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ABSTRACT
In this paper we present a polynomial time approximation
algorithm for designing a multicast overlay network. The al-
gorithm finds a solution that satisfies capacity and reliability
constraints to within a constant factor of optimal, and cost
to within a logarithmic factor. The class of networks that
our algorithm applies to includes the one used by Akamai
Technologies to deliver live media streams over the Internet.
In particular, we analyze networks consisting of three stages
of nodes. The nodes in the first stage are the sources where
live streams originate. A source forwards each of its streams
to one or more nodes in the second stage, which are called
reflectors. A reflector can split an incoming stream into mul-
tiple identical outgoing streams, which are then sent on to
nodes in the third and final stage, which are called the sinks.
As the packets in a stream travel from one stage to the next,
some of them may be lost. The job of a sink is to combine
the packets from multiple instances of the same stream (by
reordering packets and discarding duplicates) to form a sin-
gle instance of the stream with minimal loss. We assume
that the loss rate between any pair of nodes in the network
is known, and that losses between different pairs are inde-
pendent, but discuss extensions in which some losses may
be correlated.
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1. INTRODUCTION
One of the most appealing applications of the Internet is

the delivery of high-quality live audio and video streams to
the desktop at low cost. Live streaming is becoming increas-
ingly popular, as more and more enterprises want to stream
on the Internet to reach a world-wide audience. Common
examples include radio and television broadcast, events with
a world-wide viewership, sporting events, and investor rela-
tion calls.

The traditional centralized approach to delivering live stream-
ing involves three steps. First, the event is captured and
encoded using an encoder . Next, the encoder delivers the
encoded data to one more media servers housed in a cen-
tralized co-location facility on the Internet. Then, the media
server streams the data to a media player on the end-user’s
computer. Significant advances in encoding technology, such
as MPEG-2, have made it possible to achieve full-screen tele-
vision quality video with data rates between 2 to 20 megabits
per second. However, transporting the streaming bits across
the Internet from the encoder to the end-user without sig-
nificant loss in stream quality remains the critical problem,
and is the topic of this paper.

The traditional centralized approach for stream delivery
outlined above has two bottlenecks, both of which argue
for the construction of an overlay distribution network for
delivering live streams.
Server bottleneck. Most commercial media servers can
serve no more than 50 Mbps of streams to end-users. In
January 2002, Akamai hosted Steve Jobs’s Keynote address
at MacWorld-West which drew 50,000 simultaneous view-
ers world-wide with a peak traffic of 16.5 Gbps. To host
an event of this magnitude, requires hundreds of servers.
In addition these servers must be distributed across sev-
eral co-location centers, since few co-location centers can
provide even a tenth of the outgoing bandwidth required.
Furthermore, a single co-location center is a single point of



failure. Therefore, scalability and reliability requirements
dictate the need for a distributed infrastructure consisting
of a large number of servers deployed across the Internet.
Network bottleneck. As live events are increasingly streamed
to a global viewership, streaming data needs to be trans-
ported reliably and in real-time from the encoder to the
end-user’s media player over the long haul across the In-
ternet. The Internet is designed as a best-effort network
with no quality guarantees for communication between two
end points, and packets can be lost or delayed as they pass
through congested routers or links. This can cause the
stream to degrade, producing “glitches”, “slide-shows”, and
“freeze ups” as the user watches the stream. In addition
to degradations caused by packet loss, catastrophic events
occasionally bring complete denial of service to segments of
the audience. These events include complete failure of large
ISP’s, or failing of ISP’s to peer with each other. As an ex-
ample of the former on 10/3/2002, the WorldCom network
experienced a total outage for nine hours. As an exam-
ple of the latter, in June 2001, Cable and Wireless abruply
stopped peering with PSINet for financial reasons. In the
traditional centralized delivery model, it is customary to en-
sure that the encoder is able to communicate well with the
media servers through a dedicated leased line, a satellite up-
link, or through co-location. However, delivery of bits from
the media servers to the end-user over the long haul is left
to the vagaries of the Internet.

1.1 An overlay network for delivering live
streams

The purpose of an overlay network is to transport bits
from the encoder to the end-user in a manner that alleviates
the server and network bottlenecks. The overlay network
studied in this paper consists of three types of components,
each globally distributed across the internet: entrypoints
(also called sources), reflectors, and edgeservers (also called
sinks), as shown in Figure 1. We illustrate the functionality
of the three components by tracking the path of a stream
through the overlay network as it travels from the encoder
to the end-user’s media player.

• An entrypoint serves as the point of entry for the
stream into the overlay network, and receives the se-
quence of packets that constitutes the stream from the
encoder. The entrypoint then sends identical copies of
the stream to one or more reflectors.

• A reflector serves as a “splitter” and can send each
stream that it receives to one or more edge-servers.

• An edgeserver receives one or more identical copies of
the stream, each from a different reflector, and “recon-
structs” a cleaner copy of the stream, before sending
it to the media player of the end-user. Specifically, if
the kth packet is missing in one copy of the stream,
the edgeserver waits for that packet to arrive in one of
the other identical copies of the stream and uses it to
fill the “hole”.

The architecture of the overlay network described above al-
lows for distributing a stream from its entrypoint to a large
number of edgeservers with the help of reflectors, thus allevi-
ating the server bottleneck. The network bottleneck can be
broken down into three parts. The first-mile bottleneck from
the encoder to the entrypoint can be alleviated by choosing

an entrypoint close to (or even co-located with) the encod-
ing facility. The middle-mile bottleneck of transporting bits
over the long-haul from the entrypoint to the edgeserver can
be alleviated by building an overlay network that supports
low loss and high reliability. This is the hardest bottleneck
to overcome, and algorithms for designing such a network is
the topic of this paper. The last-mile bottleneck from the
edgeserver to the end-user can be alleviated to a degree by
mapping end-users to edgeservers that are “closest” to them.
And, with significant growth of broadband into the homes
of end-users, the last-mile bottleneck is bound to become
less significant in the future1.

1.2 Considerations for overlay network design
An overlay network can be represented as a tripartite di-

graph N = (V,E) as shown in Figure 1, where V is parti-
tioned into the set of entrypoints, a.k.a. sources (S), reflec-
tors (R), and edgeservers, a.k.a. sinks (D). In this frame-
work, overlay network design can be viewed as a multicom-
modity flow problem, where each stream is a commodity
that must be routed from the entrypoint, where it enters
the network, to a subset of the edgeservers that are des-
ignated to serve that stream to end-users. We assume that
the subset of the edgeservers which want a particular stream
is an input into our algorithm and takes into account the
expected viewership of the stream, i.e., a large event with
predominantly European viewership should include a large
number of edgeservers in Europe in its designated subset, so
as to provide many proximal choices to the viewers. Note
that a given edgeserver can and typically will be designated
to serve a number of distinct streams.

Given a set of streams and their respective edgeserver des-
tinations, an overlay network must be constructed to min-
imize cost , subject to capacity , quality , and reliability re-
quirements outlined below.
Cost: The primary cost of operating an overlay network is
the bandwidth costs of sending traffic over the network The
entrypoints, reflectors, and edgeservers are located in co-
location centers across the Internet, and to operate the net-
work requires entering into contracts with each co-location
center for bandwidth usage in and out of the facility. A
typical bandwidth contract is based either on average band-
width usage over 5 minute buckets for the month, or on the
95th percentile peak traffic usage in 5 minute buckets for the
month. Therefore, depending on the specifics of the contract
and usage in the month so far, it is possible to estimate the
cost (in dollars) of sending additional bits across each link
in the network. The total cost of usage of all the links is the
function that we would like to minimize.
Capacity: There are capacity constraints associated with
each entrypoint, reflector, and edgeserver. Capacity is the
maximum total bandwidth (in bits/sec) that the component
is allowed to send. The capacity bound incorporates CPU,
memory, and other resource limitations on the machine, and
bandwidth limitations on the outbound traffic from the co-
location facility. For instance, a reflector machine may be
able to push at most 50 Mbps before becoming CPU-bound.
In addition to resource limitations, one can also use capac-
ities to clamp down traffic from certain locations and move
traffic around the network to control costs.

1From April 2001 to April 2002, the number of high-speed,
home-based internet users in the US grew at an incredible
58%, from 15.9 million to 25.2 million individuals.



Quality: The quality of the stream that an edgeserver de-
livers to an end-user is directly related to whether or not the
edgeserver is able to reconstruct the stream without a signif-
icant fraction of lost packets. Consequently, we associate a
loss threshold for each stream and edgeserver that specifies
the maximum post-reconstruction loss allowed to guarantee
good stream quality for end-users viewing the stream from
that edgeserver. Note that packets that arrive very late or
significantly out-of-order must also be considered effectively
useless, as they cannot be utilized in real-time for stream
playback.
Reliability: As mentioned earlier, catastrophic events on
the Internet from time to time cause large segments of view-
ers to be denied service. To defend against this possibility,
the network must be monitored and the overlay network re-
computed very frequently to route around failures. In addi-
tion, one can place systematic constraints on how the over-
lay network is designed to provide greater fault-tolerance.
An example of such a constraint is to require that multiple
copies of a given stream sent from an encoder are always sent
to reflectors located in different ISPs. This constraint would
protect against the catastrophic failure or peering problems
of any single ISP. We explore this in sections 6.4 and 6.5.

1.3 Packet loss model
In practice the packet loss on each link can be periodi-

cally estimated by proactively sending test packets to mea-
sure loss on that link. One can average these numbers and
get an estimate of the probability of each packet on the link
being lost. Thus we will assume that the algorithm receives
as an input the probability of failure on each link, say p
and every packet on that link can be lost with an average
probability of p. Notice that we don’t assume that loss of
packets on individual links are uncorrelated, but we will as-
sume that losses on different links are independent (however
in the extensions, section 6.3 to 6.5, we consider a model in
which some link losses are related). Therefore if we have the
same packet sent on two consecutive links with probabilities
of failure respectively p1 and p2 then the probability of los-
ing the packet on this path is p1 +p2−p1p2. Similarly if the
failure probabilities of two edges coming to a node are p1

and p2 respectively then the loss probability of the package
at this node is p1p2. Observe that these loss rules are the
same as in the network reliability problem [30], but we also
have costs on the edges and multiple commodities. Since
our algorithm is reasonably fast it can be reruned as often
as needed so that the overlay network adapts to changes in
the link failure probabilities or costs.

1.4 Other Approaches
One of the oldest alternative approaches is called “mul-

ticast” [6]. The goal of multicast is to reduce the total
bandwidth consumption required to send the same stream
to a large number of hosts. Instead of sending all of the
data directly from one server, a multicast tree is formed
with a server at the root, routers at the internal nodes, and
end users at the leaves. A router receives one copy of the
stream from its parent and then forwards a copy to each
of its children. The multicast tree is built automatically as
players subscribe to the screen. The server does not keep
track of which players have subscribed. It merely addresses
all of the packets in the stream to a special multicast ad-
dress, and the routers take care of forwarding the packets

on to all of the players that are subscribing to that address.
Support for multicast is providing at both the network and
link layer. Special IP and hardware addresses have been al-
lotted to multicast, and many commercial routers support
the multicast protocols.

Unfortunately, few of the routers on major backbones are
configured to participate in the multicast protocols, so as
a practical matter it is not possible for a server to rely on
multicast alone to deliver its streams. The “mbone” (multi-
cast backbone) network was organized to address this prob-
lem [7]. Participants in mbone have installed routers that
participate in the multicast protocols. In mbone, packets
are sent between multicast routers using unicast “tunnels”
through routers that do not participate in multicast.

A second problem with the multicast protocols is that
trees are not very resilient to failures. In particular, if a
node or link in a multicast tree fails, all of the leaves down-
stream of the failure lose access to the stream. While the
multicast protocols do provide for automatic reconfiguration
of the tree in response to a failure, end users will experience
a disruption while reconfiguration takes place. Similarly,
if an individual packet is lost at a node or link, all leaves
downstream will see the same loss. To compound matters,
the multicast protocols for building the tree, which rely on
the underlying network routing protocols, do not attempt
to minimize packet loss or maximize available bandwidth in
the tree.

The commercial streaming software does not rely on mul-
ticast, but instead provides a new component called a re-
flector. A reflector receives one copy of a stream and then
forwards multiple copies on to other reflectors or streaming
servers. A distribution tree can be formed by using reflec-
tors as internal nodes, except for the parents of the leaves,
which are standart media servers. As before, the leaves are
media players. The reason for the layer of servers at the bot-
tom of the tree is that the commercial software requires each
player to connect individually to a server. The servers, play-
ers, and reflectors can all be configured to pull their streams
from alternate sources in the event of failure. This scheme,
however, suffers from the same disruptions and downstream
packet loss as the multicast tree approach.

Recently promising new approaches have been devolped.
One of them is “End System Multicast”(ESM) [3]. In ESM,
there is no distinction between clients, reflectors, and servers.
Each host participating in the multicast may be called on to
play any of these roles simultaneously in order to form a tree.
ESM is a peer-to-peer streaming applications, as it allows
multicast groups to be formed without any network sup-
port for routing protocols and without any other permanent
infrastructure dedicated to supporting multicast. Another
one is “Cooperative Networking” (CoopNet) [24]. CoopNet
is a hybrid between a centralized system as described in our
paper and a peer-to-peer system such as ESM.

1.5 Related work
Our approach falls into the general class of facility loca-

tion problems. Here the goal is to place a set of facilities
( reflectors) into a network so as to maximize the coverage
of demand nodes (sinks) at minimum cost. This class of
problems has numerous applications in operations research,
databases, and computer networking. The first approxima-
tion algorithm for facility location problems was given by
Hochbaum [12] and improved approximatio algorithms have



been the subject of numerous papers including [27, 9, 4, 2,
16, 29, 15, 22].

Except for Hochbaum’s result, the papers described above
all assume that the weights between reflectors and sinks form
a metric (satisfying the symmetry and triangle inequality
properties). In our problem, the weights represent trans-
mission failure probabilities. These probabilities do not nec-
essarily form a metric. For example, the symmetry con-
straint frequently fails in real networks. Without the tri-
angle inequality assumption, the problem is as hard as set
cover, giving us an approximation lower bound of O(log n)
with respect to cost for polynomial-time computation (un-
less NP ⊂ DTIME(nOlog logn)) [21, 8]. A simple greedy
algorithm gives a matching upper bound for the set cover
problem [18, 5].

While our problem includes set cover as a special case,
the actual problem statement is more general. Our facilities
are capacitated (in contrast to the set cover problem where
the sets are uncapacitated). Capacitated facility location
(with “hard” capacities) has been considered by [25], but
the local search algorithm provided depends heavily upon
the use of an underlying metric space. The standard greedy
approach for the set cover problem can be extended to ac-
commodate capacitated sets, but our problem additionally
requires an assignment of both commodities to reflectors
and reflectors to sinks. Similar two-level assignments have
been considered previously [20, 1, 23, 11], but again the ear-
lier work assumed that the points were located in a metric
space. The greedy approach may not work for multiple com-
modities, as the coverage no longer increases concavely as
reflectors are added. In other words, adding two reflectors
may improve our solution by a larger margin than the sum
of the improvements of the reflectors taken individually.

Our goal is to restrict the probability of failure at each
node, and it will typically be necessary to provide each
stream from more than one reflector. This distinguishes our
problem from most previous work in set cover and facility
location, where the goal is to cover each customer with ex-
actly one reflector. Several earlier papers have considered
the problem of facility location with redundancy [17, 10].
Unlike our results, each of the previous papers assumes an
underlying metric, and it is also assumed that the coverage
provided by each facility is equivalent (whereas in our prob-
lem the coverage provided is represented by the success rate
and depends upon the reflector-customer pair in question).

The problem of constructing a fault-tolerant network has
been considered previously. The problem is made difficult by
dependencies in the failure rates. Selecting a set of paths to
minimize the failure rate between a pair of nodes is made dif-
ficult by the fact that intersecting paths are not independent
(but their combined probability of failure is still less than
the failure probability of any path individually). Earlier
papers have considered network reliability. For general net-
works Valiant [30] defined the term “network reliability” and
proved that computing it is ]P-complete. Karger showed an
FPRAS that approximates the network reliability [19]. We
consider a three-tiered network because these structures are
used in practice (for example in Akamai’s data-distribution
network) and because the possible dependencies between
paths are greatly reduced in such a network (two hop paths
only recombine at the last level). In such a network one
can compute the exact reliability in polynomial time. If we
consider our problem as a sort of weighted capacitated set

cover, it would be straightforward to extend the results to
any network of constant depth. However, since the weights
represent probabilities of failure, our results do not directly
extend to constructing a reliable network with more than
three layers (the chance of failure at a customer would no
longer be equal to the product of failure probabilities along
paths since the paths need not be independent in a deeper
network).

1.6 Our results
Our techniques are based upon linear program rounding,

combined with the generalized assignment algorithm of [26].
A direct rounding approach is possible, but would lead to a
multicriterion logarithmic approximation. We are forced to
lose O(log n) on the cost (due to the set cover lower bounds),
but we obtain O(1) approximation bounds on the capacity
and probability requirements by using randomized round-
ing for only some linear program variables and completing
the rounding procedure by using a modified version of gen-
eralized assignment. In Section 6 we use a technique due
to Srinivasan and Teo [28] to tackle some extensions of this
problem. The constants can be traded off in a manner typi-
cal for multicriterion approximations, allowing us to improve
the constants on the capacity and probabilities by accept-
ing a larger constant multiplier to the cost. Our algorithm
is randomized, and the randomized rounding makes use of
Chernoff bounds as extended by Hoeffding [13, 14].

1.7 Outline of the paper
The remainder of this paper is organized as follows. In

Section 2 we formalize the problem. In Section 3 we describe
the randomized rounding procedure which is the first stage
of our algorithm. In Section 4 we analyze the effect that the
rounding procedure has on the fractional solution of the LP.
In Section 5 we describe the second stage of the algorithm -
the modified generalized assignment problem approximation
and analyze it. In Section 6 we suggest various extensions
and generalizations of the problem and what we know about
them. In Section 7 we talk about future directions.

2. PROBLEM DESCRIPTION
The 3-level network reliability min-cost multicommodity

flow problem is defined as follows: We are given sets of
sources and destinations in a 3-partite digraph N = (V,E)
where V = S∪̇R∪̇D with costs on the edges

cu : Eu → <u+
where u is the number of commodities,i.e. the cost for car-
rying a commodity may vary, perhaps to capture different
encoding ratios. Costs for building a node on the middle
level (will call all the nodes in the middle level reflectors)

r : R→ <+

probabilities of failure on the edges

p : E→ [0, 1]

and demand threshold for each destination and different
commodity

Φu : Du → [0, 1]u.

There are also fanout constraints Fi on each reflector i ∈ R.
The problem is to find a minimum cost subnetwork such



that when we send a packet, which is lost at each edge with
some given probability, we are still assured that each sink
will receive at least one copy of the packet with probabil-
ity at least equal to the demand. The primary difference
from previous network flow problems is that we don’t have
preservation of flow at each node. Instead if a flow is re-
ceived at a reflector i ∈ R it can be sent simultaneously
to as many neighbors as its fanout Fi. The cost of rout-
ing along an arc may depend upon the commodity being
sent. We describe an algorithm which approximates this
min cost integer flow problem. This problem can model
SET COVER. Thus the best solution in terms of cost that
we can hope for, unless NP ⊂ DTIME(nO(log logn)), is a
O(log n) approximation [8]. Our problem is more general
than set cover in several ways. We introduce fanout con-
straints on the reflectors (effectively, each set can cover only
some of its elements). We also have costs, both on the re-
flectors themselves and on covering a sink with a reflector,
and we require that each sink must be covered by multiple
reflectors (typically single coverage is not enough) which en-
sure at least the required success probability. We present an
LP rounding solution to the problem which has a guaran-
tee of O(log n) approximation on the cost and violates the
probability and fan out constraints by small constants.

Without loss of generality, we assume that each sink has
a non-zero demand for only one commodity. We can do this
by replacing each single sink by multiple copies. Once this
modification is made, we let n denote the number of sinks,
i.e. n = |D|. For simplicity of notation we further assume
that each source sends its own commodity, therefore |S| = u.

We define the integer program (IP) that models the prob-
lem. We use yki as the indicator variable for delivery of the
k-th stream to the i-th reflector, zi as the indicator vari-
able for building reflector i and xkij as the indicator vari-
able for delivering the k-th stream to the j-th sink through
the i-th reflector. Fi denotes the fanout constraint for each
i ∈ R. We transform the probabilities into weights: wkij =
− log (pki + pij − pkipij) for the probabilities on the edges.
Here pij is the failure probability on edge ij and pik is the
failure of commodity k reaching reflector i. In other words
wkij is the negative log of the (failure) probability that a
commodity k, originating from source k fails to reach sink
j. On the other hand W k

j = − log (1− Φkj ) for the demand

weight, where Φkj is the minimum required success proba-

bility. That means W k
j is the negative log of the maximum

allowed failure. Thus we are able to write the IP:

min
∑

i∈R
rizi +

∑

i∈R

∑

k∈S
ckkiy

k
i +

∑

i∈R

∑

k∈S

∑

j∈D
ckijx

k
ij

s.t.

(1) yki ≤ zi ∀i ∈ R, ∀k ∈ S

(2) xkij ≤ yki ∀i ∈ R, ∀j ∈ D, ∀k ∈ S

(3)
∑
k∈S

∑
j∈D x

k
ij ≤ Fizi ∀i ∈ R

(4)
∑
j∈D x

k
ij ≤ Fiyki ∀i ∈ R, ∀k ∈ S

(5)
∑
i∈R x

k
ijw

k
ij ≥W k

j ∀j ∈ D, ∀k ∈ S

(6) xkij ∈ {0, 1}, yki ∈ {0, 1}, zi ∈ {0, 1}

Constraint (1) and (2) force us to pay for the reflectors we

Reflectors − R

Sinks − D

Sources − S

Figure 1: 3-level Network

are using, and to transmit packets only through reflectors
which are in use. Constraint (3) encodes the fanout restric-
tion. Constraint (4) is redundant in the IP formulation, but
provides a useful cutting plane in the rounding. Constraint
(5) is the reliability condition, requiring that we obtain suf-
ficient weight at each sink. Constraint (6) is integrality, and
will be relaxed in the LP formulation.

Claim 2.1. In the IP formulation constraints (1),(2),(3)
and (6) dominate (4).

Proof. We look at cases for zi.

1) If zi = 0, then from (1) and (6) we get yki = 0 for
∀k ∈ S. Now from (2) and (6) we get xkij = 0 ∀k ∈ S
and ∀j ∈ D. Thus (4) is implied.

2) If zi = 1, then if yki = 0 we still have xkij = 0 ∀j ∈ D,
which means

∑

j∈D
xkij = 0

If yki = 1 then from (3) we have

∑

k∈S

∑

j∈D
xkij ≤ Fi

which means that ∀k ∈ S
∑

j∈D
xkij ≤ Fi

Which concludes the proof.

We will find an approximate solution to the above IP using
randomized rounding. We know that the corresponding LP
relaxation is obtained by just substituting the integrality
constraints (6) in the IP with

xkij ∈ [0, 1], yki ∈ [0, 1], zi ∈ [0, 1]

We solve the LP to optimality and find a fractional solution

(ẑi, ŷki , x̂kij)



3. RANDOMIZED ROUNDING
We will use parameter c > 1, which will be determined

later, as a preset multiplier. We apply the following ran-
domized rounding procedure, where by (z̄i, ȳki , x̄kij) we
denote the rounded values

[1 ] Compute żi = min(ẑic log n, 1) ∀i ∈ R

[2 ] Compute ∀i ∈ R, ∀k ∈ S

ẏki = min

(
ŷki c logn

żi
, 1

)

[3 ] We round z̄i = 1 with probability żi and 0 otherwise.

[4 ] If z̄i = 1 then round ȳki = 1 with probability ẏki and
0 otherwise.

[5 ] If żi = ẏki = 1 set x̄kij = x̂kij
else if ȳki = 1 set x̄kij = 1

c logn
with probability x̂kij/ŷ

k
i .

[6 ] Set all the other variables to 0.

The only fractional values left after this procedure are x̄kij .
To round them we will apply a modified version of the Gen-
eralized Assignment Problem (GAP) approximation due to
Shmoys and Tardos [26]. It will preserve the cost and vio-
late the fan out and weight constraints by at most a constant
factor.

4. ANALYSIS OF THE RANDOMIZED
ROUNDING

Let Ĉ denote the value of the objective function for our
fractional solution, with C̄ the value after the rounding
procedure, and with COPT the optimal IP value. From
the rounding procedure it’s clear that E[z̄i] ≤ ẑic log n,
E[ȳki ] ≤ ŷki c logn and E[x̄kij ] = x̂kij . These three inequali-
ties imply

E[C̄] ≤ c logn · Ĉ ≤ c logn · COPT .
Thus we have the following lemma.

Lemma 4.1. The expected cost after the rounding is at
most c logn times the optimal cost.

Now we will show that with high probability the weight
constraints are violated by a small constant factor and the
fan out constraints - by at most a factor of two. Combining
this with the GAP approximation will yield a solution to
the IP which has a cost at most c log n times optimal and
violates the fan out and weight constraints by at most a
factor of 4. By high probability, we mean a probability of
less than 1/n of violating any of the constraints. First we
will look at the weight constraint, i.e.

∑

i∈R
xkijw

k
ij ≥W k

j ∀j ∈ D, ∀k ∈ S

From the rounding procedure it is clear that some of the x̄kij
are deterministic. We will decompose those numbers and
think of them as random variables equal to 1

c logn
with prob-

ability 1. We define random variable vi = (c log n)x̄kij
wkij

Wk
j

(notice

that j and k are fixed). Without loss of generality we can
assume wkij ≤ W k

j since it never helps to have more weight

on an edge than the one that a sink demands. Therefore
vi ∈ [0, 1]. Also let’s note that vi are all independent since
they depend on different yki for every i. The expected value
of vi is

E[vi] = c logn · w
k
ij

W k
j

· x̂kij

We are going to use a generalized version of the Chernoff
bound where the random variables vi ∈ [0, 1].

Theorem 4.2 (Hoeffding-Chernoff bound). For
vi ∈ [0, 1] independent random variables, let S =

∑
i vi and

µ = E
[∑

i vi
]

then

Pr(S ≤ (1− δ)µ) ≤ exp
(
− δ2µ

2

)

Pr(S ≥ (1 + δ)µ) ≤ exp
(
− δ2µ

3

)

Proof is defered to Appendix A. We observe that

µ = E

[∑

i∈R
vi

]
=
∑

i∈R
E[vi] = c logn ·

∑

i∈R

wkij
W k
j

· x̂kij ≥ c logn.

Lets denote with W
k
j the sum of weights over i ∈ R after

the rounding step. Using the Hoeffding-Chernoff theorem,
we get the following chain of inequalities

Pr(W
k
j < (1− δ)W k

j ) = Pr
(∑

i∈R w
k
ij · x̄kij < (1− δ)W k

j

)
≤

≤ Pr

(∑
i∈R

wkij ·x̄kij
Wk
j

< (1− δ)∑i∈R
wkij ·x̂kij
Wk
j

)
=

= Pr(
∑
i∈R vi ≤ (1− δ)µ) ≤ exp

(
− δ2µ

2

)
.

Which implies that the probability of a particular weight
constraint (one for a fixed j and k) to be violated by a
factor of 1/(1− δ) is

Pr
(
W

k
j · x̄kij < (1− δ)W k

j

)
≤ e(− δ

2·c logn
2

) =
1

nδ2·c/2
.

Here we get a trade-off between a tighter constant with
which we violate the weight inequalities and the competi-
tive cost ratio against an integral optimal solution. As we
said, our goal is to achieve a probability of violating any
of the constraints less than 1/n. Since there are exactly n
weight constraints we need to set δ2 · c = 4. If δ = 1/4 then
c = 64. We summarize these results as follows:

Lemma 4.3. After the rounding procedure with high prob-
ability each of the weight constraints will be violated by at
most a small constant factor.

Now we look at the fan out constraints. As noted before
the only set of fan out constraints needed in the IP is the
following

∑

k∈S

∑

j∈D
xkij ≤ Fizi ∀i ∈ R.

We want to again apply the Hoeffding-Chernoff bound. Un-
fortunately from the rounding procedure it’s clear that know-
ing ȳki = 1 gives higher probability for ∀j ∈ D that x̄kij are

rounded to 1/c logn. In other words x̄kij are no longer inde-

pendent random variables. However x̄kij are obtained by a



two stage process in which first ȳki is rounded to 0 or 1 and
then x̄kij is rounded iff ȳki = 1. We will use two claims to
proof the next lemma.

Claim 4.4. For a probability space over the ȳki we have

Pr

(
E

[∑

k∈S

∑

j∈D
x̄kij |ȳki

]
>

3

2
Fi

)
<

1

2n2

Proof. We use linearity of expectation to get

E

[∑

k∈S

∑

j∈D
x̄kij |ȳki

]
=
∑

k∈S
E

[∑

j∈D
x̄kij |ȳki

]

Let’s look at cases for a particular ȳki . Either ȳki = 0 then

E

[∑

j∈D
x̄kij |ȳki

]
= 0

Or ȳki = 1 then from the cutting plane equation (4) we have

E

[∑

j∈D
x̄kij |ȳki

]
=
∑

j∈D

1

c log n
· x̂

k
ij

ŷki
≤ Fi
c log n

We know from equation (3) that

E

[∑

k∈S

∑

j∈D
x̄kij

]
≤ Fi

Now we use the Hoeffding-Chernoff bound and setting c ≥ 24
we get

Pr

(
E

[∑

k∈S

∑

j∈D
x̄kij |ȳki

]
>

3

2
Fi

)
<

1

2n2

Which concludes the proof of this claim.

The second claim is

Claim 4.5. Suppose that for some fixed ȳki that

E

[∑

k∈S

∑

j∈D
x̄kij |ȳki

]
≤ 3

2
Fi

Then for c ≥ 24

Pr

(∑

k∈S

∑

j∈D
x̄kij > 2Fi

)
<

1

2n2

Proof. When all ȳki are fixed then x̄kij are independent.
Thus we apply straight forward Hoeffding-Chernoff bound
and we get the bound.

We summarize these results in the following

Lemma 4.6. If we set c ≥ 24 then after the rounding pro-
cedure with high probability each of the fan out constraints
will be violated by at most a factor of 2.

5. ROUNDING BY MODIFIED GAP
APPROXIMATION

As the last part of the approximation algorithm we will
describe how to convert the x̄kij after the rounding procedure
to an integral solution. This solution will violate the fan out

S

T

Figure 2: x̄kij fractional solution conversion network

constraints by an additional factor of two, for a combined
factor of 4 and will violate the weight constraint by a com-
bined factor of 4. As before let us denote with C̄ the cost
achieved by x̄kij . We design the following five level network.
We start with a source s that is connected to each reflector
i in the second level of all reflectors with an edge of capacity
equal to the fan out of the reflector, Fi. For each reflector
i in the third level we list its sinks with x̄kij 6= 0 and put an
edge of capacity 1. That is the third level consists of nodes
representing (reflector, sink) pairs such that x̄kij 6= 0 for at
least one k. In the fourth level we represent each sink as a
collection of boxes where the number of boxes is equal to

sj =

⌈
2
∑

i∈R
x̄kij

⌉
.

We order the wkij for each sink in decreasing order, WLOG

wk1j ≥ wk2j ≥ . . .

This gives us an ordering on the nonzero x̄kij Then with each
box we associate an interval of weights. Let s be the first
index for which

s∑

i=1

x̂kij >
1

2
.

Then the first box will have the interval [wk1j , w
k
sj ] associated

with it. We set x′ =
∑s
i=1 x̂

k
ij − 1/2. If x′ > 1/2 we have

r = s and we mark the box with [wkrj , w
k
rj ].Otherwise we

look for the index for which

x′ +
r∑

i=s+1

x̄kij >
1

2
.

and we mark the second box with [wksj , w
k
rj ]. Continue with

this algorithm until we fill all the boxes except possibly the
last one. We then eliminate the last box for each sink. Then
we connect each (reflector, sink) pair from level 3 to some
of its corresponding sink boxes on level 4. More precisely
whenever the corresponding wkij is in the interval range as-
sociated with the box on level 4 for the sink we place an
edge of capacity 1/2 between the pair and the box. Finally
we connect all the boxes to a sink T with edges of capacity
1/2. The demand is, then is equal to the sum of 1/2 over all



edges from level 4 to the sink T . From the construction it is
clear that the fractional flow x̄kij , reduced so as to obey the
edge capacities, saturates the demand at the sink T . Thus
there exists a maximum flow with flow variables equal to 0,
1/2 or 1 that has a cost at most C̄. If we assume c ≥ 64

then we know that W
k
j ≥ 3

4
W k
j . Thus for any flow we will

have weight at least:

1
2

∑sj−1

`=1 min(wk`j) ≥≥ 1
2

∑sj
`=2 max(wk`j)

≥∑i∈R w
k
ij x̄

k
ij − 1

2
wk1j ≥W

k
j − 1

2
W k
j ≥ 1

4
W k
j .

Here by max or min we mean the upper or lower bound of
the interval `. So the resulting flow satisfies at least half the
weight demand of each sink. Now we double all xkij = 1/2.
Thus we might have violated each of the weight and fan
out constraints by at most a factor of two. We also double
the cost associated with xkij but that is already accounted
for since we have an O(log n) factor on the cost because of
the rounding of ŷki and ẑi. This concludes the rounding of
the last fractional variables of our solution. We get a 0-1
solution.

Here is some intuition of what a 4-approximation guaran-
tee on the weight means in our context. Since we started by
converting probabilities into weights using log, a factor of 4
violation translates into 4-th root of the failure probabilities.
For example if we want success of Φk

i = .9999 that is failure
of less than .0001 what we have is a .9 guarantee or a failure
probability of at most .1.

5.1 Running Time
We will conclude this section by calculating the running

time of our approximation algorithm. Observe that the ini-
tial LP has O(|S| · |R| · |D|) variables and constraints. Here
S is the number of streams and D is the number of (stream,
sink) pairs when a sink wants to view a stream. The LP
rounding step takes as many iterations as the number of LP
variables, so we can include it’s running time in the LP solver
step. The modified GAP network has O(|R| · |D|) nodes and
edges. The running time of solving the network flow prob-
lem is absorbed by the LP solver step. Therefore the total
running time of our algorithm is the same as solving an LP
with O(|S| · |R| · |D|) variables and constraints.

6. EXTENSIONS
In this section we examine several extensions and gener-

alizations of the problem.

6.1 Bandwidth on reflectors
Let’s put capacities on the ability of each reflector to route

different flow. We consider the following modification to
constraints (3) and (4):

(3′)
∑
k∈S B

k ·∑j∈D x
k
ij ≤ Fizi ∀i ∈ R

(4′) Bk ·∑j∈D x
k
ij ≤ Fiyki ∀i ∈ R, ∀k ∈ S

Here Bk ∈ <+ can be viewed as a bandwidth for each stream
that enters a reflector. Now with small modifications the
whole analysis goes through. This allows us to model the
service by reflectors of different bandwidth streams.

6.2 Capacities on all of the arcs
Now we consider a capacitated version of the problem, i.e.

we add new constraints

(7)
∑
k∈S x

k
ij ≤ uij ∀i ∈ R,∀j ∈ D

(8)
∑
k∈S y

k
i ≤ ui ∀i ∈ R

Here

u : E→ <+.

If we assume that there exists a randomized algorithm which
solves this modification of the problem by violating con-
straints (7) and (8) with a constant factor, then we showed
there will be an algorithm that approximates Set cover to
with in a constant factor. Since the latter is highly un-
likely [8] there is not much hope for an interesting solution
to this version of the problem. Note that our rounding pro-
cedure described before, applied to a fractional solution of
the LP relaxation of the modified problem, will yield a c log n
factor violation of constraints (7) and (8) - the best guaran-
tee we can hope for.

6.3 Capacities between reflectors and sinks
We consider constraints which represent capacities be-

tween reflectors and sinks.

(7′)
∑

k∈S
xkij ≤ uij ∀i ∈ R, ∀j ∈ D.

Here

u : E(R,D)→ <+.

and E(R,D) are all edges between reflector nodes and sinks.

6.4 Color constraints
We introduced another set of constraints, called color con-

straints. First let R = R1∪̇R2∪̇R3 . . . ∪̇Rm. We have the
following constraints added to the (IP)

(9)
∑

i∈R`

xkij ≤ 1. ∀j ∈ D, ∀k ∈ S, ∀` ∈ [m].

The idea behind these constraints is to break the reflectors
into disjoint groups. Then we want to make sure that no
group is delivering more than one copy of the stream into
a sink. In terms of real life networks we can think of the
groups as reflectors belonging to the same ISP. Thus we
want to make sure that a client is served only with one, the
best (or sufficient), stream possible from a certain ISP and
thus diversifying the stream distribution over different ISPs.
The advantage here is some stability in the solution - if one
of the ISPs goes down we will still serve most of the sinks.

6.5 Solution
In this subsection we describe the solution to the last two

extensions. We were able to solve them both using the same
method. Of course introducing the 6.3 Capacity between re-
flectors and sinks and 6.4 Color constraints in the LP round-
ing is straight forward. It does not affect the rounding pro-
cedure from Section 3). The final step of rounding x̄kij by
modified GAP requires modification. Both extensions intro-
duce a new type of constraint in the modified GAP network
(Figure 2). This constraint bounds the total flow along some
subsets of the edges between the second and third level of
the GAP network. Such constraints can be introduced into
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Figure 3: The capacities for all edges are shown in
the figure. There is an additional set constraint that
the set of edges {ab, pq} has a capacity of 3

any flow type problem. As shown by the simple example in
the figure, the introduction of such constraint creates a gap
between the optimal fractional and integral flows. Clearly
the max integral flow is only 3. However one can achieve a
fractional max flow of 3.5 units, by sending 2 units of flow
on sa and 1.5 units on edge sp then spliting the flow at a
by sending .5 units on edge aq and the rest on ab. This will
prevent us from applying GAP directly, as we cannot find
an integral flow which is at least as good as the fractional
flow.

Our approach finds an integral solution within a constant
factor (less than 14) of optimal cost while violating the con-
strants by an additional constant factor (less than 7) by
applying the techniques of Srinivasan and Teo [28]. We re-
formulate the network LP from section 5 in terms of paths.
Let P be the set of all paths in Figure 2 from s to the boxes
on level 4, B be the set of boxes (nodes) at level 4 and Si
be all sets of entangled edges. Notice that all Si contain
only edges between levels 2 and 3. We use the variable yp
to indicate whether path p is used to carry a flow, for each
p ∈ P. Here is the LP formulation:

(i)
∑

p∈P|e∈p
yp ≤ 4ue ∀ e ∈ E

(ii)
∑

p∈P|p={s→b}
yp = 1 ∀ b ∈ B

(iii)
∑

p∈P|p∩Si 6=∅
yp ≤ 4ui ∀ i ∈ [m]

(iv)
∑

p∈P
cpyp ≤ 2X

Here ue is the capacity on edge e ∈ E, s is the source,
{s→ b} denotes a path from s to a box b, ui is the capacity
of set Si, cp is the cost of path p ∈ P. X is the total
cost of the solution produced by the randomized rounding
stage. The first constraints (i) are capacities on the edges.
Constraints (ii) require a flow of half to each of the boxes
at the bottom layer. Constraints (iii) are the special set
type constraints and constraint (iv) controls the cost. We
can produce a feasible fractional solution to this program by
taking our solution after the first stage of LP rounding and
doubling all the flows. If this linear program was simply a

single-commodity flow (i.e. without the constraints of type
(iii)) then we could immediately transform our fractional
solution to an integral solution.

Instead, we must apply Srinivasan and Teo’s technique.
We first upper and lower bound the positive and negative
coefficients in front of any yp. However since the cost can
be arbitrary we need to make two modifications to the last
constraint. We will first eliminate any paths with cp > 4X
and then divide both sides of the inequality by 2X. The
eliminated paths are more than twice as expensive than
the whole optimal solution and dropping them introduces
at most a factor of 2 in the cost. Counting, we now have:
yp appears 4 times (at most once for each level) in (i), at
most once in (iii) and exactly once in (iv) with coefficient
less than 2. This adds up to a total of 7. Thus we multiply
(ii) by negative 7. Applying Theorem 2.2 from Srinivasan
and Teo we get an integral solution which satisfies all the
constraints with an additive factor of 7. This factor trans-
lates into multiplicative factor of 14 for the cost. Thus we
get the promised approximation guarantees.

The running time of this step is dominated by applying
Theorem 2.2 from Srinivasan and Teo [28]. The number of
non zero yp variables, which corresponds to the r parameter
in Srinivasan and Teo [28], is O(|R| · |D|). Thus the running
time is at most O(|R|3 · |D|3).

7. FUTURE WORK
We also plan to implement the algorithm described in this

paper (or heuristics based on the algorithm) and apply them
to real-world network data gleaned from Akamai’s streaming
network.
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[27] D. B. Shmoys, É. Tardos, and K. Aardal.
Approximation algorithms for facility location
problems. Proceedings of 29th ACM STOC, 1997.

[28] A. Srinivasan and C. Teo. A constant-factor
approximation algorithm for packet routing and
balancing vs. global critiria. SIAM Journal of
Computing, 30(6), 2001.

[29] M. Sviridenko. An 1.67-approximation algorithm for
the metric uncapacitated facility lo cation problem.
Unpublished Manuscript, 2001.

[30] L. Valiant. The complexity of enumeration and

reliability problems. SIAM Journal on Computing,
1979.

APPENDIX
A. HOEFFDING-CHERNOFF BOUND

We will prove the Hoeffding-Chernoff bound from the Anal-
ysis of the randomized rounding section. First let’s state a
theorem due to Hoeffding

Theorem A.1 (Hoeffding). Let X1, X2, . . . , Xn be in-
dependent random variables such that Xi ∈ [0, 1] for 1 ≤ i ≤
n. Also let S =

∑
iXi, µ =

∑
i E[Xi] and 0 < t < n − µ

then

Pr(S − µ ≥ t) ≤
(

µ

µ+ t

)µ+t (
n− µ

n− µ− t

)n−µ−t
.

We will use the above theorem by setting t = εµ where
0 < ε < 1. Thus the left hand side becomes

( 1

1 + ε

)(1+ε)µ( n− µ
n− µ(1 + ε)

)n−µ(1+ε)

.

Now we have
(

1
1+ε

)(1+ε)µ

= exp(−(1 + ε) · ln(1 + ε) · µ) =

= exp
(
−µ · (ε+ ε2

2
− ε3

6
+ ε4

12
− . . . )

)
.

It is easy to see that

ε2 ·
∞∑

n=1

(−1)n−1εn

(n+ 1)(n+ 2)
<
ε2

6

Thus we have
( 1

1 + ε

)(1+ε)µ

< e(−µ·(ε+ ε2

3
)).

On the other hand
(

n−µ
n−µ(1+ε)

)n−µ(1+ε)

=

(
1 + εµ

n−µ(1+ε)

)n−µ(1+ε)

≤ eεµ.

Combining the results above we get

Pr(S − µ ≥ εµ) ≤ e−
µε2

3 .

Same type of calculation gives the other tail inequality

Pr(S ≤ (1− ε)µ) ≤ e−
µε2

2 .

Which concludes the proof of the Hoeffding-Chernoff bound
that we used.
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