distribution suffices to match the first three moments. Whe; U M,, G is well-
represented by an EC distribution wigh= 1. WhenG € L, G is well-represented by an EC distribution

with p < 1. For all cases, the parameters §, ix1, i1 x2, px) are given by simple closed formulas.

() If G € U; U My, then a two-phase Coxian distribution suffices to match the first three moments,
i.e.,p = 1andn = 2. The parametersu1, 1 x2, px) of the two-phase Coxian distribution are chosen as
follows [20, 15]:

u+ Vu? — 4v u—vVu? —4v px2E[Gl(px1 E[G] — 1)
UX1 = — Q5 0 MX2 = — Q5o and px = )
2E[G] 2E[G] px1E[G]
where
6 — 2m§' 12 — 6m§
=3.G g and v=—Fr—rg €]
Imy — 2mg ms (3mS —2m§)



(i) If G € U, U My, Corollary 1 specifies the necessary number of phases,

G
n:min{k|m§>%}:{ i +1J. (13)

G
my — 1

Next, we find the two-phase Coxian distributidhe U; U M7 such that7 is well-represented by

n—2

Z:ZYk+X,
k=1

whereY} is an exponential distribution satisfying (1) fbr= 1,...,n — 2. By Theorem 1, this can be

achieved by setting

_(n=3)m§ — (n-2) _ym§ -8 _ E[G]
T = 2mG — (n—1)’ ;= 77315( coand B = ey 9
fork =1,...,n — 2, where
B o= (n=2)(my —1) (n(n —1)(my)* —n(2n - 5)m3 + (n —1)(n - 3)),

v = ((n=1m¥ —n-2) (n-2mF —(n-3)".

Thus, we sep = 1, and the parameterg. {1, px2, px) of X are provided by case (i), using the mean

and the normalized moments &f specified by (14).
(i) If G € L, then let

1 w G w G
p:m, my =pmy, mg =pmg, and E[W]ZT (15)

G is then well-represented by:

7 W with probability p
0  with probability 1 — p,

whereW is an EC distribution with a mean and normalized moments specified by (15). Obserwe that
satisfied) < p < 1 andW satisfiesW € My U My. If W € M;, the parameters di are provided by
case (i), using the normalized moments specified by (19)/ IE M, the parameters dV are provided

by case (ii), using the normalized moments specified by (15).

12



A graphical representation

Figure 4 shows a graphical representation of the simple solution.
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Figure 4: A graphical representation of the simple solution: Let
U, U My, G iswell-represented by a two-phase Coxian distribution X. (i) If G € T, U Ms, G iswell-
represented by A" (X ), where X is a two-phase Coxian distribution. (iii) If G € L, G iswell-represented
by Z, where Z is W = A™(X) with probability p and 0 with probability 1 — p and X is a two-phase

Coxian distribution.

Analyzing the number of phases required
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(iii)
G be the input distribution. (i) If G €

We now prove Theorem 3, whose proof relies on the following theorem:

Theorem 4 [15] Let S(™ denote the set of distributions that are well-represented by an n-phase acyclic
PH distribution. Let S\ and E() be the sets defined as follows:

for integers n > 2. Then 5™ c S U

1
{F|m§> nt andmf > ——
n

1
F|mF:nJr andm? =
2 n 3

E™) for integers n > 2.

n+3 F
n+2

n+ 2
n

Proof:[Theorem 3] We will show that (i) if a distributiords is in Sﬁ, (UU M), then at most n+1

phases are used, and (ii) if a distributiéhis in S(V N L, then at most n+2 phases are used. Since

s ¢ S‘(/”) U E™ by Theorem 4, this completes the proof. Notice that the simple solution is not defined

when the inpuG € E™),

(i) SupposeZ e UUM. If G € S("), then by (13) the EC distribution provided by the simple solution

has at most, + 1 phases. (i) Suppos@ € L. If G € S, thenm}/ = 22”—56 > 42 By (13), the

13

n+1°



EC distribution provided by the simple solution has at most2 phases. =

4 An improved closed-form solution

In this section, we present a refinement of the simple solution (Section 3), which we refer to as the im-
proved solution. This solution is defined for all the input distributiGhs PH and uses a smaller number

of phases than the simple solution.

Theorem 5 The number of phases of the EC distribution provided by the improved solution is at most

OPT(G) + 1.

I deas behind the improvement For a distributionG ¢ P#H~, we first find a distributioiV € PH™
such thalzz—% = Z—g andmy’ < m§ and then sep such thaiG is well-represented by
2 2

7 W with probabilityp
0  with probabilityl — p.

The parameters of the EC distribution that well-represéfitsre then obtained by the simple solution

(Section 3).

Next, we describe an idea to reduce the number of phases used in the EC distribution. The simple
solution (Section 3) is based on the fact that a distribufiors well-represented by a two-phase Coxian
distribution whenX € Uy U M. In fact, a wider range of distributions are well-represented by the set of
two-phase Coxian distributions. In particular, if

3
XE{F|§gm§ggandmgf:2m§_1}, (16)

thenX is well-represented by a two-phase Coxian distribution. By fully exploiting the power of two-phase
Coxian distribution, one can construct a solution that uses a smaller number of phases. For readability, we

use Condition (16). Further improvement is possible and discussed briefly in Appehdix A.

3While this further improvement reduces the number of necessary phases by one for many distributions, it does not improve
the worst case performance.

14



We first characterize the distribution = A"(X) as a function of the normalized momentsXfand

n when the normalized moments &f satisfy (16).

Theorem 6 Let Z = A*(X). If X € {F |2 <ml <2andmf :2m2F—1},then

1
Ze{F|igm§§ ”1andm§:2m§—1}.
n n —

Proof: By Theorem 1;n% is a continuous and monotonically increasing functiomf, Thus,”TJrl <
m§ < - follows by simply evaluatingn? at the lower and upper bound of’. mf = 2m# — 1

follows from Theorem 2. =

The closed-form solution: (i) If G € U NPH—, then the simple solution (Section 3) provides the pa-

rameters«, p, px1, px2, PX)-
(i) If G € Un (PH )", then let

2 ’ Pw

Ay =2 w2
m$ -1’ 2 n—2 n-1

G is then well-represented by:

7 W with probability py
0  with probability 1 — pw,

whereW is an EC distribution with a mean and normalized moments specified by (17). The parameters

(n, px1, x2, px) Of W are provided by the simple solution (Section 3), by using the normalized moments

of W specified by (17). Also, set= py,, sinceWW has not pass probability at zero.
(i) If G € M U L, then the simple solution (Section 3) provides the parametgys [ix1, tx2, Px),
except that if the numbet of phases calculated by (13)1is> 2, thenn is decremented by one. Theorem

6 guarantees that parameters obtained with the redueed still feasible.

Analyzing the number of phasesrequired Now, we prove Theorem 5.
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Proof:[Theorem 5] Recall the definition (ﬂ§,") andE™ in Theorem 4. We will show that if a distribution
G € 5" U EM), then at most, + 1 phases are used. Sing&) c S\ U E™ by Theorem 4, the proof
is completed.
(i) SupposeZ € U. If G € S then the simple solution (Section 3) is used and at mast phases
are used. (i) Suppos€ € M. If G € S(”), then the number of phases used in the improved solution is
one less than the simple solution. Therefore, at mqetases are used. @ € E™), then exactly: phases
are used. (iii) Suppos€ € L. If G € S("), then the number of phases used in the improved solution is

one less than the simple solution. Therefore, at mostl phases are used. m

5 A numerically stable closed-form solution

The improved solution (Section 4) is not numerically stable whes U andn§’ is close to”T+1 for
integersn > 1. In this section, we present a numerically stable solution. The numerically stable solution
uses at most one more phase than the improved solution and is defined for all the input distributions in

PH:

Theorem 7 The number of phases of the EC distribution provided by the numerically stable solution is at
most OPT(G) + 2.

We also evaluate the numerical stability of the solution.

The closed-form solution:  Achieving the numerical stability is based on the same idea as treating input
distributions which are not i?H~. Namely, we first find an EC distributio” such thaf”—W =

W < m§ so that the solution is numerically stable 67, and then sgt such thatG is weII represented
by Z:

G
2 and

‘7

7 W with probabilityp
0  with probabilityl — p.

() If G € M U L, then the improved solution (Section 4) provides the parametgrs, (ux1, txo2,

PX)-
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(i) If G € U, first obtain the number of necessary phases

n = ks k— _}_L <’ITLG<1 E_FE
- k-2 k-1 2 72\k-2 k-3
B —2+\/m2 )2 —2m§ + 2 (18)
N 2(m§ — 1)
Then, let
1 /n-1 n m§ my E[G]
w _ w _ 3 w _ 2 —
Moy _§<n—2 n_1>7 mg _m_§m2’ PW—m—ga and E[W]—T (19)

G is then well-represented by:

g W with probability p
0 with probability 1 — p,

whereW is an EC distribution with a mean and normalized moments specified by (19). The parameters
(n, px1, px2, px) Of W are provided by the simple solution (Section 3), by using the normalized moments
of W specified by (19), except that (18) is used as the numlndiphases. Also, set= py, sinceW has

no mass probability at zero.

Analysis of the number of phases required and the numerical stability

From the construction of the solution, it is immediate that the numerically stable solution uses at most one
more phase than the improved solution (Section 4). Thus, Theorem 7 follows from Theorem 5.
In the rest of this section, we evaluate the numerical stability of the EC distribgtitvat is provided

by the numerically stable solution. Formally, we show thas numerically stable in the following sense:

Theorem 8 Let Z be the EC distribution provided by the numerically stable solution, where the input
distribution G iswell-represented by Z. Let (n, p, iy, px1, ptx2, px) bethe parameters of Z. Suppose that
each parameter p, py, px1, ptx2, and px hasanerror Ap, Apy, Apx1, Apxz, and Apx, respectively, in
absolute value. Let AE[Z] bethe error of the mean of Z and let AmZ be the error of the i-th normalized
moment of Z for i = 2,3; namely, AE[Z] = |E[Z] — E[G ]| and Amf = |mf —mf|. If 22, Sh
SHX1L S and SEX < ¢ = 1077, then 5 ElZ] 0 01 and 27 < 0.01 for i = 2, 3, provided that the

HXx1 HXx2 [ ] m;
normalized moments of G satisfies the condition in Figure 5.

In Theorem 8¢ was chosen to b&)~5. This corresponds to the precision of theoat data type in
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Stability region (err=10"°)

Figure 5:If the normalized moments of G lie between the two solid lines, then the normalized moments
of the EC distribution Z, provided by the numerically stable solution, are insensitive to the small change
(e = 107°) in the parameters of Z. The dotted lines delineate the set of all nonnegative distributions G
(m§ >m§ > 1).

C, which is six decimal digits. The precision of tHeubl e data type in C is 10 decimal digits, which
corresponds to anof 10=?. Figure 6 in Appendix B is the corresponding figure to Figure 5, for the case
of e = 107°. In Figure 6 (drawn to the same scale as Figure 5) it is impossible to distinguish the set of
all non-negative distributions from the set of distributions for which the stability guarantee of Theorem 8

holds. The proof of Theorem 8 is given in Appendix B.

6 Conclusion

In this paper, we propose a closed-form solution for the parameters of a PH distribbfiomat well-
represents a given distributiagi. Our solution is the first that achieves all of the following goals: (i) the
first three moments aff and P agree, (ii) any distributiordy that is well-represented by a PH distribution
(i.e.,G € PH) can be well-represented 83, (iii) the number of phases usedinis at mostO PT'(G) +c,
wherec is a small constant, (iv) the solution is expressed in closed form. Also, the numerical stability of
the solution is discussed.

The key idea is the definition and use of EC distributions, a subset of PH distributions. The set of EC
distributions is defined so that it includes minimal PH distributions, in the sense that for any distribution,
G, that is well-represented by-phase acyclic PH distribution, there exists an EC distributionyith at
mostn + 1 phases such thé&t is well-represented by. This property of the set of EC distributions is the

key to achieving the above goals (i), (ii), and (iii). Also, the EC distribution is defined so that it has a small
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number (six) of free parameters. This property of the EC distribution is the key to achieving the above goal
(iv). The same ideas are applied to further reduce the degrees of freedom of the EC distribution. That is,
we constrain one of the six parameters of the EC distribution without excluding minimal PH distributions
from the set of EC distributions.

We provide a complete characterization of the EC distribution with respect to the normalized moments;
the characterization is enabled by the simple definition of the EC distribution. The analysis is an elegant
induction based on the recursive definition of the EC distribution; the inductive analysis is enabled by
a solution to a nontrivial recursive formula. Based on the characterization, we provide three variants of
closed-form solutions for the parameters of the EC distribution that well-represents any input distribution
inPH.

Onetake-home lesson from this paper is that the moment-matching problem is better solved with re-
spect to the above four goals by sewing together two or more types of distributions, so that one can gain
the best properties of both. The EC distribution sews the two-phase Coxian distribution and the Erlang
distribution. The two-phase Coxian distribution and the Erlang distribution provide several different de-
sirable properties, which are complementary to each other, and the combination of these two distributions

provides all the desirable properties needed to achieve the four goals.
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A Further improvement

Further improvement on the improved solution (Section 4) is possible by fully exploiting the power of the
two-phase Coxian distribution: if

F

4 rF_1
XE{F|;§m2F§2and§m§§m§§M}, (20)
my

thenX is well-represented by a two-phase Coxian distribution. The following theorem provides informa-
tion on the number of necessary phases:

Theorem 9 Let Z = A™X). If X € {F|%§m§g2and§m§gm§g%},thenz €

{[F |2 <mfl < .2 andl < mf <}, where

—(n® —5n2 4+ 6n)(m%)® + (3n® — 12n% + 8n + 12)(m#)? — (3n® —9In? + n + 10)mZ —n3 + 2n% +n — 2

3mZ ’
u n(mf —1) (n=1)(n—2)(m¥)* — 2n+1)(n — 2)m% + (n — 1)(n + 1))
= 7 .

Proof: By Theorem lmQZ is a continuous and monotonically increasing functiom§f, Thus,”TJrl <

m3 < - follows by simply evaluatingrf at the lower and upper bound o).

Sincem# is a continuous and monotonically increasing functiomgf, m$ andmi have a one-to-
one correspondence. Also, for fixed, m% is an increasing function ofiy" . Thus,! < m# < u follows
by simply evaluatingn4, given by Theorem 1, at the lower and upper boundngf and substituting

x _ (n=3)mZ—(n—2)

"= womi—o) ™

B Detailsof the sengitivity analysis

Proof:[Theorem 8] LetAp < ep, Auy < euy, Apxi < euxi, Auxe < euxe, andApx < epx.
We first obtain the sensitivity of the normalized moments of the two-phase Coxian distribtionits
parameters:

OFE[X OFE|: OE[X 1 1
AE[X] < [ ]‘Albﬂ-f-‘ [ ]‘ANX2+‘Q‘APX :2—A/'I’X1+p2_XAuX2+—ApX7
Opx1 Opxz Opx M1 Mo X2
X X _
Amy < omy Au + Omy Av = gAu + 2(u ‘ D Av,
ou ov v v2
om om 1 1 3u
AmX < 3 A Z 3 | Av = — 4+ ) A —A
my < 9 u+‘ o v 3<(u—1)2+v> u+U v,
where

Au<Apxi +Apxe and Av < px2Apux: + pxi1Apxs.
Next, we obtain the sensitivity &V = X + E, o = X + Y- 2 Y}

AE[W] < AE[X]+ AE[E,_,]
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omy omy 1 2z(mi"* = 1) — (m&X — 1))
W 2 X 2 _ X 2 2
Amy" < ‘8m§ Amy + ‘ 5. | T @t TESE Az
omY omYy omYy
w X b's
Amg < ‘ am} Amy + ‘ 8m§( Amy + ‘ 82’3 Az
where . BB, ]
_ _ E,_»> _ n— E,_o _ n _ n—2

E[EH*Z]_(n 2)E[Y]7 my T —2 mg T n_92 z = E[X] )

(n—2) 1 E[E,_5]
AE[E, 5] < (n—2)AE[Y] = “ "2 Apy, Az < ——AE[E,_»] + 2 Ap[x],

[En—2] < ( JAE[Y] G )E S FIX] [En—2] EX)? [X]
omYY _ z(mF(2+my"?2) +2(6 —my" P34+ (=3+my"*)2)  omlY mg
ams’ (1+ 2)(mX + 2z + min=222)2 ToOmyt (14 2)(mE + 22 +min222)
and
omy  —(m¥)*(m§f —3)+ my" 2 22(6 — 3mi 22 + m3E"_2z(4 + (24 mP)z2)

0z

(1+2)(m + 22 +my"~*22)2
—ma (ma (2 4+ 2(2 + mf””)z + 3mf”’2z2) + 2(62z — mf””(ﬁ — 622 + mf”’2z(3 +22))))
(1+2)(mg + 22 +my"~*22)2

+

Finally, we derive the sensitivity of:

z _ 1 w myV z _ 1 w my”

Stability region (errzlo_g)

1 15 2 2.5 3 3.5 4

Figure 6: If the normalized moments of G lie between the two solid lines, then the normalized moments
of the EC distribution Z, provided by the numerically stable solution, are insensitive to the small change
(e = 107) in the parameters of Z. The dotted lines delineate the set of all nonnegative distributions G
(m§ >m§ > 1).
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C Thegeneralized Erlang distribution is not general enough

Lemma9.l Let Z = Y+ X, whereY isan exponential distribution. If X € {F | mi <2andmf < 3},
then Z € {F | m{ < 3}.

Proof: The normalized third moment ¢f is

7z mymg +3m3y + 6y® + 6y°

mes =
T mf 2y 4297 (1+y)
wherey = ﬁ mg is an increasing function ofi;' andms', since
om# 2msy 2maX

= >0

50 ana O™
= - an p
omy  (mF +2y+2y*)(1+y)

omy  (my + 2y + 2y?)?

3(1+y+y>+y3)

7 imi X _ X zZ _
Therefore,mg is maximized whenn; = 2 andms . Thus,mg = (v (04)

. It is easy to see

2 3
Tty < Lforall0 <y < oco. Henceynf <3. =
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