
Space-Efficient Finger Search on Degree-Balanced

Search Trees

Guy E. Blelloch Bruce M. Maggs

Shan Leung Maverick Woo

September 2002

CMU-CS-02-184

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

An extended abstract of this paper has appeared in ACM-SIAM Symposium on Discrete Algo-

rithms (SODA) 2003. This paper was last revised on April 15, 2003.

Abstract

We show how to support the finger search operation on degree-balanced search trees in a space-
efficient manner that retains a worst-case time bound of O(log d), where d is the difference in rank
between successive search targets. While most existing tree-based designs allocate linear extra
storage in the nodes (e.g., for side links and parent pointers), our design maintains a compact
auxiliary data structure called the “hand” during the lifetime of the tree and imposes no other
storage requirement within the tree.
The hand requires O(log n) space for an n-node tree and has a relatively simple structure. It can
be updated synchronously during insertions and deletions with time proportional to the number
of structural changes in the tree. The auxiliary nature of the hand also makes it possible to
introduce finger searches into any existing implementation without modifying the underlying data
representation (e.g., any implementation of Red-Black trees can be used). Together these factors
make finger searches more appealing in practice.
Our design also yields a simple yet optimal in-order walk algorithm with worst-case O(1) work
per increment (again without any extra storage requirement in the nodes), and we believe our
algorithm can be used in database applications when the overall performance is very sensitive to
retrieval latency.
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1 Introduction

The problem of maintaining a sorted list of unique, totally-ordered elements is ubiquitous in Com-
puter Science. When efficient element access (insert, delete, or search) is needed, one of the most
common solutions is to use some form of balanced search trees to represent the list. Over the years,
many forms of balanced search trees have been devised, analyzed and implemented.

Balanced search trees are very versatile representations of sorted lists. In addition to providing
element access in logarithmic time, certain forms also allow efficient aggregated operations like set
intersection and union. For example, Brown and Tarjan [6] have shown a merging algorithm using
AVL trees [1] with an optimal O(m log n

m
) time bound, where m and n are the sizes of the two lists

with m ≤ n.
Their merging algorithm is, however, “not obvious and the time bound requires an involved

proof” [7, p. 613]. As such, in their subsequent paper, Brown and Tarjan [7] proposed a new
structure by introducing extra pointers into a 2-3 tree [2] and called it a level-linked 2-3 tree. The
merging algorithm on level-linked 2-3 trees is simple and intuitive and it uses the idea of finger
searches, which we will define shortly. But there is a trade-off in this design. Each node in a
level-linked 2-3 tree contains not only a key and two child pointers, but also a parent pointer and
two side links. Considering this relatively high space requirement and the elegance of their simple
yet optimal merging algorithm, it is natural to wonder if finger searches can be supported in a
more space-efficient manner on any existing balanced search trees such as 2-3 trees. This is the
motivation of our work.

Finger search. Consider a sorted list A of n elements a1, . . . , an represented by a search struc-
ture. Let the rank of an element be its position in the list and let δA(ai, aj) be | i − j |, i.e., the
difference in the ranks of ai and aj w.r.t. the elements of A. We say that the search structure
has the finger search property if searching for aj takes O(log δA(ai, aj)) time, where ai is the most
recently found element. The time bound can be worst-case, expected-case or amortized and we will
distinguish them explicitly when needed. (As usual, we let log x denote log2 max(2, x) and we will
simply say O(log d) when the elements ai and aj are not made explicit.)

A finger is a reference to an element in the list and historically it is often realized by a simple
pointer to an element. (Indeed some papers mandate this representation in their definitions, e.g.,
see [5].) Typically, we maintain the invariant that the finger is on the most recently found element
and we refer to this element as the “current” element. The finger search operation uses the finger
as an extra hint to search for its new target and also shifts the finger to the element found. (Section
2 has a precise definition that is appropriate when the search target is absent from the list.) In
the worst scenario, finger searching matches the O(log n) time bound of a classical search; but in
applications like merging where there is a locality of reference in the sequence of search targets,
finger searching yields a significantly tighter time bound.

Finger search was introduced on a variant of B-trees [3] by Guibas et al. [10] in 1977. Since then,
finger search based on modification of balanced search trees has been studied by many researchers,
e.g., Brown and Tarjan [7, 2-3 trees], Huddleston and Mehlhorn [12, (a, b) trees], Tsakalidis [23,
AVL trees], Tarjan and Van Wyk [22, heterogeneous finger search trees] and Seidel and Aragon [20,
treaps]. In their original paper on splay trees, Sleator and Tarjan [21] conjectured that the splay
operation has the finger search property. Known as the Dynamic Finger Conjecture, it was subse-
quently proven by Cole [8]. There are other designs that are not entirely based on balanced search
trees as well. For example, Kosaraju [15] designed a more general structure with the finger search
property using on a collection of 2-3 trees. Skip Lists by Pugh [19] also support finger searching.
More recently, Brodal [5] has investigated finger search trees designed to improve insertion and
deletion time. Of special note are the purely-functional catenable sorted lists of Kaplan and Tar-
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jan [13]. Their design not only has the finger search property, but it also requires very little space
overhead. We will contrast our design with theirs in Section 6.

Challenges and results. Supporting finger search in balanced search trees can be challenging.
The main difficulty is in shifting the finger fast enough to achieve a worst-case O(log d) time bound.
Observe that if we have to strictly adhere to the unique path induced by the tree, then two elements
with similar rank can be stored far apart. As an extreme example, consider the root element and
its successor: the tree path has length Θ(log n), but we only have O(1) time.

One way to circumvent this apparent difficulty is to store extra information in the nodes so
that we do not have to adhere to the tree path. For example, this approach has been taken by
Brown and Tarjan [7] who added a parent pointer and two side links to each node. (Side links are
pointers to the previous and next node at the same depth.) With these extra pointers, it can be
shown that there exists a path of length O(log d) between two nodes differing in rank by d. Finger
search can now be supported by taking this new path. The problem with this design is that a total
of 3n extra pointers are introduced and the size of the tree is doubled, assuming the key has the
same size as a pointer. In fact, among the many other tree-based designs mentioned above, this
O(n) extra storage requirement is a common trait.

Our design is an attempt to avoid this O(n) storage requirement but at the same time retain the
structural simplicity of balanced search trees. To this end, we base our design on degree-balanced
search trees [18]1 and we assume a compact k-ary node with only (k− 1) keys and k child pointers.
Since any extra storage we need must be stored in some auxiliary data structures outside of the
tree, our goal is to minimize the amount of auxiliary storage while supporting the finger search
operation in worst-case O(log d) time.

As we will show in this paper, our design requires O(log n) space on a degree-balanced search
tree with n nodes and supports finger searches in worst-case O(log d) time. The finger searches can
go in both forward and backward directions without any restriction. We also show that once the
finger has been placed on the position of change, insertions and deletions can be implemented in
time proportional to the number of structural changes in the tree. This allows us to transfer any
results previously proven on these two operations, such as an amortized O(1) time bound and the
actual distribution of work at different depths of the tree [12]. In the development of our finger
search algorithm, we also obtain a simple in-order walk algorithm with worst-case O(1) work per
increment. We believe that this improvement over the previous amortized O(1) bound can be
used in database applications when the overall performance is very sensitive to retrieval latency.
(The focus of this paper is not on database applications, but we have documented our idea in
Appendix C.)

Design overview. We notice that if supporting finger searches is really possible under our storage
restrictions, then we must be able to support a special case of it: an in-order walk with worst-case
O(1) work per increment. Our solution is to eagerly schedule the in-order walk and walk the path
in advance. We call this the eager walk technique. Because we can only see a constant number
of nodes at a time, we also need to keep track of our progress and so we have devised a simple
data structure called the hand for this purpose. We will document these two ideas along with our
in-order walk algorithm in Section 3.

Having solved the in-order walk problem, we then go back to finger searches. Notice that in the
in-order walk, the future search targets are known in advance. However, this is not true in finger
searches. Our understanding of eager walk suggests that we want to start shifting the finger before
the actual search target arrives. For finger searches, that means we want to cache some portion of

1Apparently the term degree-balanced search trees was coined in this monograph. However, it does not cover the
details of such search trees. See other references in Section 2 for more information.
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the tree so that when the actual search target arrives, the cache will contain a prefix of the path
from the finger to the target. If the length of the prefix is chosen to be long enough, then we will
be able to finish shifting the finger over the rest of the path in O(log d) time. As it turns out, the
hand is precisely such a cache despite being initially designed just for the in-order walk. At this
point, we will also bring in a connection between the hand and the inverted spine technique used
in heterogeneous finger search trees by Tarjan and Van Wyk [22]. Using this connection, our finger
search algorithm becomes relatively straightforward. Section 4 will be devoted to presenting this
connection.

In our presentation in Sections 3 and 4, we will assume for simiplicity that the finger only goes
forward. In Section 5, we will handle the backward direction by using two hands and also show
how the hands can be updated during insertions and deletions. In addition, we also analyze how
the hands can be used during splits and joins. Finally, we will contrast our design with Kaplan
and Tarjan’s [13] in Section 6 and then conclude with some remarks to deal with practical issues
that may arise when using the hands.

2 Notations and definitions

Lists and elements. In the rest of this paper, all lists are sorted and have unique elements drawn
from (Z,≤) and the variables a through e will range over Z without any further quantification. (It
would be more general to leave the domain as any total order. For example, some total orders such
as (R,≤) do not have a natural notion of immediate successor. However, this issue does not come
up in this paper.)

Finger destination. To handle the possible case that the search target is not in the list, we
define a+ to be the smallest element in the list that is larger than or equal to a (much like the limit
notation). When a is larger than all elements in the list, let a+ be a sentinel denoted by ∞. We
can symmetrically define a−. With these two definitions, a finger search for a should place f at a+

if af ≤ a (forward), or a− otherwise (backward), where af is the element under f when the finger
search is started. Note that if a is in the list, then a+ and a− are both equal to a and therefore the
finger will be placed at a in either case. This allows us to say the finger will be placed on a+ (or
a−) when we are finger searching for a.

Trees and nodes. In a search tree TA representing a list A of n elements a1, . . . , an, the node
containing ai will simply be called xi and the variables w through z will range over nodes. (Notice
that a node can contain multiple keys, in which case multiple xi’s can correspond to the same node.
However, we will only use the xi notation when referring to nodes by their ranks.) When referring
to a node xi, we use x−−

i and x++
i to denote its predecessor xi−1 and successor xi+1 respectively.

We denote the depth of a node x simply as depth(x), with the depth of the root defined to be 1.
The depth of the tree depth(TA) is the maximum depth among all nodes. We regard nodes without
children as leaves.

As stated, our design is based on degree-balanced search trees. All the leaves in such a tree are
at the same depth and its balance is maintained by varying the degree of internal nodes between
fixed constants. 2-3 trees [2], B-trees [3] and (a, b) trees [12] are all variants of degree-balanced
search trees. Red-Black trees [11] can also be viewed as degree-balanced easily via the isomorphism
with 2-3-4 trees. We sometimes simplify our presentation by assuming a complete binary search
tree (BST ), but we also show how to account for this assumption to retain full generality.

A k-ary node x has (2k − 1) fields. The keys are sorted elements from A and are denoted as
xj , for j = 1, 2, . . . , k − 1 and the children are denoted as x[j], for j = 1, 2, . . . , k. We define the
j-th left child to be x[j] for j = 1, 2, . . . , k− 1 and denote it by xj [L]. The corresponding j-th right
child is then x[j + 1] and denoted by xj [R]. If x is a leaf, then the child pointers are all nil. For
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binary nodes, we simply drop the superscript. We say that the finger is under a node x when the
finger is pointing at a key inside the sub-tree rooted at x.

A node is overfull if it has at least k keys. In a degree-balanced search tree, there are no overfull
nodes and different nodes can have different arity. During an update, any overfull node will be split
into two.

Spines and relatives. We first define spines on binary trees and we give only the version for the
right (forward) direction.

The right spine of a binary node is defined to
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be the list of node(s) starting at the node itself,
followed by the right spine of its right child, if
it exists. The right-left spine of a node is the
node itself and left spine of its right child. (Our
notation stresses the direction taken to traverse
the spine and is consistent if we view the right
spine as the right-right spine.) Now given any
spine of a node, its atlas is the second node on
the spine (a child) and its tail is the last node.
Suppose we have three nodes x, y, z in a tree. If
x is on the left-right spine of y, then we say y is
the right parent of x. The right ancestors of x

will then be y and the right ancestors of y. If y is the right parent of x and the left parent of z with
x and z at the same depth, then we say z is the right peer of x. In the special case when y is the
parent of both, then we say z is the right brother of x instead. Figure 1 illustrates some of these
concepts on a complete BST. Note that the dashed arrows are only for the purpose of illustration.
In particular, our work does not make use of such pointers in the nodes. The right-left spine of 8
has also been highlighted.

The definitions for nodes of any higher degree is straightforward using our j-th child quantifi-
cation. If a k-ary node y is the right parent of x and x is in yj [L], then we say yj is the right parent
key of x.

Deques. We will use doubly-linked queues (deques) as a building block of the hand. A deque is
made up of cells and we denote a deque with k cells by 〈ck, . . . , c1〉a, with the back on the right
hand side. A deque supports the following operations in O(1) time: MakeDeque, Push, Pop,
Inject, Eject, Front, Back, and Prepend. Note that Inject and Eject operate on the back
of a deque and a deque can be used as a catenable stack. With an additional pointer to a cell, a
deque also supports Split in O(1) time. For more information on deques, refer to Knuth [14].

3 In-order walk

In this section, we motivate and present the design of the hand by developing an in-order walk
algorithm with worst-case O(1) work per increment. Our goal is to develop our understanding of
the hand through this discussion. To simplify our presentation, we start by working with a complete
BST and then generalize to handle all degree-balanced search trees.

3.1 Design

The simpliest in-order walk algorithm is the straightforward recursive solution, which takes amor-
tized O(1) time per increment. To achieve the worst-case O(1) bound, we need to schedule the
discovery of nodes that will be processed later in order to avoid traversing a long path during an
increment. We refer to this discovery activity as an eager walk. To avoid confusion, in this section
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we say that we “visit” a node when it is the actual node being processed by the in-order walk and
we “explore” a node when it is being discovered due to the eager walk.

Now, let’s look at each increment individu-

x

w
z

( m a y c o n s i s t
o f  j u s t  1  n o d e ,  
i . e .  w =  x) ( s u b -t r e e s
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Figure 2: Possible locations of x++ and spine
exploration schedule

ally. Suppose we are currently visiting the node
x and so the next node to visit is x++. Observe
that in a search tree, there are only two possible
positions for x++ to appear. If x is not a leaf,
then x++ is the tail y on the right-left spine of x.
Otherwise, it is the right parent z of x. (If z does
not exist also, then we must be at the rightmost
node of the tree. We let the root have an imagi-
nary parent labelled∞ and end the in-order walk
there.) Figure 2 illustrates our situation.

To handle the first case, we must traverse the
full right-left spine of x before we visit x. Since
we have only a constant amount of time in each
increment but the spine can be long, we can only
afford to explore a constant number of nodes at
a time and perform this multiple times. As we need the spinal nodes in the bottom-to-top order
in the in-order walk, we associate a stack with x and we push the right-left spinal nodes of x,
beginning with the atlas, onto the stack as we discover them. The scheduling on a degree-balanced
search tree is intuitive because all of the leaves are at the same depth and so the left-right spine
of x has the same length as the right-left spine. Since all the nodes on the left-right spine must be
visited before x, a natural choice is to explore one right-left spinal node when we visit one left-right
spinal node. This way, by the time we have visited the tail of the left-right spine, we will have
explored the tail of the right-left spine, namely y.

The second case is simpler. To go up the tree, we use a stack to keep track of the ancestors as
we descend between visits. But as we show in Figure 2, x can have any number of left ancestors
(up to the atlas w). To get to z in constant time, we keep track of only the right ancestors, i.e., we
push a node when we descend left and pop it out when we return to it and descend right. Now z

will be at the top of the stack when we visit x. (We note that the idea of right parent stack has
been used before, e.g., see Brown and Tarjan [6].)

The right parent stack is related to our eager walk as well. Notice that as we approach y in
the eager walk, all the nodes we explored are right ancestors of y. Since the right ancestors of x

are also right ancestors of y, we are in fact building the upper part of the right parent stack for y.
A catenable stack will be perfect for our purpose because when we catenate the right-left spine of
x onto its right parent stack, we will immediately have the right parent stack of y. However, we
will need Inject and Eject in Section 5.4 to handle insertions and deletions. Hence, we will use
a deque as a catenable stack.

3.2 The “hand” data structure

The hand is an auxiliary data structure designed to keep track of our progress in the eager walk.
For our in-order walk algorithm, it is a deque named Rps. Stored inside the cells of Rps are pointer
pairs of the form (node, spine), where node is a pointer to a node in the underlying tree and spine

is a (null) pointer that can be used to point to a deque containing similar pointer pairs so that we
can prepend the deque pointed by spine onto Rps.

Let the underlying tree be a complete BST T and Rps be a deque consisting of k pointer pairs
〈(xk, sk), . . . , (x1, s1)〉a. Rps must obey these two invariants:
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Invariant 3.1 (node) x1 is on the right spine of T and ∀j ∈ { 2, . . . , k } : xj−1 is the right parent
of xj in T .

Invariant 3.2 (spine) ∀j ∈ { 1, . . . , k } : sj is a deque of (node, spine) pairs representing a prefix of
xj’s right-left spine, with the atlas stored at the back. The length of sj is depth(xj+1)−depth(xj)−1,
where depth(xk+1) is defined to be depth(T ) + 1.

We now relate these two invariants with our
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design. First of all, the top node xk in Rps will
always correspond to the node x that we are cur-
rently visiting. Together with Invariant 3.1, Rps

is indeed the right parent stack of x. Now con-
sider the node xj−1. By Invariant 3.1, it is the
right parent of xj . By Invariant 3.2, the length
of its associated spine prefix sj−1 is depth(xj)−
depth(xj−1)− 1. If z is the last node on the pre-
fix, then z is at depth depth(xj)−1 and therefore
z[L] is the right peer of xj . Since z is stored at the top of sj−1, we will be able to reach the right
peer of xj in O(1) time once we reach the cell containing sj−1. A special case to notice is sk. By
Invariant 3.2 and our definition of depth(xk+1), its length is depth(T )−depth(xk). This is precisely
the length of its full right-left spine and this also reflects our design. (In our usage, “prefix” is not
necessarily strict and so the full spine is a prefix of itself.)

The two invariants not only allow us to execute our desired schedule while we are visiting the
nodes on the left-right spine of xk−1, but also give us a very strong hint as to why the hand will
facilitate finger search. By traversing down Rps, we can reach the right ancestors of the current
node as if we had right parent pointers. Moreover, the right peer of any node on Rps can be reached
with an additional O(1) time, as if we had forward side links on each of the right ancestors. The
power of these pointers has already been demonstrated by Brown and Tarjan [7] in level-linked 2-3
trees: these pointers are exactly the pointers introduced to facilitate finger searches.

Figure 3 illustrates an example hand at node 5 in a complete BST with 15 nodes. Notice that
we have added two dotted arrows pointing upward in the tree to reflect the nature of the right
parent stack. As a demonstration of Invariant 3.2, note that the right peers of nodes 5 and 6 are
precisely one node away from the end of the spine prefix associated with their right parents.

Using Invariant 3.2, we can immediately bound the size of the hand by the depth of the tree.

Theorem 3.1 (Hand Size) The hand for a complete BST T has at most depth(T ) cells.

Proof Suppose Rps has k cells. The total number of cells in the hand is
∑k

j=1(1 + |sj |). By
Invariant 3.2, this is k+(depth(xk+1)−depth(x1)−k) which is at most depth(xk+1)−1 = depth(T ).
�

3.3 Algorithm

To start the in-order walk, we first build the hand on the leftmost node of the tree by pushing
the left spine of the tree into Rps. We associate an empty deque with each spinal node and use
an empty Rps to indicate termination. (The actual algorithm for increment is very succinct, but
we have grouped together all the pseudo-codes in this paper into Appendix A. Please refer to
the pseudo-code of Increment and ExtendRightLeftSpine.) The correctness of our algorithm
follows from the discussion in Section 3.1 and it clearly takes O(1) time per invocation. Note that a
hand can be built on any node in O(log n) time. (Refer to BuildHand for how this can be done.)
In our case it is built on the leftmost node.
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3.4 Extending to k-ary nodes

The in-order walk algorithm above works on a complete BST. When generalizing it to degree-
balanced search trees, our j-th child quantification is very handy. We will consider xj as a binary
node, with xj [L] and xj [R] as its two children. Suppose we are now visiting the rightmost node
of the sub-tree rooted at xj [L]. By a quantified version of Invariant 3.2, at this point we will have
all but the tail y of the right-left spine of xj . The increment to xj will complete the spine and
the increment to y will put us in the same situation as if we are visiting the leftmost node of
the sub-tree rooted at xj+1[L]. The remaining details are straightforward. (See Appendix B for a
demonstration.)

Theorem 3.2 (In-order Walk) In-order walk on a degree-balanced search tree can be performed
with worst-case O(1) time per increment, using O(log n) space and O(log n) pre-processing (to
obtain the initial hand).

4 Finger search

In this section, we demonstrate how the hand allows

w z

y

x

case (iii)case (ii)case (i)

Figure 4: Possible destination of finger

us to perform finger searches in a degree-balanced search
tree. Again we will simplify our presentation by working
with a complete BST and limiting the finger searches to
go in the forward direction.

We now consider a finger search for element a with
a finger f at node w. Let y be the right parent of w and
z be the right peer of w, as shown in Figure 4. Observe
that the destination of f can be divided into three rank
intervals: (i) (w, y], (ii) (y, z] and (iii) (z,∞). The first
two intervals are characterized by the right sub-tree of
w together with y and the left sub-tree of z together
with z. We can distinguish among these cases in O(1)
time by comparing a with y and z, both readily available from our hand on w.

To handle case (i), we first do an increment as in the in-order walk. This takes O(1) time.
Then we traverse the right-left spine of w bottom-up by scanning the Rps towards the back until
we hit an element larger than a (or the bottom of Rps). Let x be the node in the second to last
cell we scanned (or the bottom of Rps). Observe that if a is in the tree, then it must either be in
x or its right sub-tree, where we will perform an additional binary tree search. In either case, it
is straightforward to restore the two invariants of the hand on our destination. The whole process
takes time proportional to the length of x’s left spine minus one, which is logarithmic in the size of
the left sub-tree skipped by the finger. (We note that the algorithm for this case is precisely the
inverted spine technique used in heterogeneous finger search trees by Tarjan and Van Wyk [22].)

Case (ii) can be handled by first popping the Rps twice (removing w and y) and prepending the
right-left spine prefix of y onto it (now z is at the top). We then start a binary tree search for a

at z while restoring the invariants. The logarithmic time bound follows because the finger skipped
the right sub-tree of w.

We handle case (iii) by reducing it to case (i) on a larger scale. We first locate the lowest node
xj on Rps whose key is no larger than our target by successive popping. (Note that as we scan
down the Rps, the key gets larger.) Then we shift the hand over to xj by completing its right-left
spine. At this point we re-start the finger search at xj and we know we will be in case (i). Note that
both case (i) and case (ii) are just specializations of case (iii) and we can handle them using this
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more general procedure. To analyze the running time, we seperate the rank difference into δ(w, xj)
and δ(xj , a). The time it takes to obtain the hand on xj is O(log δ(w, xj)) because the size of the
right sub-tree of xj+1 is at most δ(w, xj). The subsequent finger search takes time O(log δ(xj , a)),
as we have already proved when analyzing case (i). The time bound follows from the inequality
log(c) + log(d) < 2 log(c + d).

We note that our algorithm can be similarly generalized to handle k-ary nodes as we described
in Section 3.4 and the time bound remains the same. We also provide a more precise specification
of our algorithm in Appendix A in the form of pseudo-code.
Theorem 4.1 (Forward Finger Search) Using the hand, forward finger searches on a degree-
balanced search tree can be performed in worst-case O(log d) time, where d is the difference in rank
between successive search targets.

5 Extensions

In this section we will outline how to extend the hand to support finger search in both directions
and how to update the hand during insertions, deletions, splits and joins.

5.1 Left and right hands

We say that Invariants 3.1 and 3.2 specify the right hand. By flipping the left/right directions,
we obtain the left hand which consists of the left parent stack Lps. For simplicity, we will use
“the hands” to denote the left hand and the right hand collectively.

Consider the hands on a node x. By definition, each of the ancestors of x will appear on either
Lps or Rps. In particular, the root node will be at the bottom of one of them. We now extend
the stack cells to contain a triple (node, spine, cross), where cross is a pointer to another cell. Let
Lps be 〈(xlk, slk, clk), . . . , (xl1, sl1, cl1)〉a and Rps be 〈(xrk, srk, crk), . . . , (xr1, sr1, cr1)〉a. Note that
in general lk 6= rk but x = xlk = xrk. We require the hands to satisfy one additional invariant:

Invariant 5.1 (cross) Starting at the cell containing the root, the path specified by chasing the
cross pointers is the path from the root to x, with the encoding that if clk or crk is nil, then it points
to the cell directly above the current cell. If x is a left child, then the path ends on Lps. Otherwise,
it ends on Rps.

5.2 Decrement

Instead of showing how to perform decre-
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Figure 5: Example hands on 2 to 5, shown with
cross pointers. (Dashed pointers are implicit.)

ment, we will describe how to update the left
hand in an increment. Decrement will follow
by symmetry. This also serves as a demon-
stration of Invariant 5.1 and the cross point-
ers. As an aid to our description below, Fig-
ure 5 shows the hands on nodes 2 to 5 in
a complete BST with 15 nodes, which was
shown in Figure 3.

Before we pop the Rps, we check to see
if the clp points to the top cell of Rps. If
so, we set it to nil. (See 3 → 4.) Then we
pop the Rps and extend the right-left spine of
xrp as usual. Let (xlj , slj , clj) be the cell cellj
pointed to by crp. (We can verify that this
cell always exists.) If slj is non-empty, then we pop off its top cell to shorten the spine prefix by
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one node and set snew be nil. (See 2 → 3 and 4 → 5.) Otherwise, we set crp to nil and split Lpr

at cellj to obtain 〈(xlk, slk, clk), . . . , (xlj , slj , clj)〉a as snew. (See 3→ 4.) We preprend scurr to Rps

as usual. Finally we push (xnew, snew, nil) onto Lps, where xnew is the top node in Rps. (We can
verify that snew is the correct left-right spine prefix of xnew.)

While the above procedure may seem complicated, it can be derived from the maintainence
required by the three invariants. We also note that the increment algorithm still takes O(1) time.
Since we showed the left hand can also be maintained in worst-case O(1) time during an increment,
by symmetry, the following theorem holds.
Theorem 5.1 (Backward In-order Walk) An in-order walk in the backward direction takes
worst-case O(1) time per decrement.

5.3 Backward finger search

The description in Section 4 can easily be adapted to update the left hand in a backward finger
search. Here we show how to preserve Invariants 3.1 and 3.2 for the right hand as well. The
maintenance of Invariant 5.1 is straightforward.

Recall that our finger search algorithm will first locate the left parent x containing the smallest
key that is no smaller than the target. Let the last cell we popped from Lps be (z, sz, cz). We will
pop the Rps and clean up the associated spine prefixes until the cell pointed to by cz is removed.
Note that we have enough time to do this because we have skipped the left sub-tree of z.

At this point, the top cell in Lps will be (x, sx, cx). We split Rps at cx, push a new cell containing
x into Rps and then associate the upper deque from the split to this cell as its right-left spine prefix.
Finally, we extend the prefix to contain z unless the finger search initially started at z. This step
only takes O(1) time.

Then our algorithm will complete the left-right spine of x to obtain the hands on it. We update
the right hand by completing its right-left spine prefix on Rps. Since the prefix already reaches z,
the time it actually takes to complete the spine is logarithmic in the size of the left sub-tree of z,
which we skipped.

If the target is not x, then it is in the left sub-tree. Our algorithm will preform a decrement
and then start searching for the target by scanning the left-right spine of x upward until we hit
the smallest key that is no smaller than the target. Every time we go up a node, we also update
the right hand by shortening the right-left spine prefix of x in Rps. Finally, our algorithm will
finish with a descent while restoring the invariants. The updates to the right hand in this part are
straightforward and take the same amount of time as updating the left hand.

Theorem 5.2 (Finger Search) The hands can be maintained in any sequence of finger searches
in O(log d) time per search, where d is the difference in rank between successive search targets.

5.4 Insertions and Deletions

In a search structure that supports finger search, insertions and deletions are typically implemented
by first placing the finger at the target element followed by the actual update. Huddleston and
Mehlhorn [12] have shown that in a sequence of updates, the amount of structural changes in an
(a, b) tree is exponentially decreasing with the height of the propagation from the leaves and that
each update takes amortized O(1) time, both assuming an initially empty tree and discounting the
time spent to shift the finger.

In this section, we will show that the hands can be updated to reflect each structural change in
worst-case O(1) time. Therefore, any result on the distribution of structural changes can be carried
over to the hands directly. In particular, both of the above results by Huddleston and Mehlhorn
will continue to hold even when we have to maintain the hands.
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In the following discussion, we assumed familiarity with the insertion and deletion algorithms
for degree-balanced search trees. (See Huddleston and Mehlhorn [12] for more information.) Let
the target element of the update be t. We will consider the hands for k-ary nodes. To simplify
our presentation, we will only update the right hand w.r.t. the k-ary adaption of Invariants 3.1
and 3.2. The left hand can be updated by symmetry and it is also easy to maintain Invariant 5.1
throughout. We adopt the convention that the hands will be placed on t after its insertion, or t++

for deletion.
We will start with an observation. In a degree-balanced search tree, the structural change due

to insertions and deletions propagates up from a leaf to the root. All the nodes involved must be
in either Lps or Rps. Let Rps be 〈(xk, sk), . . . , (x1, s1)〉a. We will update the hands by considering
one depth at a time in a bottom-up fashion, provided that the hands are placed on a leaf first.

There are three kinds of possible structural changes at a depth: node fusion, children sharing
and node split. (The last one is not to be confused with the splitting of a tree.) We will first
analyze them and then return to insertions and deletions.

Fusion. Consider a node x, with the finger under it. Suppose x has a right brother y that will
be fused into x and p is the right parent with key c. Note that c is the key being demoted. Let z

be the right parent of p, if it exists. If c is pk, then first extend the spine prefix of z and remove
the cell of p from Rps. No further change is needed if x is in Rps. Otherwise, create a cell in Rps

above that of p (or z if p is not in Rps anymore) and let it contain x with key c. Also eject the
bottom cell from the spine prefix of p and re-associate the result with x instead.

Now suppose x has a left brother w and x is being fused into w. No change is needed if x is
not in Rps. Otherwise, update the cell of x to contain w instead and adjust the offset in the cell
accordingly.

Sharing. Consider a node x, with the finger under it. Suppose x is sharing from its right brother
y and p is the right parent with key c. We only need to update Rps if x is not originally in it. First
create a new cell above that of p and let it contain x with key c. Then shorten the spine prefix of
p by ejecting the bottom cell and re-associate the result with x instead.

Now suppose x has a left brother w where x is sharing from. There are four possible cases
depending on whether x is in Rps and similarly for p. In each of these cases, the structure of Rps

does not change except that the offset in the cell of x needs to be updated to reflect the new key(s)
in x.

Split. Consider a overfull node x, with the finger under it and c as its median key. Suppose after
c is promoted to the parent p, a new right brother y of x is created. Let the finger be under x[j]
and z be the right parent of p, if it exists. We break down the analysis into three cases. In the first
two, if p is the new root, then inject an empty cell at the bottom of Rps and let it contain p.

Suppose xj is smaller than c. If p is on Rps, then no change is needed. Otherwise, shorten the
spine prefix of z, create a new cell under that of x and let it contain p with key c.

Suppose xj is c and let d be xj+1. If p is not on Rps, then shorten the spine prefix of z, create
a new cell under that of x and let it contain p with key c. Now remove the cell of x from Rps and
create a new cell containing y with key d. Finally, inject the new cell at the bottom of the spine
prefix of x and re-associate the result with p.

Suppose xj is larger than c. If p is on Rps, then increment the offset in its cell. Also, if x is on
Rps, then update its cell to contain y instead and adjust the offset accordingly.

Insertion. As we assumed the list maintains unique elements, t must be absent and the hands
are on either t− or t+. Observe that at least one of t− and t+ is in a leaf. Here we assume t+ is in
the leaf x with the hands placed on it. If t+ is an internal node instead, then perform a decrement

10



to obtain the hands on t− and the rest is the same.
To begin the insertion, first increment the offset of the top cell of Rps. Notice that Rps is a

valid hand on t, but x may have too many keys and a split or sharing will be needed. After we
have handled x, its parent p may have one more key and another split or sharing may occur at its
depth. We will repeat until the propagation stops. It should be clear that at each depth involved
in the propagation, we spent only O(1) time.

Deletion. Here we assume we have the hands on the leaf x containing t. Observe that if t is not
in a leaf, then t++ is. By Invariant 3.2, t++ will be at the top of the spine stack associated with
x. We replace t with t++ in x, perform an increment to obtain the hands on the tail x′, which
contains the original t++. Now we will consider deleting t++ from x′ instead. A further decrement
will put the hands back on t++ in O(1) time.

To begin the deletion, consider the leaf x. If t is xk, then first extend the spine prefix of the
right parent of x and remove the cell of x from Rps. If t is not xk, then update the top cell of Rps

to contain t++ instead of t. In both cases, notice that Rps is still a valid right hand on t (it is on t+

now), but x may have too few keys and a fusion or sharing will be need. After we have handled x,
its parent p may have one less key and another fusion or sharing may occur at its depth. We will
repeat until the propagation stops. At the end, if the root is empty and it is on the Rps, then we
can simply eject the bottom cell. It should be clear that at each depth involved in the propagation,
we spent only O(1) time.

Theorem 5.3 (Insertion and Deletion) The hands can be updated synchronously during an in-
sertion or a deletion in time proportional to the total number of structural changes in the tree.

5.5 Splits and Joins

Again we assume familiarity with the split and join algorithms on degree-balanced search trees.
(See Cormen et al.[9, p. 278, p. 399] for their coverage on Red-Black Trees and 2-3-4 Trees.) Our
focus will be on analyzing the maintainence of the hands during these operations.

Join. Consider joining two trees T1 and T2 with b as the splitting key where a < b < c for any
a ∈ T1 and c ∈ T2. Let h1 and h2 be the heights of T1 and T2 respectively and by symmetry assume
h1 ≤ h2. The join operation should produce a new tree T = T1 ∪ {b} ∪ T2 in O(h2 − h1) time,
assuming the two trees maintain their own heights. For the purpose of our analysis, we will assume
that we have our hands holding any key in T2.

The first step in a typical join algorithm is to identify the node z on the left spine of T2 such
that the sub-tree rooted at z has the same height as T1. When the algorithm is scanning for z down
from the root, we can easily locate the cells in the hands that correspond to that height. (There
can be one cell at this depth in both Lps or Rps and so there are exactly either one or two.) Notice
that the cells located may not correspond to z, but they are the starting points for us to update
the hands one depth at a time.

Once z has been identified on the spine, the root node of T1 will be fused into z, with b as
the key in-between. z may now get overfull and a sequence of node splits and children sharings
may follow. The key observation is that this sequence of structural changes all occur on the left
spine of T2, starting at the depth of z. The situaton is very similar to an insertion, except the
structural change propagates from z instead of from a leaf. Therefore, the hands can be updated
in a way similar to during insertions and stop as soon as the propagation stops. The actual details
are straightforward.

Theorem 5.4 (Join) The hands in the larger tree can be updated synchronously during a join in
time proportional to the total number of structural changes in that tree.

11



However, we note that if there is a pair of hands on the smaller tree (T1 in our case), then
discarding the hands alone will take O(h1) time. Fortunately, there is no pointers from the nodes
to the hands. Therefore, we may choose to discard the hands at a later time.

Split. When we split a tree T of height h using a key b, we obtain two trees T1 and T2 such that
a < b < c for any a ∈ T1 and c ∈ T2 in O(log n) time. In this analysis, we assume we have already
placed the hands on b (see below if we do not have our hands on b yet) and by symmetry we assume
b is in the left sub-tree of root. At the end of the split, we should have two pairs of hands, one at
b−− and the other at b++.

A typical split algorithm will decompose T into four groups: the left ancestors of b, their left
sub-trees and symmetrically for the right ancestors. By symmetry, we will consider only the right
ancestors and their right sub-trees. Let Rps be 〈(xrk, srk), . . . , (xr1, sr1)〉a, i.e., xrk contains b and
xr1 is the root, and let Tri be the right sub-tree of xri. To obtain T2, split will be joining Tri to the
left of Tr(i−1) using xr(i−1) as the splitting key for i = k down to 2 (or from k − 1 down to 2 if b is
a leaf). We now show that the hands actually facilitate these joins in an intuitive way.

Consider joining Tri with Tr(i−1). Observe that, using the notation in our analysis of join,
we don’t have to scan for z any more. By Invariant 3.2, z will be the left-left grandchild of the
node contained in the top cell of sr(i−1). The key xr(i−1) is also readily available on the Rps.
Therefore, we can immediately start the join at z. Furthermore, notice that sri actually contains a
fragment of the left spine of T2. Therefore, the assembling sri’s into the Rps for T2 is can be done
straightforwardly. The Lps for T2 will be a single cell containing b++. The hands for T1 can also
be obtained symmetrically.

Theorem 5.5 (Split) When splitting a tree T into T1 and T2 using the current key b held in the
hands, the two new hands at b−− and b++ can be generated in time proportional to the total amount
of work done by the joins to assemble the right spine of T1 and the left spine of T2.

The above analysis assumes that we have already placed the hands on the splitting key b. Notice
that the total time of the split is proportional to the depth of b in T . Therefore, if b is deep and
the hands are not positioned close-by, then it will be simpler to discard the hands and split T as
usual. Rebuilding the two hands can then be done in logarithmic time.

6 Discussion

Hands and inverted spines. In this paper, we have demonstrated that our view of finger search
as a property, rather than an operation, allows us a much bigger design space. In fact, there are
other previous works that do not use an element pointer. A recent exception to this is the purely-
functional catenable sorted list designed by Kaplan and Tarjan [13] in 1996. Instead of an element
pointer, their structure allows splitting the list at the d-th position in worst-case O(log d) time
and catenating in time doubly logarithmic in the size of the smaller list. Finger searches can thus
be realized by splitting and catenating between two instances of their structure, with the finger
pointing at the element at the break.

Although it was not mentioned explicitly, the modified 2-3 finger search tree representation in
their paper actually uses only O(log n) extra storage for an n-element list. The key to their design is
to carefully relax the degree constraint on the spines to allow a suitable storage redundancy, which
can in turn be used to absorb the propagation of structural changes due to splits and catenations.
We can view their design as an improvement upon the heterogeneous finger search trees [22] in
which splits and joins have an amortized time bound. (See Booth [4, Ch. 2], Mehlhorn [17] and
Kosaraju [16] for the analysis.) As we have pointed out in Section 4, the power of the hands also
comes from the inverted spine technique used in the heterogeneous finger search trees. However,
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instead of relaxing the degree constraint on the spines, we showed that it is possible to avoid the
splits and joins if we view the “inverted spine” by the way of the hands. This connection should
be relatively straightforward if we review our discussion of split in Section 5.5.

Remarks on practice. We would like to conclude with several remarks on issues that may
arise when the hands are used in practice. First, notice that the simultaneous maintainance of
the forward and backward hands is often not necessary. In applications like merging, only the
forward hand is needed and therefore we do not need to maintain Lps and the cross points on
Rps. Furthermore, even when an application requires the ability to perform finger searches in both
directions, we note that a new hand can be built on any node in only logarithmic time. Hence if
the number of direction change is small and we must maintain exactly one hand, it may be more
desirable to simply rebuild the hand at each direction change. Finally, we have included a brief
discussion in Appendix C on how the hands can be used to facilitate pre-fectching in databases.
While our in-order walk result is only a theoretical improvement, it will be interesting to see if the
space savings in the tree also translates to a cache performance gain that outweights the overhead
to maintain the hands.
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A Finger search pseudo-code

We provide the pseudo-code of the forward finger search algorithm on a complete BST we presented
in Sections 3.3 and 4 for reference.

ExtendRightLeftSpine(x, s)
1 if |s| = 0 (∗ atlas vs. the rest ∗)
2 then y ← x.right

3 else y ← s.Front().node.left

4 if y 6= nil

5 then s.Push((y,MakeDeque()))

CompleteRightLeftSpine(x, s)
1 if |s| = 0 (∗ atlas vs. the rest ∗)
2 then y ← x.right

3 else y ← s.Front().node.left

4 while y 6= nil

5 do s.Push((y,MakeDeque()))
6 y ← y.left

Increment()
1 (xcurr, scurr)← Rps.Pop()
2 if |Rps| > 0
3 then (xrp, srp)← Rps.Front()
4 ExtendRightLeftSpine(xrp, srp)
5 Rps.Prepend(scurr)

RootedSearch(b)
1 (xcurr, scurr)← Rps.Pop()
2 if |Rps| > 0
3 then (xrp, srp)← Rps.Front()
4 else (xrp, srp)← (xcurr,MakeDeque())
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5 while xcurr 6= nil

6 do (∗ restore invariants while descending ∗)
7 if b ≤ xcurr.Key

8 then (xrp, srp)← (xcurr,MakeDeque())
9 Rps.Push((xrp, srp))

10 xcurr ← xcurr.left

11 else ExtendRightLeftSpine(xrp, srp)
12 xcurr ← xcurr.right

ForwardSubTreeSearch(b)
1 (xcurr, scurr)← Rps.Pop()
2 (∗ ascend along the inverted spine ∗)
3 while |Rps| > 0 ∧ Rps.Front().node.key ≤ b

4 do (xcurr, scurr)← Rps.Pop()
5 Rps.Push((xcurr, scurr))
6 (∗ descend as in a binary tree search ∗)
7 RootedSearch(b)

BuildHand(T, b)
1 Rps←MakeDeque()
2 Rps.Push((T.root,MakeDeque()))
3 RootedSearch(b)

ObtainInitFinger(T )
1 BuildHand(T,−∞)

ForwardFingerSearch(b)
1 (∗ assumes hand is not at ∞ and xcurr.key < b ∗)
2 xcurr ← Rps.Front().node

3 if |Rps| ≥ 2
4 then (xrp, srp)← Rps.Front().next (∗ 2nd cell ∗)
5 if b ≤ xrp.key (∗ case (i) ∗)
6 then Increment()
7 ForwardSubTreeSearch(b)
8 return
9 (xrp, srp)← Rps.Pop() (∗ case (ii) and case (iii) ∗)

10 while |Rps| > 0 ∧ Rps.Front().node.key ≤ b

11 do (xrp, srp)← Rps.Pop()
12 Rps.Push((xrp, srp))
13 CompleteRightLeftSpine(xrp, srp)
14 Increment()
15 ForwardSubTreeSearch(b)

B Handling k-ary nodes

We only require a slight adjustment to the cells when we extend the hands to handle k-ary nodes.
In particular, instead of storing a pointer to a k-ary node x, we now also store the offset, which
indicates the sub-tree that contains the finger. For example, if the finger is under x[j], then x will
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appear on the Rps as (x, j) instead of just x. This is to reflect the fact that xj is the right parent
key. For concision, we will simply say xj in our discussion and a cell will be written as (xj , s). Here
we present the increment algorithm that has been adapted to handle k-ary nodes as an example of
how we can adapt our algorithms.

Increment()
1 (xj

curr, scurr)← Rps.Pop()
2 if j < k − 1
3 then Rps.Push(xj+1

curr, nil)
4 else if |Rps| > 0
5 then (xj

rp, srp)← Rps.Front()

6 ExtendRightLeftSpine(xj
rp, srp)

7 Rps.Prepend(scurr)

C In-order walk and databases

Typically we will not index every column in a database table. When a query involves columns that
are not indexed, we may need to scan the whole column. This corresponds to an in-order walk in
the B-tree that contains the actual table. The in-order walk algorithm in Section 3 is already an
improvement over the straightforward recursive solution asymptotically, since its O(1) time bound
is worst-case instead of amortized. However, it is not clear that in practice our algorithm will be
faster if we just use the simple implementation outlined in our pseudo-code.

We do want to briefly describe an observation about the hands and the idea of pre-fetching. In
particular, our in-order walk algorithm suggests a pre-fetching schedule that seems implementat-
able. We can lock the upper portion of the hands and all the nodes referenced by those cells in the
data cache (and as the height of the hand shrinks, we will also use pre-fetching to bring the lower
cells and their associated spine lists into the cache). This guarantees that accessing any cells in
that portion as well as the nodes referenced will not generate a cache miss. Also, we can use pre-
fetching in ExtendRightLeftSpine since the right-left spine srp will not be needed immediately.
Further, it is possible to do the eager walk “over-eagerly” by extending Invariant 3.2 to mandate
the full right-left spines to be stored for the top few cells. Finally, we can associate second level
spines to the cells in the spine lists. This corresponds to a very aggressive pre-fetching schedule
that guarantees all the nodes required in the near future are pre-fetched by the hands.

We note that, however, in practice more sophisticated trees are used in databases. For example,
B∗-trees is designed with fast scanning in mind. Since these trees use more space than a B-tree,
their cache performance may be worse than a simple B-tree with the hands. It will be interesting to
implement and benchmark the performance of using the hands and see what our theoretical result
would translate to in the real world.
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