Arc-Disjoint Paths in Expander Digraphs
Tom Bohman* and Alan Frieze

Department of Mathematical Sciences,
Carnegie Mellon University
Pittsburgh PA 15213.

Abstract

Given a digraph D = (V, A) and a set of k pairs of vertices in V', we are interested
in finding, for each pair (z;,¥;), a directed path connecting z; to y; such that the set
of k paths so found is arc-disjoint. For arbitrary graphs the problem is N'P-complete,
even for k = 2.

We present a polynomial time randomized algorithm for finding arc-disjoint paths
in an r-regular expander digraph D. We show that if D has sufficiently strong expan-
sion properties and the degree r is sufficiently large then all sets of kK = Q(n/logn)
pairs of vertices can be joined. This is within a constant factor of best possible.

1 Introduction

Given a (graph) digraph D = (V, A) with n vertices and a set of k pairs of vertices in V,
we are interested in finding, for each pair (z;,y;), a (undirected) directed path connecting
z; to y;, such that the set of k paths so found is (edge) arc-disjoint. This is a classical
problem in graph theory. See Frank [7] for a survey and Chapter 9.2 of the recent book on
digraphs by Bang-Jensen and Gutin [2].

For undirected graphs, the related decision problem is in P for fixed x — Robertson and
Seymour [22], but is N'P-complete if « is part of the input. For digraphs the situation is
seemingly much worse. Fortune, Hopcroft and Wylie [6] showed that the related decision
problem is A/P-complete, even when x = 2.

For undirected graphs there have been positive results in the case of expanders. Peleg
and Upfal [21] presented a polynomial time algorithm for the case where D is a (sufficiently
strong) bounded degree expander graph and k < n¢ for a small constant e that depends
on the expansion property of the graph. This result has been improved and extended by

*Supported in part by a grant from the NSA.
tSupported in part by NSF grant CCR-9818411.

Broder, Frieze, and Upfal [4, 5], Frieze [8, 9], Leighton and Rao [17] and Leighton, Rao
and Srinivasan [18, 19]. In particular Frieze [9] showed that if D has sufficiently strong
edge expansion properties and r is sufficiently large then all sets of Kk = Q(n/logn) pairs
of vertices can be joined. This is within a constant factor of a simple upper bound. The
purpose of this paper is to extend this result to digraphs.

In this paper we discuss r-regular digraphs. A digraph D is r-regular if every vertex
has in-degree and out-degree r. Let d, be the median distance between pairs of vertices
in the digraph D which has m arcs. Clearly, there exists a collection of O(m/d,) pairs of
vertices that cannot be connected by arc-disjoint paths because such a collection of paths
would require more arcs than all the arcs available. In the case of an r-regular expander,
this absolute upper bound on x is O(n/logn) (assuming r is independent of n). We show
that if D has sufficiently strong arc expansion properties and r is sufficiently large then all
sets of kK = Q(n/logn) pairs of vertices can be joined. This therefore, is within a constant
factor of the optimum. The precise definition of “sufficiently strong” is given after the
theorem.

Theorem 1 Let D = (V, A) be an n-vertez, r-reqular digraph. Suppose that D is a suf-
ficiently strong arc expander. Then there exist €1,ea > 0 such that D has the following
property: For all sets of pairs of vertices {(x;,y;) | i =1, ...,k} satisfying

(i) k = [ern/logn], and
(ii) For each vertex v, |{i : z; = v}|,|{i:y; = v}| < ear

there exist arc-disjoint paths in D, each of length O(logn), joining x; to y;, for each i =
1,2,...,k. Furthermore, there is a polynomial time randomized algorithm for constructing
these paths. The constants €1, €5 depend only on certain expansion parameters «, 3, defined
below. They do not depend on n or r. (For example conditions (2) with € = a, (3), (9)
and (12) suffice).

Remark 1 The algorithm is similar to the algorithm of [9]. The difficulty in moving from
graphs to digraphs has been with that part of the algorithm for graphs which was based
on the rapid mizing of a random walk on expanders. Random walks on digraphs are not
necessarily time reversible and the steady state can be hard to determine. We therefore
abandoned this approach and replaced it with a different random choice of path (in part,
this random choice for digraphs uses the multicommodity flow results of Leighton and Rao
[16]).

It will be observed that this new algorithm can substitute for that given in [9].

Remark 2 If D has sufficiently strong vertex expansion properties them we can take Kk =
[e1rn/log,. n| — see Remark 4 below.

Remark 3 It is perhaps worth remarking that regularity is not crucial to the result. One
can easily extend the results to digraphs where in- and out-degrees are constrained to be in
the interval [r, ar| where a > 1 is an absolute constant. All we need is for r to be sufficiently
large. The really crucial property is strong expansion.

1.1 Preliminaries

In this section we state the definitions for the expanders we work with here, make some
preliminary observations about such expanders, and make precise the notion of ‘sufficiently
strong’ expansion needed for Theorem 1. We begin with some notational conventions.

Let D = (V, A) be a digraph and let n = |V|. For S,T C V let A5(S,T) be the set of
arcs with tail in S and head in T'; that is,

AT(S,T)=A}(S,T)={(u,v) € Alue S;veT} and d7(S,T)=|A%(S,T).
We define A~(S,T) similarly (i.e A7(S,T) = A*(T, S)). We set
AY(S)={(u,v) e AlueS,vgS} and d'(S)=|AT(9)|
So, for example, we have AT(S) = AT(S,V'\ S). We define A (S) and d~(.5) analogously.

Throughout the paper, when x is used as a subscript or superscript, it stands for + or
-. We abbreviate A*({v},T) to A*(v,T). Thus, for v € V, d},(v) and dp,(v) denote the
out-degree and in-degree of v in D.

We now have the notation necessary to introduce expansion. We define expanders

in terms of arc expansion (a weaker property than vertex expansion). For S C V let
®% = d*(5)/|S|. The (arc-)expansion & = ®&(D) of D is defined by

_ . . Jr —
® = min min{®, &5 }.

IS|<n/2

A digraph D = (V, A) is a 6-expander, if for every set S C V, |S| < n/2, we have
d*(S) > 60|S|; in other words, D is a f-expander if ®(D) > 6. An r-regular digraph
D = (V, A) is called an («, 3, y)-expander if for every set S C V

N (1—a)rlS| if|S|<yn
@(9) = {5r|5| if yn < |S] < n/2

We naturally assume that § < 1 —a. By “sufficiently strong” in Theorem 1, we mean that
B, are arbitrary and « is sufficiently small; in particular, we assume that conditions (2)
with € = a, (3), (9) and (12) hold. We also assume throughout that r and n are sufficiently
large (but r is not a function of n). We have made no real attempt to optimize constants.
Such digraphs exist; in particular, random regular digraphs are usually (a, 3, v)-expanders.
(See discussion in [4] for the corresponding notion in undirected graphs.)

We conclude this section with some preliminary observations about expanders. Since
|A*(S,S)| + d*(S) = r|S| we see that, putting in(S) = |AT(S,S)| = |[A(S,S)|, in an
(e, B, 7)-expander

in(S) < ar|S| when |S| < yn. (1)
For a digraph A = (V', A’) and a set S C V' we define its out-neighbor set N (S), as

Ni(S)={w¢ S: Fv e S such that (v,w) € A'}.

3

Similarly, the in-neighbor set of S, N5 (S) is given by
Ny(S)={w ¢ S: Jv € S such that (w,v) € A'}.

Lemma 1 Suppose that D = (V, A) is an («, 3,7)-expander and that D' = (V' A") is a
sub-digraph of D of expansion at least Or where § > a. Suppose S C V'. If |S| < Tn then

60—

«

[Np: ()] = |51,

Proof: Suppose that |S| < 2*n and T = N}, (S) satisfies |T| < ©-%|S|. Then

0 — o

|SUT|<<1+ >|S|:g|5|§7n.

But, S UT contains at least

—

0 -1
or|S| > or <1+) ISUT| =ar|SUT|

arcs, which contradicts (1). O

2 The algorithm

The input to our algorithm is a sufficiently strong («, (3,7)-expander digraph D and a set
of pairs of vertices {(z;, ;) | i = 1, ..., k} satisfying the premises of Theorem 1. The output
is a set of k arc-disjoint paths, Pi,... , P such that P; connects x; to ;.

The algorithm has three phases. We begin in Phase 0 by splitting our graph into 13
arc-disjoint expanders D; = (V, A4;), 1 <i < 13. These graphs will be used for various
purposes in Phases 1 and 2, and each path we construct will be a union of paths in the
D;’s. Phase 1 consists mainly of applications of GENPATHS, an algorithm that uses the
expander property to naively connect pairs of vertices with paths of length O(logn) one at
a time, deleting the arcs from a path as soon as it is used. Of course, this deletion of arcs
may quickly destroy the expander property. To compensate for this problem, GENPATHS
‘shrinks’ the expanders in which it finds paths. The real work of GENPATHS is in keeping as
many vertices as possible ‘connected’ to these shrinking expanders. Those pairs of vertices
that are not connected with paths in Phase 1 (i.e. those pairs that contain a vertex whose
connection with one of the ‘shrinking expanders’ is lost) are handled in Phase 2. There are

(0] (logL‘ln) such pairs. Loosely speaking, Phase 2 uses the multicommodity flow algorithm

of Leighton and Rao to give a distribution on paths connecting the remaining pairs such
that whp paths chosen at random with respect to this distribution are arc disjoint.

2.1 Phase 0.

We need an algorithm for splitting a (a, 3, v)-expander digraph into 13 expander digraphs.
Algorithms for splitting undirected graphs are given in [4] or [10]. They are easily adapted
to digraphs and we outline an adaptation of the algorithm of [10] in Appendix A. In the
appendix we prove:

Theorem 2 Suppose we have

r > 91e 2 and 3 > 65¢ *r 'log 2er (2)

log r

and that G is an r-regular (o, 3,7)-expander, r constant. Then there is a randomized
polynomial time algorithm which with probability at least 1 — § constructs Ay, As, ..., A1s
such that the arc-expansion ®; of D; = (V, A;) satisfies

(0]
d, > (1—6)1—3—(a—|—2e)r,

fori=1,2,... 13.

This theorem is only useful if ® is at least a constant multiple of r and « is sufficiently
small. This is the case discussed in this paper. The algorithm runs in O(n?Innlogd!)
expected time. There is not enough time to verify that the algorithm succeeds. Instead,
we simply assume it has and repeat the split if we fail to find the required paths.

We apply the algorithm of Theorem 2 with a = € and assume that

B > 156a. (3)
Setting
B
Bo = — —4a > 8a > 0, (4)
13
each D, satisfies
®; = q)(Dl) > Bory, and (5)
Bor < di(v) <r, forallveV. (6)

2.2 Phase 1.

Phase 1 uses expanders D; through Dg. The centerpiece of Phase 1 is the algorithm
GENPATHS that connects a large collection of random pairs of vertices in an expander with
arc-disjoint paths. Since the pairs x;,y; are arbitrary, GENPATHS cannot be applied to
them directly; we must reduce the problem of connecting the z;’s to the y;’s to the problem
of connecting random pairs.

In order to produce random pairs we introduce three random sets of « vertices: X, Y and
Z. In the Initialization step of Phase 1, a network-flow technique is used to find a collection

5

of arc-disjoint paths P* = {P}:i=1,...,k} from X = {z;,...,z} to X in expander D,
such that the path P! starts at z; for i = 1,..., k. It is important to note that we have no
control over which element of X is at the end of the path P} (but there will be one path
ending at z for each = € X). This network-flow technique is also used in the Initialization
step of Phase 1 to find a collection of arc-disjoint paths P® = {P% : i = 1,...,k} from
Y toY = {y1,.--,Yx} in Dg such that the endpoint of the path P is y;. After the
Initialization step, we take a random ordering of X: X = {#,...#.}. Furthermore, we
order Y so as to respect the pairing of X and Y that is inherited from the collections
P! and PS; that is, we set Y = {fi,..., 7} so that if the endpoint of P! is Z; then
g; is the starting point of P#. Thus, it remains to find a collection of arc-disjoint paths
connecting the pairs {(Z;,%;) : i = 1,..., k}. Unfortunately this sequence of pairs of vertices
is not truly random. This is a consequence of the fact that the pairing between X and
Y is determined by a deterministic process (i.e. knowledge of some of the pairs from this
collection may bias the distribution on the unknown pairs). We overcome this problem by
introducing the third random set Z = {z1,...,z.}. The sequences {(Z;,2;) :i =1,...,k}
and {(z;,7;) : i =1,...,k} are perfectly random sequences of pairs of vertices (so long as
we view them separately). It remains to connect these two sequences of pairs of vertices
with arc-disjoint paths. This is the work of the algorithm GENPATHS.

The input to GENPATHS is a pair of expanders, D, and Dy, and a collection of pairs
of vertices {(v;,u;) : 4 = 1,...,k} that is generated uniformly at random. The output of
GENPATHS is a collection of arc-disjoint paths from v; to u; for ¢ = 1,..., x that use only
the arcs from D, and D,. We apply GENPATHS twice. For the first application we set
D, = Dy, Dy = D3 and {(v;,u;) : i =1,...,k} = {(&;,2;) : i = 1,...,k}. In the second
application we set D, = Dy, Dy = D5 and {(v;,u;) :i=1,...,6} = {(z;,%) : 1 =1,...,k}.
Now, the expander D, is used to connect the v;’s to the u;’s with short paths one at a time.
In order to be sure that such paths exist we must be working with an expander. Therefore
we delete some vertices in the course of the algorithm; in other words, this expander shrinks
as the algorithm progresses. D, is used to keep as many vertices as possible connected to
the ‘shrinking expander’ contained in D,. We should note that these connections also
require that D, be an expander. So, D, also ‘shrinks’ in the course of the algorithm. The
subroutines REMOVE and CONNECTBACK are used by GENPATHS.

2.2.1 Initialization

Let X,Y be two randomly chosen s-subsets of V. We begin by replacing the problem of
finding paths from z; to y; by that of finding paths from a; to b;, where a; € X and b, €Y.
Let X denote the set {1, Zs,...,2.} and Y = {y1,7s,... ,7«}. We connect X to X via
arc-disjoint paths in the digraph D; using a network flow. We construct our network as
follows

e Each directed arc of D; gets capacity 1. 3
e Each v € V becomes a source of capacity [{7 : z; = v}| and each member of X
becomes a sink of capacity 1.

Then we find a flow from X to X that satisfies all demands. We can find such a maximum
flow with integer values and this decomposes naturally into | X | arc-disjoint paths (together
perhaps with some cycles). We connect Y to Y by arc-disjoint paths in a similar manner
using Dg

We now have a collection of arc-disjoint paths P! = {P! : i = 1,...k} such that
the starting point of P! is x; for ¢ = 1,...,x and each member of X is the endpoint
of exactly one path from P!. Furthermore, we have a collection of arc-disjoint paths
PS¢ ={Pf:i=1,...x} such that each member of Y is the starting point of exactly one
path from P% and the end-point of path P is y; fori =1,..., k.

2.2.2 Algorithm GENPATHS.

The aim of GENPATHS is to join v; and u; for ¢ = 1,2,... ,k by a short (i.e. of length
O(logn)) path in D,. After constructing a path, we remove its arcs. It is important to
ensure that short paths exist. Of course, this would not be a problem if we could ensure that
D, remains an expander throughout. We have to be satisfied with identifying a dynamically
changing large subgraph A, = (V,, F,) of D, which is an expander. Initially A, = D,,
and V, loses vertices as GENPATHS progresses. We ensure that A, remains an expander
by keeping the degrees of vertices in the A, close to their degree in D,. This may involve
deleting some (low degree) vertices after the construction of a path. We use the routine
REMOVE to do this.

If the proposed start vertex v of a walk on A, does not lie in V,, then we try to connect
it back to V, by a path in D,. The terminal endpoint of this walk is denoted by v'. We
use a subroutine CONNECTBACK for this purpose. Similarly, the proposed end vertex u
might not lie in V,. In this case we use CONNECTBACK to find a path from some v’ € V,
to u in D,. We do not expect to succeed all the time and our failures are kept in a set L
for treatment in Phase 2. The arcs in the paths generated by CONNECTBACK are deleted
from D,. Since CONNECTBACK requires that D, is an expander we will also be working
with a second ‘shrinking expander’ A, = (V}, F3) contained in Dy. This shrinking expander
will also be maintained by use of the subroutine REMOVE.

In the end, the path from v; to u; will be a concatenation of up to three separate paths.
There will always be a path @; from D,, and there may also be a short walk (or walks)
from Dy, provided by CONNECTBACK (these are denoted WB~ and WB | respectively).

1. Algorithm GENPATHS

2. begin

3 Ay + Dy, t =a,b.

4. for =1 to x do

5. Execute REMOVE(A,)
6 Execute CONNECTBACK(V,, v;, —, v}, 1, WEE™)
7

8

Ve S) 7

Execute CONNECTBACK(V,, u;, <, u}, i, WEB)

y)

. if i ¢ L then
9. Construct a shortest path Q; from v] to u; in A,.
0. P (WOB~,Q, WEE)
11. A, <+ A\ E(P)
12. fi
13. od

14. end GENPATHS

2.2.3 Subroutine REMOVE

The purpose of REMOVE is to delete vertices which might prevent a digraph from being
an expander. In the course of GENPATHS we apply REMOVE to A, and A,. In words, this
simple algorithm iteratively removes those vertices whose in/out degree is less than the
original in/out degree minus Sor/2. To be precise, at the end of the algorithm we have a
graph A; = (V;, F;) where t € {a, b} such that

v €V implies dj (v) > dp, (v) — Bor/2 > Bor/2. (7)

The final inequality in (7) follows from (6). It follows immediately from (7) that for S C V;
we have

dx,(S) = dp,(S) = Bor|S1/2 = (@ = Bor/2)|S].

This implies that, provided neither V, nor V}, become empty (an issue which we take up in
the next section), both A, and A, are expanders throughout Phase 1:

Dp, > P, — Por/2 > Bor/2 for t = a,b. (8)

1. Algorithm REMOVE(A,)

2. begin

3 B« {veV,: di (v) <dj (v)—Bor/2 or dy, (v) <dp, (v) — Bor/2}.

4, if B # () then

5. A+~ V,\B

6 d < max{ max{df, (v) —dX, (v, A), dp, (v) —dx, (v,A)}: ve A}

7 while d > [or/2 do

8. C + {w e A: max{d}, (w) —d}, (w,A), dp (w) —dy,(w,A)} > Bor/2}
9. B+~ BUC

10. A+ A\C

11. d <+ max{ max{df, (v) —dX, (v, A), dp, (v) —dx, (v,A)}: ve A}
12. od

13. Vi< A

14. fi

15. end REMOVE

2.2.4 Subroutine CONNECTBACK.

The purpose of CONNECTBACK is to connect a vertex z to V, by means of a short walk in
D,,. The direction of this walk is determined by the input dir. If dir =— then a path from
z to V, is required, and if dir =< then a path from V, to z is needed. If z € V, already
then CONNECTBACK does nothing but relabel z as z’. Since |V \ V,| can be of order n
(this is discussed below), we must maintain the expander property of Ay in order to find
short connecting paths. Thus we apply REMOVE to A, in the course of CONNECTBACK.
Now, those pairs that contain a vertex that lies in V' \ (V, U V}) are passed to Phase 2 in
the set L. Thus, the long term success of CONNECTBACK hinges on keeping V' \ (V, U V;)
small. In fact, this can be viewed as the key point in all of GENPATHS.

We keep V, large by ensuring that the paths we use in A, are spread out; in other
words, we avoid using too many paths through any one vertex. This is achieved whp;
recall that the pairs of vertices {(v;,u;) : @ = 1,...,k} that are the input to GENPATHS
are assumed to be generated uniformly at random. When a path is needed (i.e when
z ¢ V,) CONNECTBACK constructs a collection W of walks in Ap. This collection has
the following properties.

1. If dir = then every walk in W3 = W= is a walk from a distinct vertex in V; \ V,
to V.

2. If dir =< then every walk in W = W<* is a walk from V, to a distinct vertex in
Vo \ Va.

3. No path in Wi is longer than 22 loglog n.

4. No vertex of D, lies on more than 240(loglogn)? paths.

The set of start vertices of the walks in W™ is denoted S5z and the set of terminal vertices
of the walks in W* is denoted S&p. Clearly, S&5 C V; \ V,. The collection of walks will
have the additional property

5. [V (Va USER) < ey
In words, condition 3 says that the paths in W are short, condition 4 says that the paths
are ‘spread out’ and condition 5 says that very few vertices are left out of the collection.

We emphasis that W is constructed without use of any information about 2. There-
fore, z (which was a random vertex to begin with) can be viewed as a vertex chosen
uniformly at random after the collection W3 is constructed. Heuristically, we can think
of W™ and W* as collections of connecting paths that are updated whenever A, or A,
‘shrink,” but we only ‘look’ at these collections when we need them.

If 2 € SIL then we connect z back to V, by way of the unique path in W%that begins
at z (if dir =) or ends at z (if dir =<). If z does not lie in SEL we put 7 into L (note
that we have either z = Z; or z = ¢;). Arc disjoint paths for the pairs (Z;,9;),7 € L are
found in Phase 2.

A network flow technique for the construction of the collection of paths W4 follows
from the proof of Lemma 3, which is given in Section 2.3.3 below.

1. subroutine CONNECTBACK(V,, z,dir, 2’,i, Wep)

2. begin

3 ifzeV,

4 then 2’ + 2

5. else

6 Execute REMOVE(A;)

7 Contruct W (see Lemma 3 for algorithm).
8 if 2 ¢ S

9. then L < LU {i}

10. else

11. Wep + the unique path in W with start /terminal vertex z
12. 2! < terminal/start vertex of Wep

13. Ab — Ab \ Wep

14. fi

15. fi

16. end CONNECTBACK

2.3 Analysis of Phase 1

There are three facts concerning Phase 1 that remain to be shown: that the flow needed in
the Initialization exists, that V3 stays large and that at the end of Phase 1 whp we have

LZO(W)-

10

2.3.1 Initialization

In this subsection we show that if (5) holds and r is sufficiently large then we can find arc-
disjoint paths from {z1,...,z.} to X in D; and arc-disjoint paths from ¥ to {y1,...,y.}
in Dg, for any choice of zy,... ,y,. consistent with the premises of Theorem 1, and every
choice for X,Y. We assume that we have

8a > e >r ! (9)

For S CV, let
a(S)=> Hi:zi=v} and &(S)=[SnX|.

veES
It follows from a theorem of Gale [12] (see Bondy and Murty [3] Theorem 11.8) that if

dp, (8) > &(S) — a(9), VS CV. (10)

then there exists a flow in the network defined on D; such that exactly one unit of flow

travels through each vertex in X and the amount of flow traveling through each vertex

vE{xy,...,x.}is [{i : z; = v}|. In other words, (10) implies a successful run of Phase 2.
Now, if | S| < n/2 then, applying (4), (5) and (9), we have

dp, (8) > |S|®1 > |S|Bor > 8ar|S| > e[S| > a(S) — £(S) = £(S) — a(S).
On the other hand, if |S| > n/2 then we have
dp, () = dp, () > [S|®1 > |S|Bor > er|S| > £(S) — a(9).

Therefore, Phase 1 succeeds with respect to X, X. The same argument applies to Y, Y.
To ensure these paths are of length O(logn) we can solve a minimum cost maximum flow
problem as indicated in Kleinberg and Rubinfeld [13].

2.3.2 On the size of V,
Lemma 2 Throughout GENPATHS we have
Vol = (1 —y0)n

where

_ Boy
Yo 10

Proof: It follows from (8) that A, is a (Bor/2)-expander throughout the execution of
Phase 1. It follows from Lemma 1 that the diameter of A, is always at most

2
= |21 — . 11
T [0gsn + 047—‘ (11)

11

Indeed, consider breadth first search from some v € V,. Let L;,t > 0 be the vertices at
distance t from v. Lemma 1 implies that the cardinalities of the L; grow at a rate at least 3
until they reach size (2ya/fBp)n. The same will be true for breadth first search to a target
vertex w. This accounts for the first term in (11). Once we have L; reaches (2ya/fGo)n we
use that fact that going to the next level involves finding Fyr|L:|/2 “new arcs”, at least
until the size n/2 is reached. This accounts for the second term in (11).

Thus the total number of arcs in the paths that are removed from D, is at most 7.
Let B be the set of vertices that are removed from A, in the course of Phase 1, and let B;
be the set of vertices in B incident with at least Sor/4 of the paths that are generated in
D,. We have

By < ART _ Jon
Bo’f’ 2
provided
Bey
< Bl 12
> 760 (12)

where ¢; is as in the statement of Theorem 1. Let By = B\ B (i.e. those vertices removed
from A, that lie on less than (yr/4 of the paths generated in D,).

Assume for the sake of contradiction that |By| > |B;|. Let Bs be the first | B;| vertices
of By to join B. Note that the vertices in B3 have a large degree to B; U B; (otherwise
these vertices would remain in V,). Applying (4) we have

Bor Bor

inDa(Bl U B3) > T|Bg| = ?|B1 U B3| > Oé’f’|Bl U B3|

This contradicts (1).
Therefore, |B| = |By| 4 |Ba| < 2|By| < yn. O

2.3.3 Analysis of CONNECTBACK

Of course, the first order of business here is to show how the collection of paths W3 is
generated.

Lemma 3 Suppose that D = (V, A) is an («, 53,7)-expander and that D' = (V' A') is a
sub-digraph of D of expansion at least Or where > 6a. Suppose that S C V' and that
S| > (1=)n and let T = V'\ S. Then there exists T* C T, such that D' contains a
collection of walks W4 = {W, : v € T*} such that

1. for dir =— / <, v is the start/terminal vertez of W, for all v € T*,
2. the terminal/start vertex of each W, is in S,
3. each W, is of length at most 22loglogn,

4. no vertez of D' lies on more than 240(loglogn)? paths, and

12

5. [T\ T <~y

(logn)* -

Proof: Assume without loss of generality that dir =—. For ¢ =1,2,... let
T, ={veT: distp(v,S) =i},
and set Ty = S. Since N, (Ug>iTx) C Tj_1, it follows from Lemma 1 that we have
Toa|> (T fori>1, (13)

where (= £2 > 5. Setting ip = [11loglogn] and T = Uiz, Ti It follows from (13) that
we have -
A n
1< S (14)
Fix 1 < i < ig. We define a flow network NV;. The vertex set of NV; is {s, t}U ;"Zl(CjUC’J’-)
where C; and C] are disjoint copies of T;, for 2 < j <4, C; and Cj are disjoint copies of
Ulzwlfj T, and, for 1 < j < jo = 24, C; and C} are disjoint copies of V'. The vertices s
and ¢ will be the source and sink, respectively, for the flow we introduce to N;. A vertex v
in V' may appear many times in the vertex set of \;; a copy of v in C; is denoted v;, and
a copy of v in C} is denoted v}. For ease of notation, we let ¢ be the map that takes the
vertices of N; to their corresponding vertices in V’. The arc-set of N is defined as follows.
There is an arc from s to each vertex of C;. Each v € S gives rise to arcs (v},t),7 < j < jo.
If v; € C} and wj;, € Cjyy are such that (v,w) is an arc of D' then (v}, w;,1) is an arc
of N;. All arcs described so far have infinite capacity. In addition there are arcs (v;,v}) of
unit capacity defining a perfect matching between C; and C; for 1 < j < jo.

Claim 1 N; contains an s —t flow of value at least |T;| — Togn) -

We first show the Lemma follows from Claim 1. The flow given by Claim 1 defines

paths in D' from all but at most ﬁ vertices of T; to S, each of length at most j5. No

vertex of V' can be on more than j, paths since each visit to v uses a (v;,v}) arc for some

!
J -
j. Repeating this construction for ¢ = 1,2,... iy we find paths for all but a set T" of at
most g (log"n)5 < 200’;”)4 vertices and no vertex can be on more than igjp paths. Putting

T* =T\ (T UT) and using (14) gives us the lemma.

It only remains to prove Claim 1. Of course, we do this via the max-flow min-cut
theorem. Consider a cut ZUZ of N; where the vertex set Z contains s but not ¢. Let
Aj = Zij, Bj = Cj\AJ‘, A; = ch‘; and B; = C;\A; fOI'j: 1,2,... ,jo. Assume for

the sake of contradiction that the capacity of this cut is less than |C;| — m. It follows

from this assumption that the cut contains no infinite capacity arcs and therefore

A =C1, ¢(Aj1) D N (p(A))) forall j, and @(Aj) NS =0 forall j. (15)

13

The capacity of the cut is
Jo
|Bil +) 16(4;) N ¢(B))- (16)
j=2

The third condition of (15) implies that for all j, |A}| < Z*n. It then follows from Lemma 1
and the second condition of (15) that we have |A; 1| > (|Aj|. This implies that for all j
we have either

1 ¢
Al > 1 Apa] > 514 (17)
or
1 ¢
6(As22) N OB)| 2 51zl 2§14 (18)
Now, if |A}] < {ogF then |B1| > |C’1|—ﬁ, which contradicts our initial assumption.
On the other hand, if |A}| > g2 then, since (§)%°~* > (logn)?, condition (17) cannot

always hold. Let j; > 1 be the first j for which (18) holds. We have

[6(Aji1) N O(Bj,)] = (¢/2)]AY] > |AY.
The capacity of the cut is at least |B| + |A}| = |C1|. This is a contradiction. O

To get the collection of paths needed for CONNECTBACK we apply Lemma 3 with
D' = Ay, V' =V, S =V, NV, So, for example, we have S35 = T*. It remains to show
that whp we have |L| < Toa)t

Note that Lemma 3 can only be applied if V, NV}, is large. However, by applying the
proof of Lemma 2 and the fact that the paths generated by CONNECTBACK are short
(length at most 22loglogn) we see that |V3| = n — O(nloglogn/logn)) throughout and
this is sufficient (furthermore, the assumption that # > 6a in Lemma 3 is justified since it
follows from this observation that the expansion of A is always at least 38y7/4). However,
we shall see that V}, is whp larger than this. This is where we use the fact that the paths
in W3 are spread out (i.e. the fact that there are at most 240(loglogn)? paths in WA
through any one vertex).

It follows from this fact that the probability that that an arbitrary vertex w is on the
path WBr at most 240(loglogn)?/n. It follows that we have

Pr(|{i:we WP} + [{i:weWP}| > 20)
< Pr(B(2k,240(loglogn)?/n) > 20)

- (z;;) (240(1oilogn)2>2° (19)
— o((logn)19).

14

Let B be the set of vertices which are removed from A, by applications of REMOVE. Let
X be the set of vertices in B that are on at least 20 of the paths WEB= WEB<. Note
that X; contains the set B; introduced in the proof of Lemma 2 (Bj is the collection of
vertices taken out of V, by REMOVE that are on many of the paths). It follows from (19)
and Markov’s inequality that whp we have | X;| < n/(logn)!®. Now, B (which contains
V '\ V, at every step) consists of By together with extra vertices deleted by REMOVE. In
total this will be at most 2|B;| vertices removed by the argument of Lemma 2, following
(12). Thus, |B| < 2|By| < 2|X;|. Therefore
n

Bl < ——
|B] < (logn)'®

(20)
whp.

Now, a failure (i.e. the index ¢ joining the set L) can occur in one of two ways. On one
hand we have a failure if either v; or u; does not lie in V, UV}, and on the other hand a
failure results when u; € V3, \ (V, U Sg) or v; € V,, \ (V, U S&p)- It follows from (20) that
the total number of failures of the first type is whp at most W. For failures of the
second type we note that vy, ... ,v, form a random sequence of size o(n). The probability
that a particular vertex gives a failure of the second kind is at most

dir
wﬂ =0 1 i
n (logn)4

Applying the Chernoff bound for the tails of the binomial, we see that, whp the total
number of failures of the second kind is O(n/(logn)*).

Remark 4 Suppose D has the following verter expansion property for small sets: S C
V, |S| < In implies that [N;(S)| > (1 — a)r|S|. The algorithm of Theorem 4 can be
modified to split D so that each subgraph D; and small S satisfies |N}, (S)| > =22r]S).
Then the shortest paths in A, will be of length O(log, n) and the claim in Remark 2 will

follow.

2.4 Phase 2.

The set of pairs {(Z;,7;) : ¢ € L} have not yet been connected by paths. We have seen that
whp the number of such pairs, |L|, is at most O(n/(logn)*). These pairs are dealt with
by the algorithm described below which uses digraphs D;—D;3.

The heart of the algorithm is a randomized method (based on a multicommodity flow
result of Leighton and Rao [16]) for connecting pairs of vertices with arc disjoint paths
which works whp when the collection of pairs is generated uniformly at random. So, as in
Phase 1, some preliminary steps must be taken in order to reduce the problem of connecting
an arbitrary set of pairs of vertices with arc-disjoint paths to the problem of connecting a
random collection of pairs with arc-disjoint paths. We proceed directly to a description of
the algorithm. Let m = |L| and A = [logn].

We begin by ‘amplifying’ each start vertex z;,7 € L and each end vertex g;,7 € L to a
collection of A vertices. This process occurs in steps (a) and (b).

15

(a) In this step, we choose a collection of vertices w;,1 < j < 2m, and a collection of
sets of vertices W}, 1 < j < 2m, such that for 1 < j < 2m,

(i) wj € Wj7
(ii) [W;] = A,
(iii) The sets W; are pairwise disjoint, and

(iv) Dy contains an arborescence with vertex set W and root w;. For 1 < j <m
this arborescence is directed away from the root and for m + 1 < j < 2m this
arborescence is directed toward the root.

Following [17], we find these arborescences by partitioning large arborescences of Dy.
We begin with a rooted spanning arborescence 7' with the property that all arcs are
directed away from the root. We generate Wy, ..., W,, greedily from Dy, removing
an arborescence from T once it is used. Of course, this process will divide T into a
number of components. However, since the maximum degree of Dy is r, the number

nr

of components produced in this process is at most rAm = O (W) Since any tree
having at least A\ vertices contains a subtree having exactly A vertices, we will always
be able to find the needed arborescences. We then apply REMOVE to Dg less the
vertex set U™, W; to produce an expander Dj. It follows from the proof of Lemma 2
that Dy has n—o(n) vertices. We repeat the process described above (this time using

Dj and an arborescense directed towards the roots) to produce Wi, i1, ..., Wapn,.

(b) Let Sy ={%; :i € L} and Sy = {g; : i € L} denote the sets of vertices that need to be
joined. Use a network flow algorithm (analogous to what is given in the Initialization
step of Phase 1) in D7 to connect in an arbitrary manner the vertices of Sx to to
Wx ={wi,... ,w,} by m arc disjoint paths. Using the same network flow algorithm
in Dg, connect in an arbitrary manner the vertices of Wy = {w,11,... , wam} to Sy
by m arc disjoint paths. The expansion properties of D; and Dg ensure that such
paths always exist (as we saw in the Initialization step of Phase 1).

Let Zj (resp. Jx) denote the vertex in Wx that was connected to the end-point Zj, (resp. gy).
Our problem is now to find arc-disjoint paths joining Z to gy for 1 < k < m. If w; has been
renamed as Iy (resp. Jx) then rename the elements of W; as &y, (resp. Jre) 1 <2 < A.

(c) Choose &;,1 < j < Am, and n;,1 < j < Am, uniformly at random from V' without
replacement. Using a network flow algorithm (as in (b)) connect {Zx, : 1 < k <
m,1 <€ <A} to {§ :1<j < Am} by arc-disjoint paths in D;y. Similarly, connect
{nj:1<j<dm}to{gke:1<k<m,1</{< A} by arc-disjoint paths in Dss.
Rename the other endpoint of the path starting at &, (resp. ending at g) as =},
(resp. i ,)-

d) Choose z; ,,1 < k <m,1 < /¢ < X uniformly at random from V with replacement.
k.0
(We sample without replacement in (c) to ensure that all vertices have demands 0

16

or 1 in the flow algorithm. Here it is convenient to sample with replacement so that
these choices are independent.) Now, it is important to note that the pairs Th o> Zhog
and the pairs 2 ,, y; , are (when viewed separately) perfectly random. We are using
the same ‘trick’ that we used in Phase 1 for replacing the problem of connecting
arbitrary pairs to the problem of connecting random pairs.

The paths between pairs of the form z;} ,, 2; , and between pairs of the form 2} ,, % ,
are generated at random. Using the multicommodity flow algorithm of Leighton
and Rao [16], find a collection of paths P, ,¢,u # v € V,1 < 0 < v,, where each
P, is a path in D;; from u to v. These are the flow paths given by Theorem 18
n [16] (v, is simply the number of flow paths we have for the pairs u,v). Let
Puw ={Puve: 1 <6 <uw,,}. Foreach P,,q we will have a flow value f, .9 > 0 and
we let Fl,, = > 0% fuve- Theorem 18 promises:

Z fu,v;9 S 1

(uvvao): eePu,v;G

(P1) For all arcs e of Dy,

(P2)

Co

uv

nlogn
for some absolute constant cy > 0.

(P3) The length of each path P, is at most A; = c¢;log,.n for some absolute
constant c; > 0.

For u,v € V let P,, be the probability distribution over P, , where P, ,(Pyv0) =
f(u,v,0)/F(u,v). Then for each k,¢ choose Wy , randomly from P,: .. 6 using the
distribution szl’z;l to select the path.

Let Bj, denote the bundle of paths {W} ,,1 < /£ <)\} Carry out the same construction
in Dj2 and construct a bundle of paths By = {W}/,,1 </ < A} where W}/, is a path
from 2 , to yy ,-

Let mp = max. Pr(e € P) where P is a path chosen by (i) randomly choosing end-
points u,v and then (ii) choosing P € P,, according to the distribution P,,. We
have

f(u,v,0) 1 nlogn logn
o = max Z n2'7)§n2 Co _CQn'

We say that Wy , is bad if there exists k' # k such that Wy , shares an arc with a walk
in a bundle Bj,.

Now, suppose the bundles in the set {B; : j # k} are fized. The collection of paths
involved in these bundles gives at most mA\; arcs. Thus, the probability that Wy,
is bad, conditioning on what happens outside the bundle By, is at most

1
7r0m)\)\1 =0 () .
logn

17

We say that index k is bad if either B} or B} contain more than A/3 bad walks. If
index k is not bad then we can find a walk from z} , to y; , through z} , for some ¢
which is arc disjoint from all other walks. This gives a walk

T — T — Tp — Tkt — Thp — 2o — Ykw — Ikt — Uk — Uk — Yk
which is arc-disjoint from all other such walks.
The probability that index k is bad is at most
2Pr(B()\,O((logn)™) > A/3) = O(n™2).

So with probability 1-o(1) there are no bad indices.

References

[1] N. Alon and J.H. Spencer, The Probabilistic Method, Wiley, 1992.

[2] J. Bang-jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer-Verlag, London 2001.

[3] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland
1976.

[4] A.Z.Broder, A. M. Frieze, and E. Upfal, Existence and construction of edge disjoint
paths on expander graphs, STAM Journal on Computing 23 (1994) 976-9809.

[5] A. Z. Broder, A. M. Frieze, and E. Upfal, Existence and construction of edge low
congestion paths on expander graphs, Random Structures and Algorithms 14 (1999)
87-109.

[6] S. Fortune, J.E. Hopcroft and J. Wyllie, The directed subgraph homeomorphism
problem, Theoretical Computer Science 10 (1980) 111-121.

[7] A. Frank, Disjoint paths in rectilinear grids, Combinatorica 2, (1982) 361-371.

[8] A.M. Frieze, Disjoint Paths in Ezpander Graphs via Random Walks: a Short Sur-
vey, Proceedings of Random 98, Lecture Notes in Computer Science 1518 (1998)
Springer, 1-14.

9] A.M. Frieze, Edge disjoint paths in expander graphs, SIAM Journal on Computing
30 (2001) 1790-1801.

[10] A.M.Frieze and M.Molloy, Splitting an expander graph, Journal of Algorithms 33
(1999) 166-172.

18

[11] A.M. Frieze and L. Zhao, Edge disjoint paths in random regular graphs, Proceedings
of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (1999) 291-
299.

[12] D. Gale, A theorem on flows in networks, Pacific Journal of Mathematics 7 (1957)
1073-1082.

[13] J. Kleinberg and R. Rubinfeld, Short paths in expander graphs, Proceedings of the
37th Annual IEEE Symposium on Foundations of Computer Science, (1996) 86-95.

[14] J. Kleinberg and E. Tardos, Approzimations for the disjoint paths problem in high
diameter planar networks, Proceedings of the 27’th Annual ACM Symposium on
Theory of Computing, (1995) 26-35.

[15] D.E. Knuth, The art of computer programming, Volume 1, Fundamental Algo-
rithms, Addison-Wesley, 1968.

[16] T. Leighton and S. Rao, Multicommodity maz-flow min-cut theorems and their use
in designing approximation algorithms, Journal of the Association for Computing
Machinery 46 (1999) 787-832.

[17] T. Leighton and S. Rao, Circuit switching: a multicommodity flow based approach,
Proceedings of a Workshop on Randomized Parallel Computing 1996.

[18] T. Leighton, S.Rao and A.Srinivasan, Multi-commodity flow and circuit switching,
Proceedings of the Hawaii International Conference on System Sciences, 1998.

[19] T. Leighton, S. Rao and A. Srinivasan, New algorithmic aspects of the local lemma
with applications to partitioning and routing, Proceedings of the 10th Annual ACM-
SIAM Symposium on Discrete Algorithms (1999) 643-652..

[20] A. Lubotsky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8
(1988) 261-277.

[21] D. Peleg and E. Upfal, Constructing disjoint paths on expander graphs, Combina-
torica 9, (1989) 289-313.

[22] N. Robertson and P. D. Seymour, Graph minors-XIII: The disjoint paths problem,
Journal of Combinatorial Theory Series B 63 (1995) 65-110.

[23] A. Sinclair and M. Jerrum, Approzimate counting, uniform generation, and rapidly
mizing Markov chains, Information and Computation 82 (1989) 93-133.

[24] D. Wagner and K. Weihe, A linear time algorithm for edge-disjoint paths in planar
graphs, Proceedings of the First European Symposium on Algorithms (ESA ’93)
Lecture Notes in Computer Science 726, Springer-Verlag (1992) 384-395.

19

[25] X. Zhou, S. Tamura and T. Nishizeki, Finding edge-disjoint paths in partial k-trees,
Algorithmica 26 (2000) 3-30.

20

Appendix

A Splitting an expander digraph

We prove two results on splitting D into Dy U - -- U Dy where D; = (V, A;). One is non-
constructive and shows what might be achieved. The second is constructive and uses the
first. The split produced by the second is not as good as indicated by the first result. We
use a subscript ¢ to denote graph-theoretic constructs related to D;. Thus d; (v) is the
out-degree of v in D;. Left unsubscripted, such things refer to D. Thus d~(v) = r.

In Section B we prove

Theorem 3 Let k > 2 be a positive integer and let € > 0 be a small positive real number.
Suppose that the r-regular digraph D = (V, A) has edge expansion ® and that we have

> The 2 and ® > 5e 2k In 2er.
Inr

Then there exists a partition A = A; U Ay U---U Ay such that for 1 <i <k

P
o, > (1- e)%, and
(1- e)% < 6(D;) < A*(D;) < (1+ e)%

We then use this in Section C in the proof of

Theorem 4 Suppose that the conditions of Theorem & hold, and suppose further that D
is an (a, B,7)-expander. Then there is a randomised polynomial time algorithm (running
time O(n*Innlndé~1)) which with probability at least 1 — § constructs Ay, As, ... , Ay such
that
)
o, > (1 —e)% —(a+e€)r,
fori=1,2,... k.

Note that this theorem is only useful if & > cr for some c satisfying ¢ > a. For random
r-regular digraphs we can take v to be a small constant and o = O(y + %) Also note
that there is not enough time to verify that the algorithm succeeds. Instea({ we assume it
has and repeat the split if we fail to find the required paths.

B Existence Result

We prove Theorem 3. We will use the general version of the Lovasz Local Lemma. For
each a € A we randomly choose an integer ¢ € [k] and then place a in A;. We must show
that there is a positive probability of choosing a partition which satisfies the conditions of
the theorem.

21

We begin with some definitions and preliminary observations. Let G = (V, E) be the
2r-regular (multi-)graph obtained by ignoring orientation in D. If S C V then G[S] is the
subgraph of G induced by S. We say that S is connected if G[S] is.

Claim 2 Forv € V there are at most (2er)*~! sets S such that (i) v € S, (i) |S| = s and
(#ii) S is connected.

Proof of Claim 2 The number of such sets is bounded by the number of distinct s-vertex
trees which are rooted at v. This in turn is bounded by the number of distinct 2r-ary
rooted trees with s vertices. This is equal to (**)/((2r — 1)s + 1), see Knuth [15]. O

In both this section and the sequel we will use the following Chernoff bounds for the tails
of the binomial distribution B(n,p):

(L+e)np) < e mP/? (21)
<e

(1 — e)np) < em/? (22)

IN IV

where 0 < e < 1.

For our application of the Lovéasz Local Lemma, we define the following bad events:

(a) ForveV,ic [k] and * € {+, —}, Ay« = A}« is the event that
d; (v) & [(1 = €)r/k, (1 + €)r/k].

(b) For S C V,2 < |S| < n/2,S connected, i € [k] and x € {4+, —}, Ag,. is the event
that
|45 (S)] < (1= €)[d"(S)I/k-

In showing that ®; is sufficiently large we can restrict our attention to S for which S is
connected. Indeed, for S C V let Cy,Cs,...,C; be the components of G[S]. Then for
* € {+,—},

IR (e

Ta<s<t O]

Using the Chernoff bounds given above we obtain,

PI'(AU,Z',*) < 26—627‘/(3k) < 26—(71nr)/3 < %
r

and

e2d*(S _2S|Inr 1

Now, for S CV, 1 <|S| <n/2 and S connected, let

S

5\ I8!

LTSix — — .
yLy¥ 7,,2

22

We show that for *, # € {+, —},
Pr(As;.) <asix || (11— oris), (23)
(S,i,%)~(T5,#)

where (S,1,%) ~ (T, j, #) denotes adjacency of Ag; . and Ar;» in the dependency graph
of bad events (i.e. we have (S,i,*) ~ (T,7,#) if and only if A*(S) N A#(T) # 0). The
theorem then follows from the general version of the local lemma, see for example Alon
and Spencer [1].

It follows from Claim 2 that if |S| = s then there are at most ks(2er)’ events Ar; 4
with |T'| = t such that (S,i,%) ~ (T, j,#). Thus, using 1 —z > e 2® for 0 < z < 1/2 we

have
ks(2er)t
9\ ® 9\ (2er)
T || e > IIlt- =

(Ssi%)~(T5,#) t>1

. <z>sexp{_%sz (@)t}

T =1 N
2\° 8kes

- ﬁ) eXp{_r—4e}

since for small values of €, the fact that r/Inr > Tke 2 implies

> 4e + Bke
r e+ —.
In2

Thus (23) holds, proving the theorem. O

C Splitting Algorithm

In this section, we prove Theorem 4.

Idea: We produce the split in a series of rounds that gives a series of vertex sets
V=DB; 2 By DO --- DO B;. In round ¢ we fix the ‘destination’ of a fixed arc if it has
at least one endpoint in B; but has no enpoint in B;,;. This is done in such a way that
if S C B;\ Bjy1 then d;(S),d; (S) are large enough and further that every vertex in
B; \ Bj;1 has few neighbors in B;;;. We will see that this latter condition accounts for the
— (a4 2¢) r term in the theorem.

Assume we have B C V. Initially, B = V. We randomly colour the arcs of D which

23

are incident with B, with k colours. Note that if so = ke 2®~11lnn

®
r (EIS C B,i € [k] s.t. |S| > s9, S is connected and ®; g < (1 —¢) E)

< 2kn 2(267’)5_1@_625'1)/(21") < 4kn(2e,’,)soe—ezsod>/(2k) _ O(kn_1/5),

8§80

So, in a sense the large sets, take care of themselves. Now consider the smaller sets. Let
. . ®
Xo = {v : 43S C B, |S]| < s, S is connected,v € S and i € [k] s.t. ®; 56 < (1 —¢) E} .

X can be constructed in O(n(er)*) = O(n?) time.

B|
s—1 e € 25%/(2k) |
E(|Xo|) < |B| Z (2er) = Zer
since ® > 5e¢ 2k In 2er.
Therefore by Markov’s Inequality,
B 1
<|X0| > | |> 3"
B|

We repeat the above colouring until we find that |Xo| < ‘er. Now recursively define
X; = X; 1 U{v;} where d"(vj, X; 1) > (a+ €)r or d (v, X; 1) > (o + €)r, if such a v;
exists. Here we use the strong expansion properties of an («, 3,)-expander: if |S| < yn
implies that S contains at most

(r|S] = d*(5)) < ar|$]

arcs. Note that X, has at least (a+¢)rj arcs and at most j+ % vertices. Thus this process

o/ B|

stops before j reaches ==, unless |X;| exceeds yn first. However, this latter possibility

cannot happen since | Xj| +% < (1+2)X|B| < 4|B| < yn since v, € > r~z,a < 1 implies
v>(1+9)L1
So if X denotes X; when v;,; cannot be found, then

| X| <~|B|.

We will repeat the construction with B replaced by X. Let V = By O By D --- D B
be the sequence of sets constructed. B; will be the first set of size at most r~!Inn. Since
v < —, we have ¢ < log,n. Thus the expected number of re-colourings needed is at most
2log, n and is < 3log,n whp. We can “brute force” colour the arcs incident with B, so
that every subset S of B; satisfies ®; g > (1 — e) . We use Theorem 3 to justify the success
of this. The sequence of sets By, Bs, ... , B; satlsﬁes

24

e |Bi| <v'n.

e S C B;\ Bjy implies ®;5 > (1 —¢) 2.

e v € B; \ Bj;;1 implies v has at most (a + €)r out-neighbours and at most (a + €)r
in-neighbours in B;;.

Soif SCV and S; = SN (B;\ Bji1),

2:(S) = S(ES,) — d2(S, Byan)) + d2(S))

[ay

&+ .
==

v

(1-9% -~ @+ar)Is+a-a7lsd

1

> (1-9F - (@+ar) Il

<.
Il

25

