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Abstract

We show that if r = cn'/® and members of (I"!) are chosen sequentially to form an inter-

secting hypergraph they will, with limiting probability (1 4+ ¢*)™", be of maximum size (::i)

1 Introduction

An intersecting hypergraph is one in which each pair of edges has a nonempty inter-
section. Here, we consider r-uniform hypergraphs which are those for which all edges
contain r vertices.

The motivating idea for this paper is the classical Erdés-Ko-Rado theorem [4] which
states that a maximum size r-uniform intersecting hypergraph has (:‘:11) edges if
r < n/2 and (7) edges if r > n/2. Furthermore, for r < n/2 any maximum-sized

family must have the property that all edges contain a common vertex.

In the last four decades this theorem has attracted the attention of many researchers
and it has been generalized in many ways. It is worth mentioning for example the
famous conjecture of Frankl on the structure of maximum t¢-intersecting families
in a certain range of n(¢,r) which was investigated by Frankl and Fiiredi [6] and
completely solved only a few years ago by Ahlswede and Khachatrian [1]. Another
type of generalization can be found in [2].

The first attempt (and as far as we know the only one) to ‘randomize’ this topic
was given by Fishburn, Frankl, Freed, Lagarias and Odlyzko [5]. Also note that
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other random hypergraph structures were considered already by Rényi e.g., in [7], he
identified the anti-chain threshold. Here we try to continue this line of investigation.
Our goal is to describe the structure of random intersecting systems. More precisely,
we consider taking edges on-line; that is, one at a time, ensuring that at each stage,
the resulting hypergraph remains intersecting. I.e., we consider the following random
process: Choose e; € ([Z}). Given F; := {ey, ..., e;} choose e;,; uniformly at random
from among the edges that intersect every edge of F;. Let F be the family produced
by this procedure.

2 Definitions

Let [n] be the set of vertices of the hypergraph H.

A p-star is a A-system with a one-element kernel; i.e., any pair of hyperedges have
the same one-element intersection. A single edge is a 1-star. We say that H is fized
by x if every member of H contains x.

For any sequence of events &,, we will say that &, occurs with high probability (i.e.,
whp) if lim,, ,., Pr(&,) = 1.

3 The Erdos-Ko-Rado Threshold

The following theorem determines the threshold for the event that edges chosen online
to form an intersecting hypergraph will attain the Erdés-Ko-Rado bound.

Theorem 1. Let &,, be the event that {|F| = (:fj)} = {F fizes some element x €
[n]}. Forr < n/2, this is equivalent to F fizing some = € [n]. Then if r = c,n'/3 <
n/2,

1 ¢, — 0
. _ 1
n11_>n010 Pr(&,,) = oa Cn
0 Cp — 00

Note: If r > n/2, then all of ([:f]) is an intersecting hypergraph. If r = n/2 then for
any H chosen online to be an intersecting hypergraph, it will have size

(2-1) =3)

In the case of r = n/2, however, a vertex will not necessarily be fixed for even n > 4.



4 Proof of Theorem 1

4.1 Main propositions
Before we prove relevant propositions, we need to define some events.

e Let A; be the event that F; is an i¢-star, for i > 1.
e Let B; be the event that {ni_,e; # 0}, for i > 3.

e Let C be the event that es contains all of e; N ey as well as at least one vertex in
(e1\ e2) U (e \ e1).

e Let D be the event that there is some r-set that intersects all currently chosen
edges but fails to contain any vertex in their common intersection.

Proposition 1. If r = o(n'/?) then

Pr(A;) =1+ o(1).

&
The fulcrum on which Theorem 1 rests is Proposition 2.
Proposition 2. If r = o(n'/?) then
1 1
Pr(A;) = (H; o(1)
1+ —=(1+o(1))
&
Proposition 3. If r = o(n?®) and m = O(n'/?/r) then
2.2
Pr(dy | A9 = exp {7+ o(1)
4dn
¢
Remark 1. Observe that Propositions 1, 2, 3 imply that if r = d,n'/*, then the

probability of the event A,,1 approaches exp{—d*/4} as d,, — d. Furthermore, the
occurrence of A..1 immediately implies As for s >r + 1.



Proposition 4. If r = o(n'/?) then
Pr(C| Az) = o(1).

¢
Proposition 5. If r = o(n®?®) then
Pr(Bs, | Ay) =1—o0(1).
¢
Proposition 6. If r = o(n?/®) then
Pr(D | Bs., A4) = o(1)
&
Proposition 7. If r = w(n'/?) (i.e. r/n'/? = 00) and r = o(n*?) then
Pr(B,) = o1)
&
Proposition 8. If r = w(n'/?) and 2log,n < m = o(e”"/™) then
Pr(B,,) = o(1).
¢

4.2 Using these propositions

Case 1: r < n!'/3logn.

Suppose first that ¢, — ¢. Then Proposition 1 shows that A, occurs whp. Given
As there are 3 disjoint possibilities

As U Bs UC. (1)

Proposition 4 shows that the conditional probability of C tends to zero. Proposition
2 shows that A3 occurs with limiting probability TICS and so given A, the probability

of Bs tends to % If B3 does not occur then F cannot fix an element.
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Suppose then that Az occurs and e; Nex Nes = {v}. We use Proposition 3 with
m = 4 to show that A4 occurs with conditional probability 1 — o(1). Then, given Ay
we can use Proposition 5 to show that Bs, occurs whp and Proposition 6 to show
that with conditional probability 1 — o(1), F must fix v.

If ¢,, — 0 then A3 occurs whp and we conclude as in the previous paragraph that
with conditional probability 1 — o(1), F must fix v, where e; Nes Ne3 = {v}.

Now assume that ¢, — co. We still have A, occuring whp, but now Ajs occurs whp.
Using decomposition (1) and Proposition 4 to rule out event C we see that B; occurs
whp and so F cannot fix any element.

Case 2: n'/3logn < r < n'/?logn.
Here we use Proposition 7, which immediately gives that whp F3 has no vertex of
degree 3; thus F cannot fix any element.

Case 3: n'/2logn <r < n/2.
In this case, we apply Proposition 8 with m = exp { ’ } and we see that

r-
3n

pr(e) =0 (o] 22 }) ot

So F,, fails, whp, to have a vertex of degree m, in which case F cannot fix any
element. O

5 Proofs of Propositions

5.1 Proof of Proposition 1

First we see that
Pr(4,) = 1. (2)
Prids | A) — oot 3)




5.2 Proof of Proposition 2

Continuing as in (3),

(nfi(rfll)fl)
= > 2. 4
GHESETE .

Pr (Ai—i—l | .Az) =

For ¢ > 2, the quantity NN; is the number of r sets that intersect all of F; but fail to
contain the one-vertex kernel of F;. Thus,

(r_l)i<n—i(r—1)—1>SNiS(T_l)l(n—i—.l)‘ 5)

r—1 r—1

The lower bound comes from taking a single vertex (not the kernel) from each of
the edges and r — ¢ vertices from the remainder of the vertex set. The upper bound
comes from taking one vertex (not the kernel) from each of the edges and r — ¢ other
non-kernel vertices.

Simple computations give, for r = o(n'/?),

Ny = (1401 =2 <”_1>. (6)

Ny < (1+o(1))(”_1). (7)

("TUIPTY = avean(M2)). 0

It follows from (4), (6), (7) and (8) that

1+o(1)

Pr(A; | Ay) = _ .
r(As [ A2) 1+ (14 0(1))

Proposition 1 then gives that

5.3 Proof of Proposition 3

We estimate for 3 < ¢ < r:

)




It then follows from (4), (5) and (10) that for 3 <7 <,

(nfi(rjll)fl)
IR GHITEE C)
r—1 nzfl
2'7,,2 Z'27,.3 7,.21'—1
- 1_%”)(?*7&1)' (11)

Equation (11) implies that

Pr(A,.1]A;s) = HPI‘(Ai+1 | A;i)
i=3

m 2'7,.2 Z’27,.3 ,,421‘71
= 1-— 40— +—
(-5 0 (5 +5))

=3
m 2 Z'27,.4 7,.21 1
- Hexp{——+0 <—2+ z—1>}
pale n n
2,.2
= exp{— in +o(1)}
(Il
5.4 Proof of Proposition 4
A simple computation suffices:
2r(173) 2r? r?
PI'(C|A2)§ n_1 i2§ S 1:O(g)
(7’71) n—2r (r—l)
(Il

5.5 Proof of Proposition 5

Assuming that both A4 and B; occur for ¢ > 4, there are at most (r — 1)4(:1) r-sets
which do not contain v and which meet ey, ey, €e3,e4. On the other hand there are

("_1) — 1 r-sets which contain v and are not edges of F;. As a result, for i > 4,

r—1
(r=1'Go) _ 27

C)-i —ond

Pr(Bi, | Bi, Ay) < (12)



Thus
3r—1
PI‘(BgT | A4) = H PI‘(BH_l | Bi,A4)

1=4

v
—
|
|

5.6 Proof of Proposition 6

Assume that B3, N A4 occurs and that v is the unique vertex of degree 3r in Fj3,.. We
show that whp v € ¢; for i > 3r.

Claim 1. Suppose that Bs,. N Ay occurs. Then e; = e;\{v},1 <i < 3r is a collection
of 3r randomly chosen (r — 1)-sets from [n] \ {v}.

The claim can be argued as follows: e; is chosen uniformly from all r-sets which meet
e1,es,...,e_1. If we add the condition v € e; i.e. B; occurs, then e; is equally likely
to be any such r-set containing v. a

Recall that D is the event that there is an r-set which meets all edges but does not
contain the kernel. Then

Pr(D | By, Ai) < (n;1> (1 ) (Z"})l)y

[\
~
ME
—

5
7 N\
S
I3,
)
=
~_

@

<
O
5.7 Proof of Proposition 7
We show that Pr(Bs) = o(1). We write
Pr(B;) = i f(i)g(i) (13)
i=1
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where

and
g(i) = Pr(Bs|le;Nex| =1)

0~
() —2(7)+ (7

Now for 0 < s < 2r we have

(()) B ﬁ<l_nia‘>

Furthermore,
OCD _ r 0D )
N G
< Tmre ()
Thus ) . (1)
. r +o
f(2) il(n — 2r) ' exp{% -1

Using (16) in (15) we see that

1—exp{—%+0(?’;—32)}

g(i) = ‘
1 —2exp {—% +0 (;—Z)} + exp {——r@;ﬂ) +0 (2—3)}

2+o(x)

(L-ep{-5})"

< (1+0(1))

(14)

(15)

(16)

(17)



So,

S sy < 1oy L) 322,71_% (5 +o(i)

i=1 (exp {T2 } — 1

= 0 eXp{%} ﬁexp{i}

(exp {5} —1)m* =2

e (— (1_exp1{—§}>3>

= o(1).

5.8 Proof of Proposition 8

Consider m members of ([Z]) being chosen at random (without replacement).

The probability that these m edges fail to form an intersecting family is at most

() <5 (-0 < Fen{-T)
neev )

For r = w(y/n) we can think of F,, having the same distribution as m randomly
chosen r-sets, conditional on the event of probability 1—o0(1) that F,, is intersecting.

Let us take

Using r < n/2, the probability that F,, has a vertex of degree m is at most
1 2 n—1)\ " 2
sl () = olfsf) e
2
= 0 <exp {——}) +n2 ™
3n

6 Open Problem

It is known that a maximal intersecting system, i.e, a system to which we can not add
any additional edge without making it non-intersecting, may have various structures.
Thus we finish by posing the following problem.

Problem: What is the structure of F in different ranges of n'/® < r < n/2?
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