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Abstract. We study two natural models of randomly generated constraint satisfaction
problems. We determine how quickly the domain size must grow with n to ensure that these
models are robust in the sense that they exhibit a non-trivial threshold of satisfiability, and
we determine the asymptotic order of that threshold. We also provide resolution complexity
lower bounds for these models.

1 Introduction

The Constraint Satisfaction Problem (CSP) is a fundamental problem in Artificial Intelligence,
with applications ranging from scene labeling to scheduling and knowledge representation. See
for example Dechter [12], Mackworth [18] and Waltz [25]. An instance of the CSP comprises a set
of n variables, each taking a value in some given domain, and a set of constraint relations, each
of which determines the permitted joint values of a given subset of the variables. The problem is
either to determine any set of values for the variables which respects all the constraint relations,
or determine that none exists. In recent years, there has been a strong interest in studying
the relationship between the input parameters that define an instance of CSP (e.g. number of
variables, domain sizes, tightness of constraints) and certain solution characteristics, such as
the likelihood that the instance has a solution or the difficulty with which a solution may be
discovered. An extensive account of relevant results, both experimental and theoretical, can be
found in Hogg, Hubermann and Williams [15].

One of the most commonly used practices for conducting experiments with CSP is to generate
a large set of random instances, all with the same defining parameters, and then for each instance
in the set to use heuristics for deciding if a solution exists. Note that, in general CSP is NP-
complete. The proportion of random instances that have a solution is used as an indication of
the likelihood that an instance will be soluble, and the average time taken per instance (by some
standard algorithm) gives some measure of the hardness of such instances. A characteristic of
many of these experiments is that the fraction of assignments of values that are permissible for
each constraint is kept constant as the number of variables increases. The very active experimental
study of random models of CSP has necessitated a rigorous analysis of such models. Various
models of random CSP’s for which m, the domain-size, is constant have been studied in several
papers, for example [2, 21,11, 22, 23]. One of the earliest such studies, [2] discovered that the most
natural models suffer a fatal flaw (described below). The first study of the case where m grows
with n was [13], where one of these most natural models was studied. Implicit in that study was
the fact that for certain settings of the relevant parameters, the fatal flaw did not occur and we
had a rich random model to study. One the main contributions of this paper is to determine
which parameter settings avoid that fatal flaw, and thus provide random models that are both
natural and robust.

In this paper we consider only binary CSPs (BCSPs). These can be succinctly described in
the following way: A graph G = (V, E) is given, where V = {z1,x2,...,z,} denotes the set of
variables of the problem, and E the set of binary relations of the instance. We assume, without
loss of generality, that each variable can take values in the same set [m] = {1,2,...,m}. For each
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edge e = {z;,x;} € E, the relation can then be represented by an m x m 0-1 matrix M., where 0
indicates that the pair of values is forbidden and 1 that it is allowed. A solution to the associated
BCSP is an assignment f : V' — [m] of values to the variables, such that M.(f(z;), f(z;)) =1
for all e = {xz;,z;} € E.

The aim of this paper is to conduct a probabilistic analysis of some aspects of the following
simple random models of BCSP:

Model A: The underlying graph G is G, 5, for some p1 = p1(n) < 1 where p; # o(1/n). (This
means that, with V = {z,zo,...,z,}, we let each of the (72’) possible edges occur independently
in E with probability p;.) We let d = np,. For each edge e of G there is a random m X m
constraint matrix M, where M,(i,5) = 1 or 0 independently with probability ps or go = 1 — po
respectively, for some constant 0 < pp < 1. (In the final paper we will consider ps — 0 and py — 1
as well.)

For p1 = o(1/n), the graph G,, ,, is very sparse, and consists of a collection of small vertex-
disjoint trees in which all but o(n) of the vertices have degree 0. This is why we restrict our
attention to p; # o(1/n).

Given m, ps we wish to know: for what values of p; is our random CSP almost surely satis-
fiable? This question has been asked for many similar models of CSP, SAT and other problems.
Traditionally, one of the first steps is to determine some values of p; for which it is not satisfiable
as follows:

Fact: For p; > 21;””, the random CSP is unsatisfiable whp.

n
The proof follows easily from the fact that the expected number of satisfying solutions is

m" (1 - p1112)(;)-

Inspired by a familiar pattern of similar random models, it is tempting to assume that me
is the asymptotic order of a so-called ”satisfiability threshold” and so hypothesize that:

Hypothesis A: There is some constant ¢ > 0 so that for p; < ch‘Tm, the random CSP is
satisfiable whp.

See [16] for a lengthy list of papers in which the authors fell to the temptation of assuming an
equivalent hypothesis. In [2], it was observed that for most of those papers, and in fact whenever
m,py are both constants, the hypothesis is wrong. In fact, if p; > w(n)/n? for any w(n) that
tends to infinity with n, then almost surely the random CSP is trivially unsatisfiable in the sense
that it has an edge whose constraint forbids every pair of values; we call such an edge a blocked
edge

In this paper we asymptotically determine which values of m meet Hypothesis A.

Theorem 1. (a) If m < (1—e)+/Innd/In(1/q2) for some constant € > 0, then provided nd — oo,
the random CSP has a blocked edge whp

(b) If m > (14 €)y/Innd/In(1/qz) then there is some constant ¢ > 0 so that for py < c'2, the
random CSP is satisfiable whp. Furthermore, an assignment can be found in O(mn) time
whp.

Inm

For m, py as in case (b), Hypothesis A holds, and so = is, indeed, the order of the satisfiability
threshold. In case (a), whp the fact that the random CSP is unsatisfiable can be demonstrated
easily by examining a single edge. We show that for m > (Inn)!*€ for any € > 0, this is far from
the case. In particular, we show that whp there is. no short resolution proof of unsatisfiability
when p; is of the same asymptotic order as the threshold of satisfiability.

Theorem 2. If m > (Inn)'*¢, d = clnm, for any constants e,c > 0, then whp the resolution
complezity of the random CSP is 292(n/m),

The resolution complexity of various models of random boolean formula has been well-studied,
starting with [10], and continuing through [4],[5],[3] and other papers. This line of inquiry was
first extended to random models of CSP in [20,19] and was then continued in [23]. In both of
those studies, the domain-size was constant. Our Theorem 2 is the first result on the resolution
complexity for a model of random CSP where the domain-size grows with n.

We now consider another model.

Model B: Here we generate a random m X m symmetric matriz M with density p» and put
M, = M for every edge of G = G, p, -



Theorem 3. Let € be a small positive constant, and consider a random CSP from Model B.

(a) Ifd < (4 —¢€)(In(1/g2)) *InmlInlnm then whp the CSP is satisfiable whp.

(b) Ifd < (1 —¢€)(In(1/g2)) "t InmInlnm then an assignment can be found in polynomial time
whp.

() If 0 < g2 < 1 is constant and if d > Klnmlnlnm for sufficiently large K then whp the
CSP is unsatisfiable.

We can prove high resolution complexity in a restricted range of d, m, ps.

Theorem 4. If m — oo and d = clnmInlnm for some constant ¢ > 0, then whp the resolution
complezity of a random CSP from Model B is 29"/ (d"m)),

2 Some inequalities

We start with the basic Chernoff bounds for the binomial random variable Bin(N, p) viz: Assume
that 0 <e < 1.

Pr(Bin(N,p) < (1 — €)Np) < e < NP/2
Pr(Bin(N,p) > (1 + ¢)Np) < e < NP/3

In Theorem 5 below we will have a random variable Z = Z(Y1,Y5,...,Yy) where Y; € (2; are
independent so that Z is defined on 2 = 21 x --- 2.

Assumption 1
Suppose that Y,Y’ € 2 and there exists ¢ such that Y; = Y]' for j # i. Our assumption is that
in such a case we have |Z(Y) — Z(Y')| < a.

Assumption 2
Suppose that, in addition, for any &, if Z(Y") > £ then there exist ¢(¢) indices j1, jo, . - -, je(¢) such
that if Y], =Yj, for t =1,2,...,¢(£) then Z(Y') > £ also.

Let M = MED(Z) denote a median of Z i.e. Pr(Z > M) >+, Pr(Z < M) > 1.

Theorem 5. (Talagrand’s Inequality) If the random variable Z satisfies Assumptions 1 and
2 then o
Pr(|Z — M| > teM'/?) < 2¢7/(4a%), (1)

Proofs of these inequalities can be found for example in Janson, Luczak and Rucinski [17].

3 Model A: Unsatisfiable Region

3.1 Blocked Edges and Vertices

Let an edge e = (z,y) of G be blocked if M, = O (the matrix with all zero entries). Of course,
any CSP with a blocked edge is unsatisfiable, since there is no possible consistent assignment to
z,y. We start with a simple lemma:

Lemma 1. Let € > 0 be a small positive constant and assume that nd — oo (so that whp G has
edges). Let mg = +/(Inn +Ind)/In(1/g2). Then

(a) m > (1+ €)mg implies that there are no blocked edges, whp.
(b) m < (1 — €)mg implies that there are blocked edges, whp.

Proof Let Z be the number of blocked edges in our instance. Given the graph G, the
e .. 2
distribution of Z is Bin(|E|,¢5" ).

n 2
£(2) = (})nas 2
If m > (1 + €)myg then (2) implies that

E(Z) < (nd)~¢ = 0



and then Z = 0 whp and (a) follows.
If m < (1 — €)mg then (2) implies that

E(Z) > = (nd)® — .

W =

Part (b) now follows from the Chernoff bounds.
This proves Theorem 1(a). ]
We now consider another simple cause of unsatisfiability that [2] also discovered to be prevalent
amongst the models commonly used for experimentation. We say that a vertex (variable) z is
blocked if for every possible assignment ¢ € [m] there is some neighbour y which blocks the
assignment of ¢ to z, because the ith row of M., e = (z,y) is all zero.

Lemma 2. Let € be a small positive constant, and suppose that m —+/Inn/In(1/q2) — oo. Then

(@) m > (1+¢€)y/(Inn+mlnd)/In(1/qs) implies that there are no blocked vertices, whp.
(b) m < (1—€)y/(Inn+mlInd)/In(1/q) implies that there are blocked vertices, whp.

Remark: Note that m = /(Inn +mlnd)/In(1/gz), for m slightly smaller than mg from
Lemma 1.
Proof If the graph G is given and vertex v has degree d, then

Pr(v is blocked | G) = (1 — (1 — ¢}*)%)™.

This is because for i € [m], (1 — ¢5*)% is the probability that no neighbour w of v is such that
row ¢ of M(, ) is all zero.

Part (a) now follows from an easy first moment calculation, which we omit. We turn our
attention to proving part (b). Rearranging our assumption yields Ind > (1 — ¢)~*(mIn(1/g2) —
LInn). So we choose d such that Ind = (1 —¢) " (mIn(1/g2) — L 1lnn), ie d = (g5 n)t/m1-e)
as proving the result for that value of d clearly implies that it holds for all larger values.

Our assumption implies that d — oo and so whp n — o(n) vertices v have d,, € I = [(1 —
€)d, (1 + €)d]. Thus if Z is the number of blocked vertices with d, € I then

E(Z) > (n—o(n)(1— (1 = ¢5")** =)™ > (n — o(n))(d(1 — €)g5")"

2\ e/ .
> (1 o) (az™n)" (19
> (1 —0(1))n/ 179 (1 — ¢)me (see the Remark preceding this proof)

>n/? & .

To show that Z # 0 whp we use Talagrand’s inequality (1). We condition on G. Then we let each
2.,e € E be an independent copy of {0, 1}’"2 (the set of m x m 0-1 matrices). Now changing a
single M, can change z by at most 2 and so Assumption 1 holds with a = 2. Then to show that
a vertex v is blocked we only have to expose M, for e incident with v. Thus Assumption 2 holds
with ¢(§) = (1 + €)d€. Thus if M = Med(Z), ((1) gives

Pr(|Z — M| > t(1 + €)dM'/?) < 2¢1°/16 (3)

for any t > 0.
Our assumptions imply that d®> = o(E(Z)) and so (3) implies the result. |

4 Model A: Satisfiable Region
We assume for this section that

Inn /2
m=(1+¢) <1—> , d=clnm and p, is constant



where ¢, € are small. (Note that this also implies the result for larger m).

Now let a vertex v be troublesome if it has degree > D = 10d or there are assignments to its
neighbours which leave v without a consistent assignment. Let 7 denote the set of troublesome
vertices. A subset of 7 is called a troublesome set.

Let A be the event that every set of kg vertices contains at most ko edges where

2lnn
L)
Then
Lemma 3.
Pr(A)=1-0(1)
Proof

< ()W) @) (@) ()

]{? 2k0+1dk0+1 d
L - —)

2kl T p
O
We show next that whp the sub-graph induced by 7 has no large trees.
Lemma 4. Whp there are no troublesome trees with > ko vertices.
Proof If T contains a tree of size greater than k¢ then it contains one of size ko. Let Z

be the number of troublesome trees with ko vertices. Let {2 be the set of trees/unicyclic graphs
spanning [ko]. Then for any subset J of [ko] we may write

E(Z-14) < <lZ)) > (§>k01HPr(mi €T |Gr,z; €T,Vj€J,j<i). (4)

n
TES? iceJ

Here Gr is the event that the sub-graph of G induced by[ko] is T

Fix T € 2 and let I; be the set of vertices of T' with degree at most 4 in T. Then |I1] > ko /2.
Note next that I; contains an independent set I of size at least kq/10.

Now if ¢ € I then

N NPt D
Pr(z; € T | Gr,21,22,...,2i1 €T) < (D - 4> (E) + th(l —p3)™
t=0

The first term bounds the probability that z; has at least D — 4 neighbours outside the tree and
assuming the degree of x; is at most D, the second term bounds the probability that the < D
neighbours have an assignment which can not be extended to z;. We use the fact that I is an
independent set to gain the stochastic independence we need.

Thus, applying (4) with J = I we obtain

s (D (4 () () S we) e

ko/10

< n(de)* ((Dde 4>D_4 + DmDe—mp£> = o).

Now we deal with troublesome cycles in a similar manner.

Lemma 5. Whp there are no troublesome cycles.



Proof It follows from Lemma 4 that we need only consider cycles of length kg or less. If Z
now denotes the number of troublesome cycles of length ky or less then arguing as in (4), (5) we
see that

s =B (52 () (02 ()T Eramnr)

k=3

O
Let a tree be small if it contains at most kg vertices.
We have therefore shown that whp the troublesome vertices 7 induce a forest of small trees.
We show next that whp there at most n't°(1) small trees.

Lemma 6. Whp there are at most n*t°(1) small trees.

Proof Let o denote the number of small trees. Then
ko s d\F1 Fo
e =3 ()¢ (7)< gt =t
k=1 k=1
The result now follows from the Markov inequality. O

Our method of finding an assignment to our CSP is to (i) make a consistent assignment to
the vertices of T first and then (ii) extend this assignment “greedily” to the non-troublesome
vertices.

It is clear from the definition of troublesome that it is possible to carry out Step (ii). We wish
to show that (i) can be carried out successfully whp. For this purpose we show that whp G does
not contain a small tree which cannot be given a consistent assignment.

So we fix a small tree T and a vertex v € T and root T at v. Then let X;,0 < i < kg denote
the vertices at distance ¢ from v in T. Then let d; be the maximum number of descendants of a
vertex in X, and let L denote the depth of T'.

For uw € X, let Sy(u) be the the set of values ¢ such that there is a consistent assignment to
the sub-tree of T rooted at u in which u receives §. We let t = [10/¢] and define the events

B = {2 < s < 2.

Then for 1 < ¢ <t let

i
;¢ = max Pr U By.,j
u€Xy )

Jj=1

Note that m; 0 = 1.
We claim that for £ > 1,

t—it1
I — m

me< > Y (m) Q(l—(l—qi*)kwf,@l (6)

kitdki=de p=27tm

izly, =i,
<yl —(1—gy" ™)) T M

t
i—1 —i
<3 2™ (degyT ™) T e (7)

j=1

Explanation of (6): Suppose that there are k; descendants w of w for which Bﬁ;jl occurs. If
u € Bﬁ,i then r assignment values will be forbidden to it, {Fm < r < =lm. The product

bounds the probability that these values are forbidden and that Bﬁ:; occurs for the corresponding
descendants.



Now let us prove by induction on ¢ that for n = ¢/3 and for 1 < j <t we have
g < tln(FM S (8)
This is clearly true for ¢ = 0 since 7;¢ = 0 for j < ¢t and 7o = 1. Then from (7) we obtain

—1 ¢ d ﬁmw 1 _ ¢ G- 1)(t 1)1+) j(1+)
T <t E theomd,m Mg, p= (S <4t § .

j=1
Notice that in gomg from the first to second inequality we use the fact that since ¢,d, < ko we

find that 2mtd4d ©™ — o() This term is then absorbed by using 1+ €/2 in place of 1 + €.
Now cons1der the expression

A G=D(=9)
t2

(=1t =)

i~
2 +T(l+n)

(14

(1+ 5)

€ t—j t—1
Q+ ; (1+n) ; (1+mn)

To complete the inductive proof of (8) we have only to show that it is non-negative.

Now A is clearly non-negative if i > j and so assume that j > i. Now for a fixed j, A can
be thought of as a linear function of ¢ and so we need only check non-negativity for ¢ = 1 or
i=j—1.

For i = 1 we need .

(G-t = 10+ 5> (G~ i1 +n) 9)

and this holds for € < 1.
For i = j — 1 we need

(=1t =+ 1)1 +73) 2t +n).

But here j > 2 and the LHS is at least (t — 1)(1 + 5) and the inequality reduces to (9) (after

dividing through by j — 1). This competes the proof of (8). In particular

1 ko < tkon—(l-i-”l)(t—l)/t_

Pr(3a troublesome tree which cannot be consistently assigned)
<o(1) + plto(V) ko, —(4n)(t-1)/t _ o(1)

which implies that Step (i) can be completed whp. This proves the satisfiability claim in Theorem
1(b).

It only remains to discuss the time to find an assignment. Once we have assigned values
to T then we can fill in an assignment in O(mn) time. So let us now fix a small tree T of
troublesome vertices. Choose a root v € T" arbitrarily. Starting at the lowest levels we compute
the set of values Sy(u) available to a vertex u € X,. For each descendant w of u we compute
Ty(w) = {a € Sex1(w) : My w)(a) = 1} and then we have Sy(u) = N, Te(w). At the leaves,
S, = [m] and so in this way we can assign a value to the root and then work back down the tree
to the leaves giving an assignment to the whole of 7. Thus the whole algorithm takes O(mn)
time as claimed. |

5 Model A: Resolution complexity

For a boolean CNF-formula F, a resolution refutation of F' with length r is a sequence of clauses
Ci,...,Cr = 0 such that each C; is either a clause of F, or is derived from two earlier clauses
C;,Cj for j,j' < i by the following rule: C; = (AV z),Cj = (BV Z) and C; = (AV B), for
some variable z. The resolution complezity of F', denoted RES(F'), is the length of the shortest
resolution refutation of F. (If F is satisfiable then RES(F') = 0.)

Mitchell[20] discusses two natural ways to extend the notion of resolution complexity to
the setting of a CSP. These two measures of resolution complexity are denoted C — RES and
NG — RES. Here, our focus will be on the C — RES measure, as it was in [19] and in [23].



Given an instance Z of a CSP in which every variable has domain {1,...,m}, we construct
a boolean CNF-formula CNF(Z) as follows. For each variable z of Z, there are m variables in
CNF(Z), denoted z : 1,z : 2,...,x : m, and there is a domain clause (x : 1V ...V z : m). For each
pair of variables x,y and each restriction (i, ) such that M, (i, j) = 0, CNF(Z) has a conflict
clause (z:iVy : j). We also add (ZL) 2-clauses for each x which specify that = : 7 can be true for
at most one value of 4. It is easy to see that CNF(Z) has a satisfying assignment iff Z does. We
define the resolution complexity of Z, denoted C — RES(Z) to be equal to RES(CNF(Z)).

A variable z is free if any assignment which satisfies Z — z can be extended to a satisfying
assignment of Z. The boundary B(Z) is the set of free variables. We extend a key result from [20]
to the case where m grows with n:

Lemma 7. Suppose that there exist s, > 0 such that

(a) Every subproblem on at most s variables is satisfiable, and
(b) Every subproblem I' on v variables where %s <wv < s has |B(T')| > ¢n.

then C — RES(Z) > 22(¢n/m),

The proof is a straightforward adaptation of the proof of the corresponding work in [20] and
so we omit it.
We assume now that ¢ is a small positive constant and

m > (Inn)'™ d = clnm and py is constant. (10)

Let v be a sufficiently small constant. Let 77 denote the set of vertices v for which there are vd
neighbours W and a set of assignments of values to W for which v has no consistent assignment.

Lemma 8.

Pr(Ty # 0) = o(1).

Proof
n—1 t n—1 t yd
n\ (d t d ~d\m de tem —mpdd
E(|T1|)§nz <t> <n> (Fyd>m’Y (1-p3") STLZ (t W e P2
t=~d t=~d
o 10d n—1
<ne=™ Z (de)™®(10ey~1m) 74 4 Z(mn)w = o(1).
t=~d 10d

O
Now we show that whp every set of s < s9 = an vertices, & = /3 has less than vds/2 edges.
Let B denote this event.

Lemma 9.
Pr(B) =1-o0(1).

Proof
- an n (50) d yds/2 an se —14+~d/2 o2 s
o< £ ()< E ((2)2) -0
S_ZW s/ \vds/2) \ n S_ZW n Y
O
Let us now check the conditions of Lemma 7. Condition (a) holds because Lemma 9 implies
that if s = |S| < an then we can order S as vq,vs,...,vs so that v; has less than ad neighbours
among vy, va,...,vj—1 for 1 < j < s. Because we can assume that 7; = () (Lemma 8) we see that

it will be possible to sequentially assign values to vy, vs,...,vs in order. Lemma 9 implies that
at least 3 the vertices of S have degree < ad in S and now 7; = () implies that (b) holds with
¢=1/2.

We conclude that with the parameters as stated in (10), C — RES(Z) is whp as large as is
claimed by Theorem 2.



6 Model B: Satisfiability

We have a blocked edge iff M = O and this happens with probability g5 (m=1) and so there is
not much more to say on this point.

Secondly, if M # O then there are two values z,y which can be assigned to adjacent vertices.
This implies that for any bipartite subgraph H of G there is a satisfying assignment for H just
using x,y. So, in particular there will be no blocked vertices.

Let us now consider Theorem 3. Let H be the graph defined by treating M as its adjacency
matrix. Thus H = G, p,. As such it has a clique I of size (2 — o(1))Inm/(In1/g2).

If we can properly colour G with I (i.e. give adjacent vertices different values in I) then we will
have a satisfying assignment for our CSP. Now the chromatic number of G is (14 o(1))d/(21nd)
whp. So the CSP is satisfiable whp if

(2 o(1)) Inm/(n1/g2) > (1 + o(1))d/ (2 Ind)

and this holds under assumption (a).

For (b) we observe that we can find a clique of size (1 — o(1))Inm/(ln1/¢s) in polynomial
time and we can colour G with (1 + o(1))d/Ind colours in polynomial time.

We now prove part (c) of Theorem 3. We first observe

Lemma 10. There exists a constant ey such that for € < ey there exist Ry = Ro(€), Qo = Qo(e)
such that if Q@ > Qo, R > Ry and sg = Rlnm then

(a) whp every pair of disjoint sets Sy, S C [m], |S1] = s1 > s0,|S2| = s2 > s¢ contains at most
(1 —¢€)s189 Sy : Sa edges of H;

(b) whp every S C [m], |S| = s > so contains at most Qlnm members with degree greater than
(1 —¢€)s in the subgraph of H induced by S.

Proof
(a) We can bound the probability that there are sets S, Sz with more than the stated number
of Sy : S2 edges by

m m m m 5182 (1—€)s1s2
> (M) )
S1 So €5189
81=8p S2=Sp
m m me s1 me S2 e\e ) s182
= 51 . -) by © =o(1).
<33 () () (@m0

Sp S2=S8p

(b) We choose € > 0 so that ps < 1 — 3e. Given S, we consider a set L C S of size QInm. For
R > Qe ! we have |L| < €|S| and so if each i € L has at least (1 — €)s neighbours in S then it
has at least (1 — 2¢)s neighbours in S — L. By the Chernoff bound, this occurs with probability

at most (e_cs)‘Ll, for some ¢ > 0 and this is less than m~2* for Q sufficiently high. Therefore,
the expected number of S, L violating part (b) is at most

S m S —2s - (em>s s, —2s —s
m < — 2°m < m~° =o(l).
s§)<s><anm> Sggo s Sgsjo (1)
O
Now consider an assignment ¢ for our CSP and let N; be the set of variables that are assigned
the value 7 by 0. We observe that if o is consistent then each IV; is an independent set in G and
so whp G is such that we must have

3nlnd < 4n
d Klnm

|N;| < fori=1,2,...,m. (11)
Thus, we will restrict our attention to assignments which satisfy (11). We will prove that the

expected number of such assignments that are consistent is o(1), thus proving part (c) of Theorem
3.



We say that a pair of vertices is forbidden by o if that pair cannot form an edge of G without
violating 0. Note that every pair in the same set IV; is forbidden, and a pair in IV; X N; is forbidden
iff ij is not an edge of H. We will show that the number of forbidden pairs is at least n?/Inlnm.
It follows that

2
n®/Inlnm S e—nd/lnlnm — o(m—n),

Pr(o is consistent) < (1 — py)
assuming that d > Klnmlnlnm for sufficiently large K. Since this probability is o(m™") we
can multiply by m™, which is an overcount of the number of assignments satisfying (11), and so
obtain the desired first moment bound.

Let n; = |N;| and let I = {i: n; > n/(2m)}. Now

Zni:n—Znizn—m-%:g. (12)

icl igI
For the following analysis we choose constants:
€, Q = max{Qy, 100e '}, K, = 100R,, K =100K,Q

where € < €y, Qo, Ry are from Lemma 10.
We partition I into 3 parts:

— L ={i: n/(Kilnmlnlnm) <n; <4n/K Inm}
—L={i: n/(Kilnm)? <n; <n/(K;lnmInlnm)}
— Iy ={i: n/(2m) < n; < n/(KiInm)?}

Case 1: Ziell n; > % Let H; be the subgraph of H induced by Iy, and for each i € I,

we let d(i) be the degree of i in H;. Note that the total number of forbidden pairs of vertices for
G is at least L
- n
N ()] Th S — 1
2 Z (@)ns Kilnmlnlnm (13)
i€l
since for all ' € I1,ny > n/(K;lnmlnlnm).
By (11), we have |I;| > (K Inm)/24,s0 (K Inm)/Q < €|I;|. Thus, by Lemma 10(b) then there

are at most @ lnm members ¢ € I; with d(i) < (KIlnm)/Q. Again using (11), these members
contribute at most 4Qn/K < n/12 to >, n;. Therefore, the sum in (13) is at least

Klnm n n n?

X X > .
Q 12 Kilnmlnlnm — Inlnm

X

DN | =

Case 2: ), ., ni > § Welet I(j) ={i € Ir: n/29 <n; <n/2971} for
logy(KiInmInlnm) < j < 2logy(KiInm). We set t; = > ,.;;ni and s; = [I(j)] = ¢; x
(Kilnmlnlnm/n). We set J = {j : t; > n/(100lnlnm)} and note that s; > s¢ (from Lemma

10) for each j € J. Note also that

n

_— >
x 100Inlnm —

n n
thz — —2log, (K1 lnm) —.
; 6 8
jedJ

Consider I(j) for any j € J. By Lemma 10, there are at least 6(523') pairs i, € I(j) such
that every pair of vertices in INV; X N; is forbidden. Also, for any 4, every pair in N; X N; is
forbidden. Since the sizes of the sets N;,i € I(j) differ by at most a factor of 2, this implies that
the number of forbidden pairs in U;cy(;)N; is at least gt?. Now consider any pair I(j),I(j") with
J»j’ € J. By Lemma 10(a), there are at least es;s;  pairs i € I(j),i' € I(j') such that every
pair of vertices in N; X N,/ is forbidden, and this implies that the number of forbidden pairs in

Uier(j) Vi X Uier(jryN; is at least £t;t;. Thus, the total number of forbidden pairs is at least

2

2
2

€ 22 Z G Z en n

8 t+ 25ty ~8 £ 28_3>1n1nm'

JjEJ §rd' €55 <4’ jed




Case 3: Eie LM 2 8 Here we follow essentially the same argument as in Case 2.
Again, let I(j) = {i € I : n/27 < n; <n/297'}, but this time we consider 2log,(K;Inm) < j <

log,(2m). Again, t; =3, ;(;) ni and s; = [I(j)|, but note that this time we have

t,
S
%= n/(K;Ilnm)?

Here, we set J = {j : t; > n/K; Inm} and so again we have s; > sy for every j € J.

n

n
>ty > 7~ loga(2m) x K nm

JjeJ

n
> —.
-8

The same argument as in Case 2 now goes through to imply that the total number of forbidden

pairs is at least
2
2
€ n
- ti| > .
8 Z ! Inlnm

JjEJ

7 Model B: Resolution complexity

First note that whp every set of 10 vertices in H has a common neighbour, since the probability
of at least one such set not having a common neighbour is less than (J3)g5*~ " = o(1). Assuming
that H has this property, every vertex of degree at most 10 in G will be in the boundary.

A straightforward first moment argument shows that a.s. every subgraph G’ of G with at
most n/d*/? vertices has at most 5/G’| edges. (We omit the standard calculation.) Therefore,
every such G’ has at least |G'|/11 vertices of degree at most 10. This implies both conditions of
Lemma 7 with s = n/d®/? and ¢ = 1/(22d*/?) and thus implies Theorem 4. O

We remark that the exponent “3” of d in the statement of Theorem 4 can be replaced by

values arbitrarily close to 2 by replacing “10” with a larger value in this proof.
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