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Abstract

A common analytical technique involves using a Coxian distribution to model a general distriléition
where the Coxian distribution agrees withon the first three moments. This technique is motivated by
the analytical tracability of the Coxian distribution. Algorithms for mapping an input distribuido a
Coxian distribution largely hinge on knowing a priori the necessary and sufficient number of stages in the
representative Coxian distribution. In this paper, we formally characterize the set of distribitiehish

are well-represented by anistage Coxian distribution, in the sense that the Coxian distribution matches
the first three moments af. We also discuss a few common, practical examples. Lastly, we derive

a partial characterization of the set of busy period durations which are well-representednbstage
Coxian distribution.
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1 Introduction

Background

Approximating general distributions by phase-type (PH) distributions has significant application in the
analysis of stochastic processes. Many fundamental problems in queueing theory are hard to solve when
general distributions are allowed as inputs. For example, the waiting time for an M/G/c queue has no nice
closed formula wher > 1, while the waiting time for an M/M/c queue is trivially solved. Tractability
of M/M/c queues is attributed to the memoryless property of the exponential distribution. A popular
approach to analyzing queueing systems involving a general distribGtisrto approximates by a PH
distribution. A PH distribution is a very general mixture of exponential distributions, as shown in Figure 1
[19]. The Markovian nature of the PH distribution frequently allows a Markov chain representation of the
gueueing system. Once the system is represented by a Markov chain, this chain can often be solved by
matrix-analytic methods [20, 16], or other means.

When fitting a general distributio&' to a PH distribution, it is common to look for a PH distribution

which matches the first three momentgafin this paper, we say that:

Definition 1 Adistribution G iswell-representetby a distribution F' if F and G agree on their first three

moments.

It has been shown that matching three moments is sufficient for accurate modeling of many computer
systems [9, 23]. Matching fewer moments is less desirable since some queueing systemsHe/g/ the
queue, have response times which are heavily dependent on the third momgf3df 11].

Most existing algorithms for fitting a general distributihto a PH distribution, restrict their attention
to a subset of PH distributions, since general PH distributions have so many parameters that it is difficult
to find time-efficient algorithms for fitting to them [30, 13, 12, 26, 18]. The most commonly chosen
subset is the class of Coxian distributions, shown in Figure 2. Coxian distributions have the advantage
of being much simpler than general PH distributions, while including a large subset of PH distributions
without needing additional stages. For example, for any acyclic PH distribficthere exists a Coxian
distribution C,, with the same number of stages such tRaand C,, have the same distribution function

[5]. In this paper we will restrict our attention to Coxian distributions.

M otivation and Goal

When finding a Coxian distributiot’ which well-represents a given distributi@# it is desirable thaC
beminimal, i.e., the number of stages @ be as small as possible. This is important because it minimizes

the additional states necessary in the resulting Markov chain for the queueing system. Unfortunately, it is



Figure 1: A 4-stage PH distribution. There are n = 4 states, where the ith state has exponentially-
distributed service time with rate y;. Wth probability py; we start in the ith state, and the next state is
state j with probability p;;. Each state i has probability p;o that it will be the last state. The value of the
distribution is the sum of the times spent in each of the states.

Figure 2: An n-stage Coxian distribution. Observe the recursive definition: with probability 1 — p, the
value is zero, and with probability p;, the value is an exponential random variable with rate ;4 followed
by an (n — 1)-stage Coxian distribution.

not known what is the minimal number of phases necessary to represent a given distiibhbji@nCoxian
distribution. This makes it difficult to evaluate the effectiveness of different algorithms and also makes the
design of fitting algorithms open-ended.

Theprimary goal of this paper is to characterize the set of distributions which are well-represented by

ann-stage Coxian distribution, for each=1,2,3, .. ..

Definition 2 Let S(™) denote the set of distributions that are well-represented by an n-stage Coxian dis-

tribution for positive integer n.

Our characterization of S™,n > 1} will allow one to determine, for any distributio@, the minimal
number of stages that are needed to well-repre§eby a Coxian distributioh. Such a characterization

will be a useful guideline for designing algorithms which fit general distributions to Coxian distributions.
Another application of this characterization is that some existing fitting algorithms, such as Johnson and

Taaffe’s nonlinear programming approach [13], require knowing the number of stagethe minimal

'One might initially argue thas(®, the set of distributions well-represented by a two-stage Coxian distribution, should
include all distributions, since a 2-stage Coxian distribution has four parameters (1, p2), whereas we only need to match
three moments af. A simple counter example shows this argument to be falseGllet a distribution whose first three moments
are 1, 2, and 12. The system of equations gives two solutions for paramstets,(u2) as functions of,. However, in both
solutions, one ofi; anduz isp1 — (1 + 1/4(p1 — 1)2 + 1)/2, which is not positive for all possible choicesaf.



Coxian distribution. The current approach involves simply iterating over all choices [fb8], whereas
our characterization would immediately specify

A secondary goal of this paper is to specify the necessary and sufficient number of stages needed to
well-represent busy period durations by Coxian distributions. Fitting busy period durations to Coxian dis-
tributions has become relevant recently in the solution of common computer systems problems involving
cycle stealing, see [9, 23]. In [9, 23], transitions between states in a Markov chain represent busy period
durations, which are modeled via Coxian distributions for tractability. In addition to standard busy periods,
it is also common to model the busy period started\bjpbs. This paper will specify the number of stages
needed to well-represent such busy periods by Coxian distributions.

Providing sufficient and necessary conditions for a distribution to b#"indoes not always imme-
diately give one a sense which distributions satisfy those conditions, or of the magnitude of the set of
distributions which satisfy the condition. third goal of this paper is to provide examples of practical
distributions which are included i™ for particular integers:.

In finding simple characterizations a$("), it will be very helpful to start by defining an alternative to

the standard moments, which we refer tanasmalized moments.

Definition 3 Let X be a distribution and E[X*] be the k-th moment of X for & = 1,2, 3. The normalized
second momenti, of X and the normalized third moment; of X are defined to be

_ EX® 4 = _EX
T T BB

Notice the correspondence to the squared coefficient of varialgifitygnd the skewness factor, my =
C? + 1 andmgz = v,/ma.

Relevant previous work

All prior work on characterizings(™ has focused only on characterizis§?)”, where S is the set

of distributions which are well-represented by a 2-stage Coxian distribution, where the definition of the
two-stage Coxian distribution used is more restrictive than our definition — specifically, there is no mass
probability at zero, i.e.p; = 1. ObserveS®®” ¢ S, Altiok [2] showed a sufficient condition for

a distributionG to be inS?)". More recently, Telek and Heindl [29] expanded Altiok’s condition and
proved the necessary and sufficient condition for a distribufido be in92)". While neither Altiok nor

Telek and Heindl expressed these conditions in terms of normalized moments, the results can be expressed
much simpler with our normalized moments, as shown in Theorem 1. In this paper, we extend these results

to characterizes?), as well as characterizing(™, for all integersn > 2.



Our results

While the goal of the paper is to characterize the$e}, this characterization turns out to be ugly. One
of the key ideas in the paper is that there is a%?t c S™ which is very close t&5(™ in size, such
thatS‘(}"”) has a very simple specification via normalized moments. Thus, much of the proofs in this paper

revolve arou ndS“(}z ),

Definition 4 For integersn > 2, let S‘(/") denote the set of distributions with the following property on

their normalized moments. my and ms:

n-+2
+1

mo > % and mg > ma. 1)

The main contribution of this paper is a derivation of the nested relationship be&;?e&'md S for

all n > 2. This relationship is illustrated in Figure 3 and proven in Section 3. There are three points to
observe: (i)s(™ is a proper subset "t for all integersn > 2, and IikewiseS‘(/”) is a proper subset

of S (nt1), ; (i) S )is contained inS(™ and close taS™ in size; providing a simple characterization

for S™); (iii) S™ is almost contained "™

for all integersn > 2 (more precisely, we will show
S® ¢ §&H Uy EM), whereE™ is the set of distributions well-represented by an Erlang-n distribution).
This result yields a necessary number and a sufficient number of stages for a given distribution to be
well-represented by a Coxian distribution. Additional contributions of the paper are described below:

With respect to the se¥(?), we derive the exact necessary and sufficient condition for a distribGtion
to be inS(? as a function of the normalized momentsdf This extends the results of Telek and Heindl,
who analyzeds®)", which is a subset o$(?). (See Section 2).

We next investigate the fitting of M/G/1 busy periods by Coxian distributions. R etenote the
duration of an M/G/1 busy period whe€gis an arbitrary distribution with finite third moment and where
the size of the job starting the busy period iﬂﬁ). We prove that any sucB has distribution insﬁ,”).
This is surprising in that the number of stages which suffice to represent the busy period is determined
solely by thefirst job starting the busy period, which may be a simple setup cost, and it is not required to
consider the distributions of the other jobs in the busy period. Furthermougy ldenote the duration of
an M/G/1 busy period wher€' is an arbitrary distribution with finite third moment and where the busy
period is started by jobs with service time distribution ié,”) whereN is the number of Poisson arrivals
during a random variable with distribution Bﬁ, We prove that any sucBy is in S (See Section 4).

Lastly, we provide a few examples of common, practical distributions included in thé,%et
S All distributions we consider have finite third moment. The Pareto distribution and the Bounded

Pareto distribution (as defined in [7]) have been shown to fit many recent measurement of job service



Figure 3: The main contribution of this paper: a simple characterization of ™) by S‘(/"). Solid lines
delineate S(™) (which isirregular) and dashed lines delineate S(V”) (which isregular —has a simple spec-
ification). Observe the nested structure of 5™ and 5. 5\ is close to S( in size and is contained in
S™), S isalmost contained in S{" ).

requirement in computing systems, including HTTP requests [3, 4], UNIX jobs [17, 8], and the duration
of FTP transfers [24]. We show that the Bounded Pareto with high variability $in We also provide

conditions under which the Pareto and uniform distributions a@”?nfor eachn > 2. (See Section 5}

2 Full characterization of S

The Telek and Heindl [29] result may be expressed in terms of normalized moments as follows:
Theorem 1 (Telek, Heindl) G € S®@)" iff G isin the following union of sets: 3

3
b — 12 +3v2(2 — m2)} o1
{sz +3v2( mz)zgmsgmmg§m2<z}U{m3:3mm2:2}U{gm2<m3mz<m2},

m2 ma2

20ur results show that thiirst three moments of the Bounded Pareto distribution are matched by a two-stage Coxian distri-
bution and thdirst three moments os the Pareto distribution with high variability are matched by a Coxian distribution with a
small number of stages. Note however that this does not necessarily imply tisagpieeof these distributions is well-matched
by a Coxian distribution with few stages, since the tail of these distributions is not exponential. Recently, fitshgpthef
heavy-tailed distributions by phase-type distributions such as hyperexponential distributions has been studied [6, 28, 15].
3Throughout this papefconditions on normalized momentdenotes the set of distributions that satisfy the conditions. For
example,{ $m, < ms N 2 < m,} denotes sef X|2m3 < m3 and2 < m3' }.



Since only an outline of a proof is given in [29], we derive our own proof of Theorem 1 in [21] for

completeness. We now show a simpler characterizatics?of

Theorem 2 G € S@ iff G isin the following union of sets:

4 6(ms — 1 3
{§m2§m3ﬁ(;172) N §Sm2§2} U S\(/2)a 2

where recall S‘(/Z) isthe set: {%mg <msg N2< mg}.

A summary of Theorems 1 and 2 is shown in Figure 4. Figure 4(a) illustrates howS&%mdS‘(f) are

in size. Figure 4(b) shows the distributions which aré&® but notS(3)".

m3 m3

S(2)\3(2)*

PG

Py

312 2 my 312 2 my

Figure 4:(a) The thick solid lines delineate S(?). The dashed lines (striped region) show 5@2) c S@. (b)
Again, the thick solid lines delineate 5(?). The shaded area shows the region $(2) \ §()",

Proof:[Theorem 2] The theorem will be proved by reduciig) to S and employing Theorem 1. The
proof hinges on the following observation: An arbitrary distribut@re 92 iff G is well-represented by
some distributionZ, where

7 X with probabilityp
~ ] 0 with probabilityl — p

for someX e S, It therefore suffices to show thatis in set (2).

Letn? be the normalizedth moment ofZ andm;* be the normalizedth moment ofX fori = 2, 3.
Observe thats[2'] = pE[X"| for i = 1,2,3 andm? = "+ for i = 2,3.

By Theorem 1, sinc& € S?)7, X is in the following union of sets:

3
9ms — 12+ 3v2(2 — m») 3 6(ms —1) _ 3 3
m2 +3v2(2 — mo) cmg<Ome=D 3 U{m3:3ﬂm2:2}U{—m2<m3ﬂ2<m2}.
mo mo 2 2



Thus, Z is in the following union of sets"

3
9 — 12 +3vV2(2 — 2 6 -1 3 2 3 2 3 2
pm2 +2\/_( Pm2) §m3§% N —<my< - U{m?:— ﬂm?:—}U{—m§<mSZ n —<m§} 3)
2 2
pem2 pem2 P p p p p

We want to show tha¥ is in set (2). To do this, we rewrite set (2) as

s —1
{§m2§m35% n g§m2§2} U {gmggmgggmz 02<m2} U {gm2<m302<m2} 4)

Observe that (3) and (4) are now in similar forms. We now prove that set (3) is a subset of set (4), and set

(4) is a subset of set (3). The technical details are postponed to Appendix B, Lemmas.1.

3 A characterization of S

In this section, we prove tha‘i‘(‘}l) is contained inS™), whereS‘(/”) is the set of distributions whose
normalized moments satisfy (1) and tis&t) is aimost contained iS‘(}L“). Figure 6 provides a graphical

view of theS‘(}l) sets with respect to the normalized moments. We prove the following theorem:

Theorem 3 S c M c 5" Uy E(M), where E(™ isthe set of distributions that are well-represented

by an Erlang-n distribution for integers n > 2.

An Erlang+ distribution refers to the distribution shown in Figure 5. Notice that the normalized moments

FoRORmO

n stages

Figure 5:An Erlang-n distribution.

of distributions inE(™, mf(m andmg("), satisfy the following conditions:

n 1 n 2
mf():n+ and mf():n+ . (5)
n n

Theorem 3 tells us tha(™) is “sandwiched betweerﬁ"(}” andS&}”l). From Figure 6, we see thS@")
andS&}”” are quite close for higher. Thus we have a very accurate representatiofi’of Theorem 3

follows from the next two lemmas:

*{conditions on normalized moments in termgdfdenotes the set of distributions that satisfy the conditions for gorRer
example,{ 2my < m3 N 2< m } denotes sef X|Ipst. 0 <p < landimy < m3 and2 < m3 }.
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Figure 6:Depiction of 53“ setsfor n = 2, 3, 4, 32 asa function of the normalized moments. The outermost
dotted lines (my > 1 and mg > my) delineate the set of all the possible nonnegative distributions (that

is, any nonnegative distribution G satisfies m$ > 1 and m§' > m$) [14]. S‘(/”) for n = 2,3,4,32 are
delineated by dashed lines.

Lemma3.1 S™ c sy EM),
Lemma3.2 S c s,

Proof:[Lemma 3.1] The proof proceeds by induction. Whegs-= 2, the lemma follows from (1), (5), and
Theorem 2. Assume that™) c S‘(}"‘H) UE™ forn < k — 1. For any distributionG € S*), there exists
ak-stage Coxian distributio® by whichG is well-represented, whetg can be expressed as

P X +Y with probability p
0 with probability 1 — p,

and whereX is an exponential distribution andis a(k—1)-stage Coxian distribution. By the assumption
of induction,Y € St¥) U E®=1). We prove that () i € S, thenz € S and (i) if v € B¢,
thenZ ¢ S‘(/k“) UE®,

(i) Supposey” € ng): We first prove thaind > % First observe that

g 242BY]+ B[V 2+2E[V]+ e ElY)
T p(L+ E[Y))? pA+EN])? 7

where the inequality follows frorly S(‘f). The derivative of the right hand side with respecEfd’] is

2(E[Y] — (k=1))
p(k =11+ E[Y])*’




which is minimized wher/[Y] = k£ — 1. Thus,

Z Z
Next, we prove tha% > %42 for all mf > E-L. Notice thatZzZ is independent of:

m% (6 +6E[Y]+3E[Y?]+ E[Y?]))(1+ E[Y)) '

m¥ (24 2E[Y] + E[Y?))
S m% . . . . 37 i L 31 k+2 E[Y?)2 . (k)
ince 7> is an increasing function aE[Y”], it is minimized atE[Y”] = =% py] SinceY € Sy
Thus,
mj 5 (+ EV])(6(k+ DEN] +6(k+ DE[Y]? +3(k + 1)E[Y]E[Y?] + (k + 2)E[Y?]?) ©)
mZ = (k+1)E[Y](2 +2E[Y] + E[Y2])2 '

Denoting the r.h.s. of (6) by (E[Y?]), we now findE[Y 2] which minimizesf (E[Y?]). Since

of(E[Y?]) (1+E[Y]) (4+4E)Y]+ (k+1)(4+ E[Y])E[Y?] - 6(k + 1)E[Y](1 + E[Y]))

dE[Y?] (k+ 1)E[Y](2 + 2E[Y] + E[Y2))?

the infimum of f (E[Y2]) occurs at:

6(k + 1)E[Y](1 + E[Y]) k
A+ 4EY ]+ (k+ DA+ EY]) k-1

E[Y? = max{ E[Y]Q} .

By evaluatingZ—g atE[Y?] = A E[Y]?, we have

mf N (1+EY)) [6(k+1)(k —1)2 +6(k + 1)(k — 1)>E[Y] + 3(k + 1)k(k — )E[Y]? + E>(k + 2) E[Y ] |
mi = (k+1)[2(k — 1) 4+ 2(k — VE[Y] + kE[Y]?]

N

zZ
By Lemma 9.4 in Appendix By’ > #=2. By evaluatingZ—% at

NN

6(k+1)E[Y](1+ E[Y])

BV =17 AEY]+ (k+ )4+ EY])’
we have
mj S 3BA+EY]) + (k+1)(8+5EN])] _ k+3
m§ 16(2 + k)(1 + E[Y)) T k+2

where the last inequality holds iff[Y] < ;2. However,E[Y] < ;25 holds if

6(k + DEY(L+EY]) &
A+AEY]+ (k+ 1)@+ EY]) ~ k-1




since

6(k+ 1)E[Y](1+ E[Y)) S k
44+4EY]+ (k+ 1)+ E)Y]) “ k-1
< g(E[Y]) = (k* +5k)(E[Y])* — 2(k* — 4k —3)E[Y] - 6(k + 1)(k —1) <0

B[y}

andg(0) < 0 and

< 8k > 6(k + 1)(k + 3)(7k? — 6k + 27) S0
kE+9 (k+9)2
for k > 2.

(i) Supposey” € E(—1: We will prove that (a) ifE[Y] = (k — 1)E[X] andp = 1, thenZ € E®),
and (b) ifE[Y] # (k — 1)E[X] orp < 1, thenZ € S**V): For part (a), observe that ¥ ¢ E*-1),
E[Y] = (k— 1)E[X], andp = 1, then we have already seen thaf = L in part (i). It is also easy to
see thatn? = %2, and henceZ € E®). For part (b), ifE[Y] # (k — 1)E[X] orp < 1, then first notice

thatms > % sincem$ is minimized whenE[Y] = (k — 1) E[X] andp = 1. Also, since

k+1 k42
31 —

P = 1
zZ

Z—%>ki by part (i), and hencZeS(kH) n

Proof:[Lemma 3.2] Whemn = 2, the lemma follows from Theorem 2. The remainder of the proof
assumes > 3. We prove that for any distributio& € Sﬁ/"), there exists am-stage CoxiarZ such that
the normalized moments &f and Z agree. Notice that the mean #fis easily matched td- without
changing the normalizing moments Bfby multiplying a constant to the rates, ..., 1, of Z. The proof
consists of two parts: (i) the case when the normalized momerdtssatisfyn’ > 2m$ — 1; (ii) the case

when the normalized moments Gfsatisfym§’ < 2m§ — 1.

(i) Supposes € S‘(/”) andm§ > 2m§ — 1: We need to show that' is well-represented by some
stage Coxian distribution. We will prove something stronger: ¢hat well-represented by a distribution
Z whereZ = X + Y, and X is a particular two-stage Coxian distribution with no mass probability at

zero andY is a particular Erlangs{ — 2) distribution. (For the intuition behind this particular way of
representindgz, please refer to [22]). The normalized momentsXoére chosen as follows:

mX = my (n —3) — (n - 2)
2 mS(n—2)—(n—1)

2mG
m = (= md — (n=2) (-2~ n-)° T

—(n = 2)(m¥ — 1) (n(n — 1)(m3)* = n(2n - 5)m3 + (n — 1)(n — 3))

3|~

10



The mean ol is chosen as followsE[Y] = (n — 2)(m5 — 1) E[X]. Itis easy to see that the normalized
moments o7 andZ agree:

z . mFH2y+miyt o
msy - B} =my;
(1+y)
7 mg(mg( +3m§y+3m§y2+m¥m3¥y3 G
msz = =m3;

(m3* + 2y +m3y?)(1 +y)

wherem} = 2=l andm} = - are the normalized moments bf, andy = % Finally, we will

show that there exists a two-stage Coxian distribution with no mass probability at zero, with normalized
momentsm3” andm3 : By Theorem 1, it suffices to show thaty’ > 2 andmi > 3ms. The first
condition,ms" > 2, can be shown using’; < m§, which follows fromG € S™ It can also be shown
thatmg > 2m3 —1 > 3mf using-: < m§ andm§ > 2m§ — 1, which is the assumption that we
made at the beginning of (i).

(ii) SupposeG € Sg}l) andm§ < 2m§ — 1: We again must show that is well-represented by an
n-stage Coxian distribution. We will show thétis well-represented by a distributicf:

7 F  with probabilityp
0  with probabilityl — p,

wherep = —— and the normalized moments &f satisfym; = pmn§ andmi = pm§. Itis

2 3
easy to see that the normalized moments/aind Z agree. Therefore, it suffices to show ttéis well-
represented by an-stage Coxian distributiofl’, since then7 is well represented by am-stage Coxian

distribution Z:
7= W with probabilityp
] 0 with probabilityl — p.
We will prove thatF is well-represented by an-stage Coxian distributioV = X + Y, whereX is
a two-stage Coxian distribution with no mass probability at zerolansl an Erlang-¢ — 2) distribution.

The normalized moments & are chosen as follows:

R

mé(:m%(n—?))—(n—Q) and m3 =2my — 1;
my (n—2)—(n—1

the mean ot is chosen as followsE[Y] = (n — 2)(ms* — 1) E[X]. Itis easy to see that the normalized
moments off" andW agree:
X Y,2
wo_ my +2y+tmyy” g
" A+y2
m¥ma +3myy + 3md y? +mdmdy?
(m3 + 2y +myy?)(1 +y)

w — 9 F _ . F
ms =2my —1=mg3,

11



wherem}” = 2=1 andm} = — are the normalized moments ¥f andy = %

that there exists a two-stage Coxian distribution with normalized momehtandmz : By Theorem 2,
it suffices to show tha¢ < m3", since

. Finally, we will show

4 6(mx — 1)
§m§§m§(:2m§—1§#.
5

i (n) G o nt2, G F m; _ ntl X 5 3
SinceG € Sy7, mg' < {ogmy. Thus,my 2> o——m—s = %= Finally, my > 3 follows from

F n+1
msy Z s ]

4 A characterization of busy periods

In this section we characterize the setMfG/1 busy period durations which are Jff), and hence in

S As explained earlier, the tractability of queueing problems often relies not just on representing
general distributions by Coxian distributions, but also on representing busy period durations by Coxian
distributions [9, 23]. This includes busy periods startedNbyobs, whereN is the number of arrivals
during a period of time. This section provides sufficient conditions on the number of stages needed to
represent common types of busy period durations by Coxian distributions. Formally, we will prove the

following theorems:

Theorem 4 Let B denote the duration of an M/G/1 busy period where GG is an arbitrary distribution with
finite third moment and where the job starting the busy period has size K € é,"). Then, B € S‘(/”).

The above theorem states that the number of stages which suffice for a busy period duration to be well-
represented by a Coxian distribution is, surprisingly, determined solely by the distribution foftheb
in the busy period.

Lemma4.l Let ¥y (T, X) bethe distribution of the sum of N i.i.d. random variables with distribution
X € S‘(/”) where NV is the number of Poisson arrivals with rate A during a randomtime 7" € S(.v’"”). Then,
UN (T, X) € 5.

The following theorem follows from Theorem 4 and Lemma 4.1.

Theorem 5 Let By, denote the duration of an M/G/1 busy period where G is an arbitrary distribution
with finite third moment and where the busy period is started by Uy (7', X') as defined in Lemma 4.1. Then,

B\I;N ES‘(/R).

12



We will now prove Theorem 4 and Lemma 4.1.

Proof:[Theorem 4] Wherp = 0, B = K € S‘(/”), and hence the theorem is true. In the following we

assumd) < p < 1. Leth, = o andbs = H{Z:. We prove thab, > -2 andb; — 2103 > 0.

Observe that together these imply the conditions in (1). Notice that the first three moménssef

_ E[K]
E[B] = - i
A E[K?] p  E|K]E[G?
E[B?] = + ;
Bl = gt a-r B
BB} = E[K?) _3p B[K*EG?] _ p E[K]E[GY] 3p°  E[K](E[G?)*
(I-p? (Q-=-p* EG] (1-p)* E[G] (1-pp (E[G])?
Itis easy to see thdp > -
_ p_ E[G] n
by = ko + l—pQZE[K] > ke > n_1’
whereky = % andgs = % Next, we prove thal; — 153 > 0. Note that
_ 3 EGl . p  (EG', 32 ,(EG]
n = ko ek 0 () et (e
3 3
wherek; = % andg; = % Thus,
on+l, n+l, n-=2 p E[G] p E[G]\> 2n—-1 p* ,[(E[G]\’
bs n b = ks k3 1_ g2k E[K] + 1 _pg3 E[K] + n (1-p)? 2 E[K]
> kg—n+1k§>0.
n
|
2 3
Proof:[Lemma 4.1] Letp, = % andps = % We prove thap, > "5 and
ps — “Eps > 0.

Notice that the Laplace transform @ty (7', X ) is ¥ x (T, X) = T'(A(1 — X (s))). Thus, the first three
moments ofl y (T, X) are

E[¥n(T,X)] = AE[T|E[X];
E[¥N(T,X)*] = NE[T*EIX] +AE[T|E[X?];
EWN(T, X)) = NE[T?|EX]® +3\’E[T?|E[X|E[X?] + AE[T|E[X?].

13



Itis easy to see that, > 5.

Sy b Sty > —
P2 =12 NE[T] 22 T
wheret, = % andz, = % Next, we prove thap; — “t1pZ > 0. Note that

3t21’2 I3
sTNEX] T BT

p3 =t

wheret; = % andzs = (E[—\S} Thus,

E[X])3
n+l, n+1, n4+1\ tozs w3 — 2zl
— S o= ta — t: 3—-2 n 0.
by == h < n )*( n )AE[T]+ OET)?

5 Examples of some common distributionsin S

In this section, we give examples of distributionsdﬁ) c 8™, and hence are well-represented by an

n-stage Coxian distribution. A summary is shown in Figure 7.

5.1 Distributionsin S

It is well-known that for all two-phase PH distributioiis there exists a two phase Coxian distributign
such that andF' has the same distribution function, and hetite S?). In the following, we show that
the Bounded Pareto distributions with high variability are als§th

A Bounded Pareto distribution has density function

ka
(k <z <p),

where0 < a < 2. Bounded Pareto distributions have been empirically shown to fit many recent mea-

fla) = azo!

surement of computing workloads. These include Unix process CPU requirements measured at Bellcore:
1 < a < 1.25 [17], Unix process CPU requirements measured at UC Berkeley: 1 [8], sizes of files
transferred through the Web:1 < o < 1.3 [3, 4], sizes of files stored in Unix filesystems [10], I/O times

[25], sizes of FTP transfers in the Interne®: < o < 1.1 [24], and Pittsburgh Supercomputing Center

14
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Figure 7: A summary of the results in Section 5. A few particular distributions are shown in relation to
S‘(/"). BP refers to the class of bounded Pareto distributions with high variability described in Definition 5.

All of these are contained in S‘(/Z). UNIFORM refers to the class of all uniform distributions described
in Definition 6. We find that the larger the range of the UNIFORM distribution, the fewer the number of
stages that suffices. TRIANGULAR refers to the set of symmetric triangular distributions, described in
Definition 7. These interestingly have the same behavior as the UNIFORM distribution. Finally, PARETO
refers to the class of Pareto(«) distributions with finite third moment, described in Definition 8. For this
class, we find that the lower the value of the a-parameter, the fewer the number of stages that are needed.

workloads for distributed servers consisting of Cray C90 and Cray J90 machines [27]. In this section, we
prove the necessary and sufficient condition for a Bounded Pareto distribution t(ﬁﬁe Formally, we

use the following definition:

Definition 5 BP isa set of Bounded Pareto distributions satisfying 0 < o < 2 and r = £ isgreater than

the maximum of the two lines shown in Figure 8.

200

—_m>2
oo mym, =473
1501
x|
3z |
E \
2 1001
£ H
E N
5°5\_//
T
0 05 1 15 2

Figure 8: The maximum of the two lines illustrates the lower bound needed on r = £ in the definition of
the BP distribution. These lines are derived from (7) and (8).

With this definition, the theorem proven in this section is stated:

Theorem 6 BP C S\ and BPC n S{?) = ), where BPC is the set of Bounded Pareto distributions not
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in BP and () is an empty set.

Proof: Letm:* be the normalized-th moment of a distributiolX € BP for i = 2,3. Whena = 1, the
moments of the Bounded Pareto are

1
E[X]= hp log Z, E[X?] =kp, and E[X3]:§kp(k+p).

p—k k
Thus,
s R S m¥ (4 Dlogr
2 r(logr)?’ s 2rlogr and ma 2(r—1) "

When0 < a < 1lorl < a < 2,the moments of the Bounded Pareto are

E[X]= = p(g) " E[x? = - p2(§) K and EX7] = ° P3(§) —k3'

l_al_(ﬁ)a, _2_a 1_(@)& )
p p

Thus,
x_ (1= (r* =1D@*=rY) 0d X o =2 —0) — 1 —r®)
2 a2 —a) (r —ro)? and 3 a(d3—a) (r—ro)(r2 —re)’ ®)
and
m_g( _ 2-a)? (r—r(r—re)
maX (1-a)(3—a) (r2 —ro)2

By Lemmas 9.5-9.8 in Appendix B, bot: and are increasing functions of. This makes
intuitive sense since the higher moments are Ilkely to mcrease as the upperb@nbthus-) increases.
Thus, the minimunmr such thatmy’ > 2 and 2 can be obtained numerically for all if there
exists such a finite. In the following we prove that there is such arfior 0 < o < 2. Whena = 1,
it is easy to see that asgoes to infinity, bothmy’ and 3- go to infinity. Thus, there is a finite such

thatms > 2 and . Next, consider the case Wlth< a < lorl < a < 2. By observing that

0<a<?2itis easy to see thats' goes to infinity ag does. Thus, there is a finitesuch thatny® > 2.
Next, we con&deﬂ—x. Observe that
2

r—00 m2

2—a)2
lim m_g( = % when (0<a<1)
o when (1 <a<2).

X X
Thus, there is a finite such that3- > 2 for 1 < o < 2. When0 < « < 1, afiniter gives—3- > 2 if
ms 3 m; 3
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and only if (2=a)”

4 .
T-a)B-a) > 3. However, since

(2 - )

_R2-a7 4
l1-a)3—a) 3

> = 0<ala—-4)

- . - X 4
There is a finite: such thalzz—g( >sfor0<a<1,t00. m
2

5.2 Distributionsin S

In this section, we give examples of distributionsdf). It is known that for all acyclic PH distributions
P,, there exists a Coxian distributidrj, with the same number of phasesRssuch that’;,, and P, have
the same distribution function [5]. Therefore, all thehase acyclic PH distributions are §#).
In the rest of this section, we discuss uniform distributions, symmetric triangular distributions, and
Pareto distributions. In particular, we derive the necessary and sufficient condition for these distributions

to be inS‘(/”). Formally, we use the following definitions:

Definition 6 UNIFORM/ (I, u) refers to the distribution with lower bound [ and upper bound v > 0

having density function f(z) = ﬁ intheregion ! < z < u and zero otherwise.

Definition 7 TRIANGU LAR(l, u) is the distribution with density functions of the form

(2)(1‘—1) i1 <o < ut

u—l

[ =3 (&) @-w 2 <z<u

u—l

0 otherwise,

where0 <! <wandwu > 0.

Definition 8 PARETO(«) isthe distribution with density functions of the form f(z) = az “"!, where
a > 3.

With these definitions, the three distributions are formally characterized as follows:

Theorem 7 The normalized moments of UNTFORM (I,u) satisfy 1 < mp < 5 and mz = 3 — -2 for
alo<!I<wandwu > 0.

Theorem 8 The normalized moments of TRIANGULAR(l, u) satisfy 1 < mp < { andmz = 3 — 2
foral 0 <! <wvandu > 0.
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Theorem 9 The normalized moments of distributions in PARET O(«) satisfy

—2m3 + 3mg + 2(mg — 1)y/ma(mg — 1)

4
1<m2<§ and mg3 =

4 — 3msy
for all o > 3.
Simple consequences of the theorems are:
Corollary 1 UNIFORM(I,u) € S if and only if . > 8(1(1+_2:)+2?(’;iﬁ:3$§4) ,wherer = L. In particu-

lar,n=8ifl=0andu > 0,andn > 8foral 0 < < w.

Corollary 2 TRIANGULAR(l,u) € S if and only if n > S22 40) wherer = L. In

particular, n = 8 ifl =0and« > 0,andn > 8 for all 0 <! < u.
Corollary 3 PARETO(«a) € S‘(}l) if and only if n > (a — 1). In particular, n > 4 for all o > 3.

Below we prove Theorem 7. Theorems 8 and 9 can be proved very similarly (see Appendix A).

Proof:[Theorem 7] The first three moments &f = UNIFORM(l,u) are E[X]| = ;‘(z:lf),

B[X?] =

g(z‘_lf), andE[X3] = f&‘_l;) and the normalized second and third moment¥ afre

x_4l14r40?

x_ 3 l4+r+r2+0?
ms -
3 (1+r)?

d =2
e M =y A+ +r2)

wherer = L. SinceZmj = %ﬁ < 0for0 < r < 1,ms is a nonincreasing function ef So, the
minimum of ms is given by evaluating it at = 1 and the maximum is given by evaluating itrat= 0.

Thus,1 < m3 < 3. Also, itis easy to see that)’ andmy satisfymg =3 — 2. m

my

6 Conclusion

The contribution of this paper is a characterization of the$®t of distributions G which are well-
represented by an-stage Coxian distribution. Prior work has only analyZd” c S®, and this char-
acterization was messy. We introduce several ideas which help in creating a simple formulafion of
The first is the concept of normalized moments. The second is the notﬁjﬁ) ph nearly complete subset
of $(") with an extremely simple representation. The arguments required in proving the above results have
an elegant structure which repeatedly makes use of the recursive nature of the Coxian distributions.

Our characterization of(™) provides the minimum number of necessary phases and the sufficient

number of phases for a given distribution to be well-represented by a Coxian distribution, and these bounds
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are nearly tight. This result has several practical uses: First, in designing algorithms which fit general
distributions to Coxian distributions (fitting algorithms), the goal is to come up withiremal (fewest
number of stages) Coxian distribution. Our characterization allows algorithm designers to determine how
close their Coxian distribution is to the minimal Coxian distribution, and provides intuition for coming
up with improved algorithms. We have ourselves benefitted from exactly this point: In a companion
paper [22], we develop an algorithm for finding a minimal Coxian distribution that well-represents a given
distribution. We find that the simple characterizationssP provided herein is very useful in this task.
Our results are also useful as an input to some existing fitting algorithms, such as Johnson and Taaffe’s
nonlinear programming approach [13], which require knowing a priori the number of stageshe
minimal Coxian distribution.

In addition to characterizing those distributionsdft), we also consider which M/G/1 busy periods
have durations ir5(™). We find that the number of stages which suffice for a busy period duration to be
well-represented by a Coxian distribution is, surprisingly, determined solely by the distributionfivkthe
job in the busy period. Furthermore we classify a few examples of common and practical distributions as
being subsets o§(") for somen.

Future work includes a simple characterization of the set of distributions that are well-represented
by generaln-phase PH distributions. It is known that the Erlang distribution has the lowest normalized
second moment among all thephase PH distributions [1]. However, a lower bound on the normalized

third moment ofn-phase PH distributions is not known.
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A Proof of Theorems8 and 9

Proof:[Theorem 8] The first three moments &f = TRIANGU LAR(l, u) are

u+l ‘ Tu? + 10ul + 712 3u? + 5u?l + 5ul® + 302
E[X]= R E[XZ]:T, and FE[X?] = T )

and the normalized second and third moments are

x 7+ 10r+ 777

3(3+ 57 + 572 + 3r3)
my = 5
6(1+r)

d m¥ =
MM T AT (T 10r + Tr2)

wherer = L,
Since Zmj = %ﬁ < 0for0 < r <1, ms is anonincreasing function ef So, the minimum

of m2’ is given by evaluating it at = 1 and the supremum is given by evaluatingrat= 0. Thus,

1 <my < I.Also, itis easy to see thaty' andmg satisfym3 =3 — % .

Proof:[Theorem 9] The first three moments &f = PARETO(«) are

o« 5y _ @ 3 @
ElX]=-—7, EX]=-—p and EX’]=_——F,
and the normalized second and third moments are
x _ (a—1)? x _ (a—1)(a—-2)
M5 RS and m3 = ala—3)
SinceZmj = —% < 0 for @ > 3, m3’ is a decreasing function ef. So, the supremum of

m3 is given by evaluating it at = 3 and the infimum is given by letting — oco. Thus,1 < my < %.
Also, itis easy to see thaty andms’ satisfy

X —2(m3)? 4+ 3ma + 2(mg — 1)/m§ (mg — 1)

= 4—3my

B Technical lemmas
Lemma 9.1 Thislemma proves that (3) and (4) are equivalent sets.

Proof: Recall that set (3) is the union of the following three sets:

Ipms — 12 + 3v/2(2 — 3 6 -1 3 2
A = {pm2 +2\/_( pm2)2§m3S_(p77212 )m—§m2<_}7
pems p ms 2p p
3 2
Ay, = {m3=—ﬁm2:—};
P P
t ) <maf
A = —ma <m3z N —<ma,;
2 D
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set (4) is the union of the following three sets:

4 —1
B, = {—77”&2§m3§M N §Sm2§2},
3 ma 2
4 3
By = {§m2§m3§§m2 N 2<m2}7
3
B; = {§m2<m3 N 2<m2}

It suffices to prove that (id; = By U Bs, (i) A2 C By U Be, and (iii) A3 = Bs. (i) and (iii) are
immediate from definition. To prove (i), we prove th&t C B; U By andB, U By C A;.
Consider a distributio? € A;. We first show thaZ € B; U Bs. Letu(p) be the upper bound of$:

_ 6(pmf —1)

and let/(p) be the lower bound a4 :

3 (3pm2Z —4+V2(2 —pmg)%)
lp) = 7 :

2
pmy

Then,u(p) andl(p) are both continuous and increasing functiong &br -3, < p < -2, by Lemmas
my

9.2 and 9.3. Whem2Z < 2, the range op is Zmiz <p < 1. Thus,

2

2ms

4 3 5 —

and henceZ € B;. When2 < mf, the range of is 72, <p < 2. Thus,
2 2

4 4, 3 4 2 3 4,
37 :l<2m§> = mj 5“<W> =g™ma>

2

and henceZ € B,. Therefore,A; C By U Bs. However, since:(p) andl(p) are continuous functions of
p, m% can take any value between the lower and upper bounds. Ther8farel3, C A;. =

Lemma9.2 Leta > 0. Then, f(p) = %51 isan increasing function of p for 0 < p < %

Proof: Note thatf’(p) = %3” > 0. The inequality holds whef < p <2. =

3
2

Lemma 9.3 Leta > 0. Then, f(p) = 3“”_4+‘I/3(2_“”) is an increasing function of p for 2 < p < 2.

Pr oof:
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Letg(p) =8 — 3ap — g(S —ap)(2 — ap)%. Then,
J'(p) = 3a (QM—1> > 3a <@(4_sz —1> > 3a <@ -2 —1> =0

T @—ap)t 123 INCENE

The first inequality follows from;’—(L < p and the second inequality follows from< % So,¢9(p) is a

1
non-decreasing function of Thus,f'(p) > f'(3a) = I% >0. =m

Lemma9.4 Lety > 0and k > 1. Then,
(1+y) [6(k +1)(k - 1)2 +6(k+1)(k— 1)2y +3(k+ Dk(k — l)y2 + kz(k + 2)y3] S k+3

fo.k) = (k+ 1) [2(k — 1) + 2(k — 1)y + ky?]° “kt+2
Proof: Let
gy, k) = (1+y)[6(k+1)(k—1)>+6(k+1)(k—1)%y+3(k+1)k(k—1)y*+Ek(k+2)y°] (k+2)

—(k+ 1) [2(k — 1) + 2(k — Dy + ky*]” (k + 3)
= k[2+4y+y?)k —2(1+ 2y +4y® + y*)k* — 2+ 4y +y° = 5y° —yMk +2(1+y)(1 +y + 3y?)] .
We prove thay(y, k) > 0. Let
h(y, k) = (2+4y+y>)k> —2(14+ 2y + 4> + > )k? — 2+ 4y + % — 512 —yHk+2(1 +y) (1 +y + 312).

It suffices to provei(y, k) > 0. Observe tha?" k) — g iff k = 2+4y§?2y:;ﬁf)v ) \where

d(y) = 16 + 64y + 108y> + 66y°> + 17y* + 5y° + ¢°.

Notice that

dly) > (4+8y+y° +y°)°. )
Thus,

2 + 4y + 8y% + 2y + /d(y) S 2+ 4y + 8y% + 2y + (4 + 8y + 3% + y?) -1
3(2+ 4y +y?) - 3(2+4y +y?) -
for y > 0. Thereforeh(y, k) is minimized when
L 2 + 4y + 8y + 2y + \/d(y) (10)

o 3(2+ 4y + y?) )

Let

3(2 +4y + y?)

_2((28 483y + 1652 + y®)d(y) — d(y)? — 6(64 + 456y + 12602 + 1655y° + 889y* + 147y°))
- 27(2 + 4y + y?)°

o <y 2+4y+8y2+2y3+\/d(y)>

It suffices to proved (y) > 0. Let G(y) be the numerator off (y). It suffices to prove(y) > 0. Notice
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thatG(0) = 0. Thus, it suffices to prové&’(y) > 0 fory > 0.

3
G'(y) = F(y),
d(y)
where
F(y) = 2(128+ 688y + 1922y% + 3216y> + 3055y* + 1562y° + 420y° + 569" + 3y®)\/d(y)
—(64 + 216y + 198y* + 68y* + 25y* + 6y°)d(y)
> 2(128 + 688y + 1922y + 3216y° + 3055y + 1562y + 420y° + 5657 + 3y°%) (4 + 8y + v + %)
—(64 + 216y + 198y* + 68y + 25y* + 6y°)d(y)
= 3y%(912 + 5600 + 13212y% + 15184y> + 9604y* + 3914y° + 1175y + 235" + 21y®%)
> 0.
| |

Lemma9.5 f(r) = % isan increasing function for » > 1.

Proof: Note that
r—1

flir)y = 2 og 1) (2—2r+(1+r)logr).

Note thatw > 0forr > 1,andletg(r) =2 —2r+ (14 r)logr. Then,g(r) is positive forr > 1,
sinceg(1) =0,¢'(r) =  +logr —1,¢/(1) =0,andg”"(r) = =5 >0. =

Lemma 9.6 f(r) = "tl logr isanincreasing function for r > 1.

Proof: Note that

r2 —2rlogr — 1

fir = (r—1)2r

Note thatﬁ > (0 forr > 1, and letg(r) = 72 — 2rlogr — 1. Then,g(r) is positive forr > 1, since

g(1) =0,¢'(r) =2r —2logr — 2,¢'(1) =0, andg”(r) = —Q(TT_I) >0. m

Lemma9.7 Let0 < a < lorl < a < 2. Then f(r) = % is an increasing function for

r> 1.

Proof: Note that
(r—1)re

fir) = r—ro) (ar+2=-a)+ (a—2)r* —ar*™").

Note that

(r—=1r* { >0 (when 0<a<1)
(r—r)3 | <0 (when 1<a<?2)
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forr > 1. Letg(r) = ar + (2 — a) + (o — 2)r® — ar®~L. Then,

(r) >0 (when 0<a<l)
"1 <0 (when 1<a<?2)
forr > 1, sinceg(1) = 0,¢'(r) = a+ (@ —2)(1 + a)r* ' + (2 — a) — a?r*2,¢'(1) = 0, and

g'"(r) = ala=1)(a-2)r*3(r - 1),
{>0 (when 0<a<1)
<0 (when 1< a<?2).

Lemma9.8 Let f(r) = )P r) 450 < o < 1, f(r) is an increasing function for » > 1. If

(7,.277,.04)2
1 < a <2, f(r) isadecreasing function for » > 1.
Proof: Note that

_ 1)’[“a+2

fi(r) = (82_77@)3 (B -a) 1 =77 = (@=1)(r - r27?)).

Since(r;l)—rzz2 > 0 forr > 1, itis easy to see that'(r) < 0 for r > 1 whenl < « < 2. To see that

—ra)

f'(r) > 0forr >1when0 < a < 1, we let
g(r)==B-a) 1 —r*) = (@ =1)(r —r*7?).

Then,g(r) > 0 for r > 1, sinceg(1) = 0,4 (r) = (3 —a)(a — 1)(r* %) — (a — 1)(1 — (a — 2)r*3),
g'(1) =0, and

g"(r) = —(a=1)(a=2)(a=3)(r*)r*"(r-1)

>0 (when 0<a<1)
<0 (when 1<a<2).
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