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ABSTRACT
We consider an online version of the oblivious routing prob�
lem� Oblivious routing is the problem of picking a routing
between each pair of nodes �or a set of �ows�� without knowl�
edge of the tra�c or demand between each pair� with the
goal of minimizing the maximum congestion on any edge in
the graph� In the online version of the problem� we consider
a 	repeated game
 setting� in which the algorithm is allowed
to choose a new routing each night� but is still oblivious to
the demands that will occur the next day� The cost of the
algorithm at every time step is its competitive ratio� or the
ratio of its congestion to the minimum possible congestion
for the demands at that time step�
We present an algorithm that is �� � �� competitive with

respect to the best algorithm that uses a single routing for
the entire sequence of days �known as the optimal static
routing�� Our result is a strengthening of the recent result of
Azar et al ��� who gave a polynomial time algorithm to �nd
an oblivious routing with the best possible competitive ratio�
in that our algorithm achieves a competitive ratio arbitrarily
to close to that of Azar et al ��� while at the same time
performing nearly as well as the optimal static routing for
the given sequence of demands� �
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1. INTRODUCTION
Routing virtual circuits in undirected networks is a widely

studied problem� Given a graph G� an instance of the prob�
lem is a sequence of requests� where each request consists of
a source�sink pair �i� j� and a bandwidth requirement d�i� j��
For each request� the algorithm is required to specify a �ow
or path for routing tra�c from i to j� The goal is to mini�
mize edge congestion� or the total bandwidth consumed on
any link� In this paper we will be considering only the frac�
tional version of this problem �a routing is a collection of
�ows��
Algorithms designed for this problem can be broadly clas�

si�ed into two kinds� oblivious and adaptive� An oblivious
algorithm is one which determines a collection of �ows� one
for each source�sink pair �i� j�� without any knowledge of
the demands� An adaptive algorithm on the other hand�
on receiving the demand d�i� j�� picks a �ow for �i� j� based
on demands seen previously� As expected� adaptive algo�
rithms can obtain a 	better quality
 routing in comparison
to oblivious algorithms� However� oblivious algorithms are
attractive in that they can be computed in advance� have
low implementation overhead and can be implemented in a
fully distributed manner�
We use competitive analysis to judge the performance of

an algorithm� Given the sequence of demands d� let r�d be
the routing for which the maximum edge congestion is min�
imized� An algorithm �or� routing r� is called ��competitive
with respect to r�d� if the maximum congestion under r is at
most � times that under r�d �
R�acke��� showed that for every undirected graph G� there

exists an oblivious routing that is O�log� n� competitive for
any set of demands� Very recently� Azar et al� �� gave a poly�
nomial time algorithm that� given the graph G� computes
the routing with the best possible competitive ratio for that
graph using the ellipsoid method� We call this routing the
minimax optimal routing ��G�� and its competitive ratio�
the minimax optimal cost� We use this terminology because
the problem can naturally be thought of as an �exponential�
size� matrix game� in which the rows correspond to routings�
the columns correspond to sets of demands� and the matrix
entries contain the competitive ratio of that algorithm on
that input�
In this paper we consider a strengthening of Azar et al�s

result in the following way� Suppose that each day we are
faced with an oblivious routing problem on the same graph
G� As before� we want to be competitive against the optimal
routing� irrespective of the set of demands� However� if it
turns out the demands do have some particular structure� or



come from some non�adversarial distribution� then we would
like our algorithm to get the best possible competitive ratio
on those types of demands�
We formulate the problem as the following online game�

We have a network where requests are to be routed oblivi�
ously� However� the routing can be changed from day to day�
On the morning of day t� the network administrator chooses
an 	oblivious routing of the day
� given by the routing rt�
During the day requests arrive according to the vector of
demands dt and are routed according to rt� At the end of
the day the administrator incurs a cost ct� which is equal
to the competitive ratio of the routing rt with respect to
the optimal routing for demand vector dt� The goal of the
administrator is to minimize the average competitive ratio
over all days��

It is clear that choosing the minimax optimal routing �
on each day guarantees a cost �competitive ratio� which is
no more than the minimax optimal cost� Moreover� this
holds for every possible demand sequence fd�� d�� � � � g� How�
ever� it could be the case that for a typical demand sequence
D � fd�� d�� � � � g� using some routing r�D every day incurs
a signi�cantly lower total cost than using �� Thus� an ad�
ministrator using the minimax optimal routing would wish
he had used r�D� We call r�D the static optimal routing for
demand sequence D� For example� if all the demands dt are
the same� then the optimal routing is simply the one which
minimizes the congestion on dt� or r�dt �
We give an online algorithm that runs in polynomial time

and produces a sequence of routings rt such that for every
sequence D of demands the total cost incurred by the algo�
rithm is no more than �� � �� times the cost of the static
optimum routing r�D� so long as the sequence is su�ciently
�polynomially� long in n and ���� Notice that since the
static optimal cost never exceeds the cost of � on D� this
implies that the total cost of the routing produced by the
algorithm is never more than �� � �� times the total cost of
�� However� since the cost of the static optimum routing
can be signi�cantly better than the cost of � for some set of
demands D� the cost of routing produced by our algorithm
could be signi�cantly better than � as well�

It is interesting to compare our technique with that of
Azar et al� The latter use the Ellipsoid algorithm on the
space of all feasible routings� At every step� the routing cor�
responding to the center of the ellipsoid is considered� The
algorithm constructs� in polynomial time� the worst case de�
mand for that routing at that step� �That is� the separation
oracle for the Ellipsoid algorithm is a simulated optimal ad�
versary for the matrix game�� If the congestion under this
routing does not exceed the minimax optimal ��G�� then the
algorithm terminates� Otherwise� the worst case demand
acts as a violating constraint and reduces the space of the
routings geometrically� Our algorithm on the other hand�
uses a variant of the gradient descent algorithm� that also
receives a set of demands �not necessarily worst case� at ev�
ery time step� Although the gradient descent algorithm also
converges to the minimax solution if worst case demands are
given at every time step� it does so at a much slower rate
compared to Ellipsoid � O� �

��
� steps for a �� � �� approxi�

mation as opposed to the O�log �
�
� steps taken by Ellipsoid�

�We also consider other objectives� such as the sum of
squares of the competitive ratios� or minimizing the aver�
age subject to maintaining a worst�case guarantee of never
exceeding twice the minimax optimal�

However� the gradient descent algorithm has the additional
property that it converges to the best solution for that se�
quence of demands� whereas Ellipsoid does not� Thus� by
giving up a �� � �� factor� we are able to achieve this addi�
tional guarantee� and it is in this respect that our algorithm
outperforms the Ellipsoid algorithm�
Note that our goals follow a classic line of research in game

theory and machine learning� namely that of minimizing re�
gret in repeated games �� ��� ��� �� ��� Freund and Schapire
�� point out that the Weighted�Majority �WM� algorithm
of Littlestone and Warmuth ��� can be used for repeated
play in any ��player zero�sum game� and will perform nearly
as well as the best �xed strategy in hindsight� However� the
WM algorithm involves placing weights on the strategies of
the player using it �which are then dynamically adjusted
over time� and in our case there are exponentially many
such strategies� So instead we will draw on recent work of
Kalai and Vempala ��� and Zinkevich ��� who give algo�
rithms that are able to achieve the same types of guarantees
and yet� as we will show� can be applied in polynomial time
for the routing problem�

1.1 Related Work
The routing problem has been widely studied in both

adaptive and oblivious models� The best known adaptive
algorithm for general graphs is due to Aspnes et al��� who
give a log n competitive centralized algorithm� Awerbuch
et al�� achieve the same competitive ratio in a distributed
setting�
In the oblivious model� it is well known that determin�

istic approaches �which must select a single path for each
demand� perform very poorly in the worst case �� ���� This
motivates the use of randomization� A randomized oblivi�
ous routing algorithm speci�es a probability distribution on
the paths between i and j for every �i� j� pair� We will view
this as selecting a multi�commodity �ow on the graph� and
routing each packet probabilistically according to its �ow
densities�
Until recently� oblivious routing algorithms with good worst�

case guarantees were known only for speci�c types of net�
works ��� ���� However� R�acke ��� recently obtained a
rather surprising result which implies the existence of a good
randomized oblivious routing for every undirected graph�
Azar et al �� extend this work to give an algorithm based
on the ellipsoid method that �nds this minimax optimal
routing in polynomial time�
Our online oblivious variant of the problem is closely re�

lated to the online convex programming problem� de�ned
and studied by Kalai and Vempala ��� and Zinkevich����
The online convex programming problem is de�ned as fol�
lows� At each time step the algorithm is required to pick
a vector xt � F where F is a convex set� The adversary
then presents the algorithm with a convex function ct� The
cost incurred by the algorithm is ct�xt�� and the objective of
the algorithm is to minimize the sum of costs over all time
steps� This setting is closely related to the problem of pre�
diction and regression under linear loss functions �see �� ���
��� and references therein�� and the previously�mentioned
problem of designing nearly�optimal strategies for repeated
games ��� ��� We review the algorithm of Zinkevich ��� in
detail in Section � and adapt it to our setting�
The framework of online convex programming is general

enough that it allows us to consider several interesting ex�



tensions of the problem� For example� instead of minimizing
the total cost �in our case� the competitive ratio� over all
days� one can consider minimizing some convex function of
these costs� that penalizes high costs very heavily� Alterna�
tively� we can consider minimizing the sum of costs subject
to the constraint that the cost incurred by the algorithm is
no more than twice the minimax optimal cost� We discuss
these extensions in Section ��
The rest of this paper is organized as follows� We begin

with a description of the problem and notation in section ��
Section � describes an algorithm for the online convex pro�
gramming problem due to Zinkevich���� In section �� we
present our main result� a ��� ���competitive algorithm for
the online oblivious routing problem� In section �� we extend
our basic algorithm to other cost functions and optimization
objectives� We conclude in section ��

2. FRAMEWORK AND NOTATION
Let G � �V�E� be a directed graph on n vertices� For a

vertex v� IN�v� denotes the set of incoming edges to v� and
OUT �v� denotes the set of outgoing edges from v� Let V �

denote the set of commodities f�i� j� � i� j � V� i �� jg�
A route for commodity �i� j� � V � is a unit �ow from

vertex i to vertex j� In other words� it is a function r � E �
�� �� satisfying the following linear inequalities�

P
e�OUT �v� r�e��

P
e�IN�v� r�e� � � �v �� i� jP

e�OUT �i� r�e� �
P

e�IN�i� r�e� � �P
e�OUT �j� r�e��

P
e�IN�j� r�e� � ��

���

A routing is a collection of n�n � �� unit routes� one for
each commodity� r � �ri�j��i�j��V � � We denote by r�e� the

vector of values of ri�j�e� for each �i� j� � V �� Let F denote
the set of all valid routings in the graph G� Note that F is
a convex set� since any convex combination of valid routings
is also a valid routing�

A demand vector is a vector of n�n � �� non�negative
terms� We will index such a vector by pairs �i� j� � V ��

Given a demand vector d and a routing r� the �ow on an
edge e � E is given by fd�r�e� �

P
�i�j��V � d�i� j�ri�j�e� � d �

r�e�� where ��� denotes the dot product between two vectors�
The congestion of a routing r� given a demand vector d� is
the maximum �ow on any edge e� Cd�r� � maxe�E fd�r�e��

The cost incurred by a routing r on demand vector d is
given by the ratio of the routing�s congestion to the mini�
mal possible congestion for demand vector d� costd�r� �

Cd�r�
min

r�
Cd�r�� � Note that the cost of any routing is at least ��

The oblivious routing problem is to �nd a routing � that
achieves the minimum possible cost over all demand vectors�
That is� � � argminr maxd costd�r�� We call � the mini�
max optimal routing� This is a widely studied notion of
optimality for the routing problem and recently Azar et al��
developed a polynomial time algorithm to �nd this routing
for general networks�

We consider an online version of the problem in this paper�
The online oblivious routing problem is stated as follows�
At each time step t� the algorithm �xes a routing rt� that is
to be used to route demand in that time step� The algorithm
then receives a demand vector dt� The cost of the algorithm
is given by

P
t costdt�r

t�� where costdt�r
t� is the cost at

time step t�
We use competitive analysis to study the performance of

our algorithms for oblivious routing� Given a sequence of
demands D � fdtg� let r�D be the routing that minimizesP

t costdt�r�� We call such a routing the static optimal
routing for demand sequence D�
We call an algorithm ��competitive with respect to a

static optimal routing if it satis�es the following�

X
t

costdt�r
t� � �

X
t

costdt�r
�
D� � � �D

where � is a constant independent of D� The main result
of this paper is as follows�

Theorem �� After n�

��
steps� the Greedy Projection algo�

rithm is �������competitive with respect to the optimal static
routing�

Note that by de�nition�
P

t costdt�r
�
D� �

P
t costdt����

Thus any algorithm that is ��competitive with respect to a
static optimal routing� is also ��competitive with respect to
the minimax optimal routing ��

3. ONLINE CONVEX PROGRAMMING
In this section� we review some work on Online Convex

Programming� that is useful in our algorithms and analysis�
We begin with some de�nitions�
A set F � IRn is convex if for all x� y � F and for all

� � �� ��� �x������y � F � For a convex set F � a function
f � F � IR is convex if for all x� y � F and all � � �� ���
�f�x� � ��� ��f�y� 	 f��x� ��� ��y��
An online convex programming problem consists of a fea�

sible set F � IRn and a sequence of cost functions g �
fg�� g�� � � � � gT g where each gt � F � IR is a convex func�
tion� At every step� the online algorithm is required to pick
an element xt � F � and is then presented with the func�
tion gt� The algorithm incurs a cost of gt�xt� at time step
t� The goal of the online algorithm is to minimize the costP

t g
t�xt��

Given a sequence of cost functions g� let the static optimal
solution x�g � F be the element minimizing

P
t g

t�x�� The
regret of an algorithm is the di�erence between costs of the
algorithm and the static optimal solution for cost functions
g�

regret�ALG� �
X
t

gt�xt��
X
t

gt�x�g�

Zinkevich��� give a deterministic algorithm for the online
convex programming problem� that achieves a low regret of
O�
p
T �� with the constant depending on F and g� Before

describing the algorithm� we need some more notation� Let
jjxjj denote the length

p
x � x of a vector x� Let 	�x� y� �

jjx� yjj denote the distance between two vectors x� y � F �
and jjF jj � maxx�y	�x� y� be the diameter of set F � Let 
t
denote the learning rate of the algorithm� to be speci�ed
later� We denote by rg�x� the gradient of a function g at
x�
The Greedy Projection Algorithm� The algorithm

starts with an arbitrary vector x� � F � At each step t� ��
the algorithm �rst performs a gradient descent � it moves
in the direction of the previously seen cost function� In case
this point lies outside the feasible region F � the algorithm
projects it back into the set F � by picking a point in F



closest to this point� The following equations describe the
algorithm�

yt � xt � 
trgt�xt�
xt�� � argmin

x�F
	�x� yt�

We have the following theorem�

Theorem �� For the online convex programming problem
�F� fg�� g�� � � � g�� the regret of the Greedy Projection algo�

rithm with 
t � t���� after T time steps is at most

p
T � ��

�

�
jjF jj�� max

t�x�F
jjrgt�x�jj��

Note that although the performance of the above algo�
rithm is stated in terms of regret� we can convert this to
a competitive ratio by using a lower bound on the cost of
static optimal solution� Because the result ��� is not yet
published� we provide a self�contained proof for the case of
linear cost functions g �which is all we need for our main
result� inside the proof of Lemma ��

4. ONLINE OBLIVIOUS ROUTING
In this section we show that the online oblivious routing

problem can be converted to an online convex programming
problem�
Recall that the cost of the online algorithm at step t is

given by
C
dt
�rt�

minr Cdt �r�
� Let ��dt� � minr Cdt�r�� Consider the

demand vector d
t
� dt

��dt� � Notice that the optimal conges�

tion on the demand vector d
t
is exactly �� Consequently�

although the �ow is reduced by a factor of ��dt�� the cost
remains the same� costdt�r

t� � cost
d
t�rt�� Henceforth we

will assume that the algorithm receives the demand vector

d
t
at time step t�
The cost incurred by the algorithm at any step is a maxi�

mum over jEj convex functions � each representing the �ow
on an edge e � E� We next describe how to convert this
function into a linear function� Let et be the maximum con�
gested edge at time t� et � argmaxe�Efdt�r�e�� De�ne ct to

be an n�n���jEj dimensional vector given by the following�

cte�i�j �

�
d
t
�i� j�� if et � e

�� otherwise
���

The following lemma characterizes the cost of the algo�
rithm in terms of ct�

Lemma �� The cost of the algorithm at step t is given by
costdt�r

t� � ct � rt�

Proof� By de�nition of ct� ct � rt � d
t � rt�et� � f

d
t
�rt

�et��

The latter is equal to maxe�E f
d
t
�rt

�e� � costdt�r
t� by the

de�nition of et�

Now consider the static optimal routing r�D �
� The cost

incurred by r� with respect to c�� c�� ��� isX
t

ct�r� �
X
t

d
t�r��et� �

X
t

max
e�E

f
d
t
�r�

�e� �
X
t

costdt�r
��

So we get the following lemma�

�We will drop the subscript D when it is obvious from the
context�

Lemma �� The cost of the static optimal routing r� at
step t is bounded below by ct � r��

Lemmas � and � together give the following result�

Theorem �� An algorithm that is ��competitive for the
online convex programming problem �F � c� as de�ned above�
is ��competitive against the static optimal routing for the
demand vectors D�

Now our algorithm is an application of the Greedy Projec�
tion algorithm to the problem �F � c�� Note that r�ct�x� � ct

�t� The algorithm is as follows�

�� Pick r� � F arbitrarily

�� At step t� ��

�a� Compute ct from dt using equation ����

�b� Let yt � rt � 
tc
t with 
t � �p

t
�

�c� Pick rt�� � F to be a �� � �t� approximation
to argminx�F jjx� ytjj� using the Projection algo�
rithm de�ned below� where �t � �

t
�

We complete our description of the algorithm by giving a
projection algorithm for step �c�
The projection algorithm� Given a vector y and real

number �� the algorithm �nds a vector x � F such that the
squared distance of this vector from y is within � � � of the
minimum squared distance from y to F � The vector x is
given by the following quadratic program�

min �x� y� � �x� y� subject to x � F
This can be rewritten as the following Semi�De�nite Pro�

gram�

min t subject to x � F
�

I �x� y�
�x� y�T t

�
	 �

The above program can be solved to within as small an er�
ror as desired in polynomial time� using the ellipsoid method
for semi�de�nite programming ����

Theorem � �Theorem ��� in ���	
� Let K be a con�
vex body in IRn with B�r� 
 K 
 B�R�� for some � � r � R�
where B�r� is a ball of radius r around the origin� Assume
that we have a separation oracle for K� Let c � IRn and
� � � be given� Then� we can �nd x � K with cTx 	 cTz���
� z � K� using the ellipsoid algorithm� with the number of
calls to the oracle and computation time bounded by a poly�
nomial in log �R�r�� log ������ and n�

This completes the description of our algorithm� We start
the analysis with a technical lemma for the projection pro�
cedure �proven in the appendix��

Lemma �� Given a vector y and �  �
� � let r be the so�

lution returned by the Projection algorithm� Then for any
x � F � we have jjx� rjj� � �� � ���jjx� yjj��

Our main result is as follows�



Lemma ��
P

t�r
t � r�� � ct � �n�

p
T � �

Proof� We get that over T steps�

X
t�T

�rt � r�� � ct

�
X
t�T

�
rt � yt

�
� r�

�
� ct �

X
t�T

�
rt � yt

�

�
� ct

�
�

�

X
t�T

�


t
�rt � yt � �r�� � �rt � yt� �

�

�

X
t�T


tjjctjj�

�
�

�

X
t�T

�


t

�jjrt � r�jj� � jjyt � r�jj��� �

�

X
t�T


tjjctjj�

� �

�

X
t�T

�


t

�jjrt � r�jj� � ��� ���jjrt�� � r�jj��

�
�

�

X
t�T


tjjctjj�

� �

�
T
jjFjj�� �

�
jjFjj�

X
t�T

�


 t
�t �

max jjctjj�
�

X
t�T


t

Here� the second step follows from the fact that ct �
�
�t
�rt� yt�� and the fourth inequality follows from lemma ��

The �fth step follows from the de�nition of jjFjj��
Using 
t � �p

t
and �t � �

t
� we get that

P
t�r

t � r�� � ct �p
T � �jjFjj�� �max jjctjj�pT � ��
Next we bound the terms max jjctjj� and jjFjj�� First con�

sider jjFjj�� This is less than �maxr�F jjrjj�� Each term in
the vector r � F has value at most �� by de�nition� More�
over� the sum of all terms� or the total �ow in this routing
r� is at most n�� This is because each commodity with de�
mand � contributes at most n to the total �ow in the graph	 �
Now jjrjj� � maxi�j�e ri�j�e�

P
i�j�e ri�j�e� � n�� So we have

jjFjj� � �n��
Similarly� ct has n� non�zero terms� corresponding to the

scaled demands d
t
� Since the �ow on any edge due to the

scaled demands is at most �� each scaled demand is at most
n� Moreover� the total demand can be at most n�� Thus we
get max jjctjj� � n��
Using jjFjj� � �n� and jjctjj� � n�� we get

P
t�r

t�r���ct �
�n�

p
T � ��

Using the fact that the competitive ratio of the optimal
routing is at least � in every step� we get that the algorithm
converges in a polynomial number of steps�

Proof of Theorem �� From theorem � and lemma � we
have cost�ALG� � cost�r�� � �n�

p
T � �� Using the fact

that the cost of r� is at least � at every step� the algo�
rithm converges after �

��
n
 steps� and we get cost�ALG� �

�� � ���cost�r���

5. EXTENSIONS
Observe that although the algorithm described in the pre�

vious section achieves a good competitive ratio with respect

	If routed over a single path� each commodity contributes
at most n to that path� and a �ow is simply a convex com�
bination of paths�

to the static optimal solution in the long term� it may per�
form very poorly in the short term� Motivated by this ob�
servation� in this section we extend our result to other cost
functions that penalize solutions which are expensive in the
short term�
We �rst consider penalizing high congestion more aggres�

sively by charging the algorithm the p�th power of the max�
imum congestion at any time step� In other words� the cost

at time t is given by costdt�r
t� �

�C
dt
�rt�

��dt�

	p
�

As before� we need to de�ne an appropriate cost vector ct�
The high level idea is as follows� We pick a vector ct that
has the property that the cost of the algorithm is equal to
ct �rt� whereas the cost of any other routing r is at least ct �r�
This would ensure� along the lines of lemmas � and �� that
an algorithm that is competitive with respect to �F � c�� is
also competitive with respect to the static optimal solution�
Now the cost of the algorithm can be written as costdt�r

t� �
z �d � r�e�r ��p� where z is some constant� In other words� it is
simply a polynomial of degree p in rt� Thus� as before� an
appropriate choice for ct is the gradient of this polynomial
at rt� Now we can simply apply our Greedy Projection al�
gorithm� as de�ned in the previous section� to the problem
�F � c� and obtain a competitive solution as before� However�
our rate of convergence is much slower in this case� because
jjctjj� in this case can be as large as O�np���� Picking the
parameters 
t and �t optimally� we get that the Greedy Pro�
jection algorithm given a ��� �� approximation to the static
optimal routing in O� �

��
n��p� steps�

Next we consider a more strict restriction on the algo�
rithm� it should never incur a cost more than twice that of
the minimax optimal cost� In other words� let cost��� �
maxd costd��� be the worst possible cost of the minimax
optimal strategy �� Then� the algorithm should never incur
a cost more than �cost���� Note that in this case our rout�
ing is only guaranteed to be competitive with respect to the
best static routing that does not incur a cost of more than
�cost��� for any vector of demands�
In order to achieve this� the algorithm �rst computes the

minimax optimal cost using the algorithm of Azar et al���
This is known to be at most O�log� n�� Then� we run the
Greedy Projection algorithm as before� with the modi�ca�
tion of picking each routing from a smaller set F � 
 F � The
set F � is given by the following system of inequalities in
addition to the ones that de�ne F �equation ���

fd�x�e� � �cost��� �e � E� d � D ���

Note that the set F � is a set de�ned by �possibly in�nitely
many� linear inequalities� We can use the ellipsoid method�
just as in Section �� in the projection step of the algorithm�
We get the same competitive ratio as given in theorem ��

6. CONCLUSIONS
In this paper� we applied ideas from repeated games and

online machine learning to the oblivious routing problem�
We developed an algorithm that extends the result of Azar
et al ��� in that it performs nearly as well as the best static
routing� even if the demands turn out to be such that the
best static routing is better than minimax optimal� It would
be interesting to improve the rate of convergence of our al�
gorithm� and to see how well it performs in practice�



7. REFERENCES

�� J� Aspnes� Y� Azar� A� Fiat� S� Plotkin� and
O� Waarts� On�line routing of virtual circuits with
applications to load balancing and machine
scheduling� Journal of the ACM� �������������� �����

�� P� Auer� N� Cesa�Bianchi� Y� Freund� and R� E�
Schapire� The non�stochastic multi�armed bandit
problem� SIAM Journal on Computing� ������������
�����

�� B� Awerbuch and Y� Azar� Local optimization of
global objectives� Competitive distributed deadlock
resolution and resource allocation� In Foundations of
Computer Science� pages �������� �����

�� Y� Azar� E� Cohen� A� Fiat� H� Kaplan� and H� R�acke�
Optimal oblivious routing in polynomial time� In
Proc� of ACM Symposium on the Theory of
Computation� ����� to appear�

�� D� Blackwell� An analog of the minimax theorem for
vector payo�s� Paci�c Journal of Mathematics� ������
�����

�� A� Borodin and J� E� Hopcroft� Routing� merging� and
sorting on parallel models of computation� Journal of
Computer and System Sciences� �������������� �����

�� M� Bowling and M� Veloso� Multiagent learning using
a variable learning rate� Arti�cial Intelligence�
������������ �����

�� N� Cesa�Bianchi� Analysis of two gradient�based
algorithms for on�line regression� Journal of Computer
and System Sciences� �������������� �����

�� Y� Freund and R� Schapire� Adaptive game playing
using multiplicative weights� Games and Economic
Behavior� ���������� �����

��� J� Hannan� Approximation to Bayes risk in repeated
play� In M� Dresher� A� Tucker� and P� Wolfe� editors�
Contributions to the Theory of Games� volume III�
pages ������� Princeton University Press� �����

��� C� Kaklamanis� D� Krizanc� and T� Tsantilas� Tight
bounds for oblivious routing in the hypercube� In
Proc� of ACM Symposium on Parallel Algorithms and
Architectures� pages ������ �����

��� A� Kalai and S� Vempala� Geometric algorithms for
online optimization� Technical Report
MIT�LCS�TR����� MIT Laboratory for Computer
Science� �����

��� F� T� Leighton� Introduction to Parallel Algorithms
and Architectures� Arrays� Trees� Hypercubes� Morgan
Kaufmann� �����

��� N� Littlestone and M� K� Warmuth� The weighted
majority algorithm� Information and Computation�
��������������� �����

��� L� Lov asz� Semide�nite programs and combinatorial
optimization �lecture notes��
http�!!research�microsoft�com!users!lovasz!semidef�ps�

��� H� R�acke� Minimizing congestion in general networks�
In Foundations of Computer Science� pages ������
�����

��� S� Singh� M� Kearns� and Y� Mansour� Nash
convergence of gradient dynamics in general�sum
games� In ��th Conference on Uncertainty in Arti�cial
Intelligence� �����

��� L� G� Valiant and G� Brebner� Universal schemes for
parallel communication� In Proc� of ACM Symposium
on the Theory of Computation� pages �������� �����

��� M� Warmuth and C� Gentile� Proving relative loss
bounds for on�line learning algorithms using bregman
divergences� In Tutorial at Computational Learning
Theory 	COLT
� �����

��� M� Warmuth and J� Kivinen� Additive versus
exponentiated gradient updates for linear prediction�
Journal of Information and Computation� ������������
�����

��� M� Zinkevich� Online convex programming�
Manuscript� in submission� �����

APPENDIX
Proof of Lemma �� Consider a perpendicular from y to the
line joining x and r� Let b be the point of intersection of the
perpendicular and the line� Note that b lies between x and
r� otherwise� jjx� rjj  jjx� yjj and we are done�
Then� b � F because F is a convex set� By the ap�

proximation guarantee of the projection algorithm� we have
jjy� rjj � p

� � �jjy� bjj� Thus� jjb� rjj � �jjy� bjj � �jjy�xjj�
because jjy� bjj � jjy� xjj by de�nition� Again by de�nition
we have jjx� bjj � jjy�xjj� Thus� jjx�rjj� jjx� bjj� jjb�rjj �
�� � ��jjy� xjj and we get the result�
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