
On the connections between backdoors, restarts, and
heavy-tailedness in combinatorial search

(Extended Abstract�)

Ryan Williams1 , Carla Gomes2, and Bart Selman2

1 Computer Science Dept., CMU, Pittsburgh, PA 15213-3891
ryanw@cs.cmu.edu

2 Dept. of Computer Science, Cornell University, Ithaca, NY 14853
{gomes,selman}@cs.cornell.edu

1 Introduction

Recent state-of-the-art SAT solvers can handle hand-crafted instances with hundreds of thousands of
variables and several million clauses. Only a few years ago, the ability to handle such instances ap-
peared completely out of reach. The most effective complete solvers are generally based on Davis-
Putnam-Loveland-Logemann style search procedures augmented with a number of special techniques,
such as clause-learning, non-chronological backtracking, lookahead, fast unit-propagation, randomiza-
tion, and restart strategies. The progress in this area has largely been driven by experimental work
on diverse sets of benchmark problems, including regular SAT competitions. Given the tremendous
advances in recent years, this has clearly been a highly successful approach. One key open area of
research is to obtain a better understanding as to why these methods work so well. In this paper, we
hope to advance our understanding of the effectiveness of current techniques and analyze what features
of practical instances makes them so amenable to these solution methods. Of the many enhancements
of DPLL, we will focus our attention on the interplay between certain special features of problem
instances, polytime propagation methods, and restart techniques. This analysis is clearly only part of
the full story, since other enhancements, such as clause learning and non-chronological backtracking,
provide additional power to these solvers.

In order to characterize hidden structure in problem instances, we introduced a notion of a spe-
cial subset of variables, called the backdoor variables [21]. A set of variables forms a backdoor for a
problem instance if there a value assignment to these variables such that the simplified formula can be
solved in polynomial time by the propagation and simplification mechanism of the SAT solver under
consideration. Another way of stating this is to say that after setting the backdoor variables the simpli-
fied formula falls in a polynomially solvable class. Note however that this class may not have a simply
syntactic characterization.

There is no a priori reason why backdoor sets are interesting. However, we have observed that
structured problem instances can have suprisingly small sets of backdoor variables. For example, the
logistics-d planning problem instance (log.d.cnf) has a backdoor set of just 12 variables, com-
pared to a total of nearly 7,000 variables in the formula. More specifically, there is a setting to these
variables, such that the remaining formula is solved immediately by the polytime propagation tech-
niques of the SAT solver, satz [14]. We have found similarly small backdoors for other structured
problem instances, such as those from bounded model-checking domains. Moreover, other work has
identified classes of formulas that do not appear to have small backdoors. For example, for random
3SAT problems, the minimum backdoor size appears to be a constant fraction (roughly 30%) of the
total number of variables [11]. This may explain why the current DPLL based solvers have not made

� This paper complements the work reported in [21]. In [21] we formally introduced the notion of backdoor and
characterize the complexity of several algorithms designed to take advantage of backdoors, including restart
strategies. In this paper, we focus on the connection between heavy-tails and backdoors.

significant progress on hard randomly generated instances. (Hard random 3-SAT instances with more
than 400 variables are out of reach of most complete solvers. See also analysis in [1].)

Backdoor variables are related to the notion of independent variables [20, 5]. In fact, a set of inde-
pendent variables of a problem also forms a backdoor set (provided the propagation mechanism of the
SAT solver, after setting the independent variables, can effectively uncover the remaining variable de-
pendencies). In practice, backdoors can still be quite a bit smaller than the set of independent variables.
For example, in the logistics planning domain, the set of independent variables is given by the number
of operators applicable at each time step. This set of variables will generally be much larger than the
minimal backdoor set of 12 variables, mentioned earlier. Intuitively, a minimal backdoor also incorpo-
rates a notion of critical variables, i.e., those variables that capture some of the critically constrained
resources of the original problem.3

Once a (small) backdoor set has been identified, the SAT solver can restrict its search to the setting
of those variables, leading to a 2kpoly(n) search for a backdoor with k variables, and poly(n) captur-
ing the polynomial propagation after setting the backdoor variables. For small k, in particular of size
O(log(n)), this leads to a very effective overall search. (Of course, in practice, a small backdoor set, if
it exists, still needs to be uncovered by the SAT solver itself.) In [21], we show that even when taking
into account the cost of searching for backdoor variables, one can still obtain an overall computational
advantage by focusing in on a backdoor set, provided the set is sufficiently small. Heuristics, incor-
porated in many in current SAT solvers, also implicitly search for backdoor variables, by uncovering
those variables that cause a large amount of unit-propagation.

The notion of backdoor came about in the context of our study of heavy-tailed behavior as observed
in backtrack style search [10, 9]. Heavy-tailed distributions provide a justification of why restarts are
effective, namely to prevent the search procedure from getting stuck in unproductive portions of the
search space that do not contain solutions. Such distributions also imply the existence of a wide range
of solution times, often including short runs. For example, [4] proposed a formal model of heavy-tailed
behavior for combinatorial search, characterized by an infinite mean, yet the model has a reasonable
probability of finding solutions by searching small sub-trees of sizes 2, 2 1, 22, · · · , 2k nodes (for small
k). This is where backdoors come in: intuitively, a small backdoor explains how a backtrack search can
get “lucky” on certain runs, where backdoor variables are identified early on in the search and set the
right way. (Below we also introduce a notion of “strong backdoor” which explains short, unsatisfiable
runs.) In fact, we can now provide a detailed mathematical model explaining heavy-tailed behavior
(Pareto-like tails) in backtrack search as function of the size of a minimal backdoor set.

Several researchers have demonstrated the effectiveness of randomization and restart strategies for
solving real-world applications. For example, the work of Marques-Silva et al. has shown the success
of such techniques, combined with learning, for Electronic Design Automation ([18, 2, 16]). Random-
ization and restart strategies are now an integral part of many current SAT solvers ([3, 8, 13, 16, 19,
23]).4

The structure of the paper is as follows. We start by formally introducing the concept of backdoor
and provide empirical results on the size of the backdoor. We then relate the backdoor notion to variable
choice trees and provide formal heavy-tailedness results as a function of the size of the backdoor.

3 For certain problem classes, such as parity problems and DES instances, the minimal backdoor set coincides
with the full set of independent variables, forcing a backtrack search procedure to exhaustively search the setting
of these variables [7].

4 A restart strategy does not need to involve explicit randomization. For example, the clause learning mechanism
in Chaff, implicitly causes the solver to explore different parts of the search space on each restart (a form of
“deterministic randomization” [22]).

2

2 Backdoors

In this section, we define the notion of backdoor variables, first introduced in [21]. We will also present
some of the empirical results for backdoors. Our definitions are for the SAT problem but can easily be
adapted to the more general setting of constraint satisfaction problems (CSP).

The SAT problem is defined in the usual way. We have a Boolean formula over n Boolean variables.
The formula consists of a conjunction of clauses, where each clause consist of a disjunction of literals.
A literal is a Boolean variable or its negation. SAT is the problem of determining whether there exists
a truth assignment to the Boolean variables that satisfies all clauses.

Let aS : S ⊆ V → {True, False} be a partial truth assignment. We use F [aS] to denote the
simplified SAT instance obtained from the formula F by setting the variables defined in a S , i.e., by
fixing the truth values of the variables in aS .

A set of backdoor variables is defined with respect to a particular algorithm; once the backdoor
variables are assigned certain values, the problem becomes easy under that algorithm. We will call
such algorithms sub-solvers, since they solve tractable subcases of the general SAT problem.

Definition 1. [21] A sub-solver A given as input a formula F satisfies the following:
• (Trichotomy) A either “rejects” the input F , or “determines” F correctly (as unsatisfiable or

satisfiable, returning a solution if satisfiable),
• (Efficiency) A runs in polynomial time,
• (Trivial solvability) A can determine if F is trivially true (has no clauses) or trivially unsatisfiable

(has a contradictory clause),
• (Self-reducibility) if A determines F , then for any variable x and value v, then A determines

F [v/x].

For instance, A could be an algorithm that determines the satisfiability of 2-CNF formulas, and
rejects all other CNF formulas. In general, the definition of a sub-solver is meant to capture the polytime
propagation and simplification mechanisms present in DPLL-style SAT solvers.

In what follows, let A be a sub-solver, and F a Boolean formula. We first consider a notion of
“backdoor” that is suitable for satisfiable problem instances.

Definition 2. [backdoor] A nonempty subset S of the variables is a backdoor for F w.r.t. A if for some
aS : S → {False, T rue}, A returns a satisfying assignment of F [aS].

Intuitively, the backdoor corresponds to a set of variables, such that when set correctly, the sub-
solver can solve the remaining problem. In a sense, the backdoor is a “witness” to the satisfiability of
the instance, given a sub-solver algorithm. We also introduce a stronger notion of the backdoor to deal
with both satisfiable and unsatisfiable (inconsistent) problem instances.

Definition 3. [strong backdoor] A nonempty subset S of the variables is a strong backdoor for C
w.r.t. A if for all aS : S → {False, T rue}, A either returns a satisfying assignment or concludes
unsatisfiability of F [aS].

It follows directly that, when given a backdoor S for a SAT problem, the search cost is of order
poly(n)2|S|. (Simply check all possible assignments of S.) Thus if S is relatively small, one obtains a
large improvement over searching the full space of variable/value assignments.

3

We observe that independent variables are a particular kind of backdoor. As stated in [12], they are a
set S of variables for which all other variables may be thought of as defined in terms of S. For example,
a maximal subset of independent variables in a SAT encoding of a hardware verification problem is a
backdoor for unit propagation, as the other variables’ values may be directly determined after setting
the independent ones [17, 20, 5].

There are two key questions concerning backdoors: (1) What is the size of the backdoor in practical
problem instances? (2) When taking into account the cost of searching for a backdoor set, can one still
obtain an overall computational advantage?

In [21], we present formal complexity results that show a concrete computational advantage in
using backdoor variables, even when taking into account the cost of searching for a backdoor set,
provided that a relatively small backdoor set exists. Moreover, empirical data shows that for practical
structured problem instances the backdoor sets can indeed be suprisingly small. Table 1 gives some
example statistics on backdoor sizes. The backdoors in the table were obtained using the SAT solvers
Satz and Satz-rand (the latter is a randomized version of the former) [14]. Satz incorporates powerful
variable selection heuristics and an efficient simplification strategy (i.e., a good sub-solver). In the
table, we show a logistics planning problem (log.d), a circuit design problem (3bitadd 32), a bounded
model-checking problem (pipe), and two quasigroup completion problems.

We see some surprisingly small backdoor sets. Clearly, the problem instances have lots of hidden
structure and moreover such structure is uncovered by the propagation and simplification procedures
in Satz.5

It should be noted that these instances are now well within the range of the fastest current solvers,
such as Satz [14]. However, they are non-trivial and cannot be solved with the previous generation of
SAT solvers, such as Tableau [6]. Clearly, the new solvers are better able to discover and exploit hidden
structure, such as small backdoors.

instance # vars # clauses backdoor fract.
log.d 6783 437431 12 0.0018

3bitadd 32 8704 32316 53 0.0061
pipe 01 7736 26087 23 0.0030

qwh 30 320 1235 8523 14 0.0113
qwh 35 405 1597 10658 15 0.0094

Table 1. Size of backdoors for several practical SAT instances. Source: [21]

As mentioned earlier, the notion of backdoor set came about when we studied the mechanisms
underlying heavy-tailed phenomena in combinatorial search. In the next section, we provide a formal
analysis making the connection between backdoors, heavy-tails and restarts precise.

3 Search Trees and Backdoors

For our analysis, we introduce the notion of variable choice trees, binary trees with integer labels on
their leaves, but with semantics quite different from standard search trees. The typical semantics given
to a search tree is that nodes represent variables, and branches out of a node represent the various values
that can be assigned to a variable. In variable choice trees, an inner node p represents the selection of
a variable, and branches correspond to the possible variable choices at point p. The integer label of a

5 The table gives results on satisfiable instances. We believe similarly small strong backdoors exist in many
structure unsatisfiable problem instances. We are currently modifying Satz-rand to allow us to search for such
strong backdoors.

4

1/h 1-1/h

1-1/h1/h

1/h 1-1/h

1-1/h

2

2
2

2
3

(. . .)

successful leaf

Fig. 1. Variable choice tree with one backdoor; 1/h is the probability of the branching heuristic making a good
decision and b is the branching factor, in this case b = 2. This tree model has finite mean and infinite variance
when 1/2 < 1/h < 3/4, and infinite variance and infinite mean when 1/h ≤ 1/2

leaf l represents the cost of a search on the variables that were selected in the path to l. (We do not
assign costs to inner nodes, as our model assumes that the variable selection process incurs a negligible
(polytime) cost.)

We will consider the variables of an instance to be partitioned into two kinds, so that the variable
choice tree will be binary. For the purposes of abstraction we will simply call these kinds “good”
and “bad” here. Left-branches of the tree will represent good variable choices, and right-branches will
represent bad ones. Intuitively, good variables are those we would like to choose early in our search;
for us, these will be backdoor variables. As we choose them earlier in the search, the solver has better
performance. Once all of the good (backdoor) variables have been chosen in a path of the tree, the path
ends with a leaf labeled with the search cost of an algorithm run on those variable choices described
by the branches. Following the empirical work in [9], where randomization of variable selection leads
to increased search performance, we attach probabilities to the branches, so that good variables are
chosen with some probability 1/h and bad ones with 1 − 1/h. Figure 1 depicts a variable choice tree
when we have a backdoor consisting of a single variable.

Notice that the performance of several deterministic search algorithms for SAT/CSPs could be
represented with one variable choice tree, as for each problem and each algorithm there is a unique
ordering of the variables chosen for branching, which corresponds to different paths in the variable
choice tree. In order to formalize the notion of variable choice tree, we will use a recursive, infinite
characterization. This version illuminates the fact that a variable choice tree specifies a kind of tree that
is self-similar, i.e., fractal.

Definition 4. V (B), the variable choice tree for a minimum backdoor size B, is defined inductively:

1. V (0) is a single leaf.

2. For B > 0, V (B) has V (B − 1) as a left subtree, and a copy of V (B) as a right subtree.

Each edge of V (B) has a label p ∈ (0, 1), and each leaf has a “search cost” c ∈ N.

For example, V (1) is the infinite binary tree in Figure 1. See Figure 2 for V (2) and V (3). (We have
left the edges and leaves unlabeled in Figure 2, to emphasize the structure of V (B).)

5

There are two main reasons why we would choose an infinite tree for our model. First, defining the
tree solely in terms of B allows us to reason about the heuristic choices of the search independently
of the total number of variables n in an instance. Secondly, it permits us to speak of a search cost
distribution having a heavy-tail, which we will investigate later.

To simplify the exposition, throughout the paper we will assume the left and right branches of a
V (B) will have labels 1/h and 1 − 1/h, respectively. 6 The leaves of V (B) will be labeled according
to a search cost function f : N → N, which is monotone increasing. Leaf l gets label f(d(l)), where
d(n) is the depth of node n. The function f is meant to model the impact of choosing good variables
over bad ones, and vice-versa.

Fig. 2. Sketch of V (2) and V (3).

4 Connections between heavy-tailedness and backdoors

Here, we outline our formal results connecting a backtrack search heuristic search model with heavy-
tailed runtime phenomena. In particular, we will show that small sets of backdoor variables lead to
runtime profiles that are bounded from below by heavy-tails.

In what follows, we fix a particular variable choice tree V (B), search cost function f , and heuristic
having success probability 1/h. Our first step is to define our notation for the tail probability of V (B).

Definition 5. Pr[t ≥ L | V (B)], the tail probability of L, is the probability that a randomly chosen
path (to some leaf l of V (B)) has search cost f(l) ≥ L.

Roughly speaking, the tail probability of L is the probability that random variable choices under the
heuristic result in a runtime greater than L. In the following we assume f(k) = b k for some b > 1. (b is
the branching factor, so for example b = 2 for SAT.) That is, the search cost at a leaf is exponential in
length of the path leading to the leaf. Hence for B = 1, Pr[t ≥ b i+1 | V (B)] = (1− 1/h)i; this result
was essentially shown in [4]. Here we generalize that result. A lemma gives a recursive expression for
the probability when B > 1.

Lemma 1. For i > 0 and B > 1,

Pr[t ≥ bi+B | V (B)] = 1
h · Pr[t ≥ bi+(B−1) | V (B − 1)] +

(
1 − 1

h

) · Pr[t ≥ b(i−1)+B | V (B)].

Proof. Omitted due to lack of space - to be included in the proceedings version.

6 To assume 1/h is fixed throughout a search is obviously unrealistic. In the following, 1/h will be taken as either
an upper bound or lower bound on the probability of choosing a good variable; we will specify precisely which
case we are considering as we go along.

6

4.1 The tail probability theorem

Our next step is to find a closed-form solution for this tail probability. We first give the solution when
B = 2 as a warm-up to the theorem for arbitrary B. Observe that when i = 0, Pr[t ≥ b i+B | V (B)] =
1. This is simply because any leaf has search cost at least bB; i.e. the shallowest depth from the root to
any leaf is B.

Theorem 1. For i ≥ 1, Pr[t ≥ bi+2 | V (2)] = (1 − 1/h)i(1 + i/h).

Proof. Induction on i. Trivially Pr[t ≥ b0+2 | V (2)] = (1 − 1/h)0(1 + 0/h) = 1. When i > 0,

Pr[t ≥ bi+2 | V (2)] = 1/h ·Pr[t ≥ bi+1 | V (1)] + (1− 1/h) ·Pr[t ≥ b(i−1)+2 | V (2)], by Lemma 1
= 1/h · (1 − 1/h)i + (1 − 1/h) · (1 − 1/h)i−1[1 + (i − 1)/h], by tail prob. for V (1), and induction
= (1/h)(1 − 1/h)i + (1 − 1/h)i + (i − 1)(1/h)(1 − 1/h)i = (1 − 1/h)i(1 + i/h). �

Theorem 2. For all i ≥ 1,

Pr[t ≥ bi+B | V (g)] = (1 − 1
h)i(1 +

∑B−1
k=1

(
i+k−1

k

) · 1
hk).

Proof. Omitted due to lack of space - to be included in the proceedings version.

Now we define what we mean by V (B) having a heavy-tailed distribution. Our only concern is
with having a search cost distribution that is lower bounded by a heavy-tail; if the tail is larger than
Pareto-Levy, then a restart strategy is only more viable.

Definition 6. V (B) is lower bounded by a heavy-tail if there exists α ∈ (0, 2) such that Pr[t ≥
L | V (B)] = Ω(1

Lα). That is, the search cost distribution on V (B) is bounded from below by a
Pareto-Levy distribution.

We remark that the existence of such a heavy-tail bound does not immediately imply that a polyno-
mial time restart strategy is available. Indeed, depending on α, the mean of the distribution could still
be exponential [4]. This leads us to believe that heavy-tails may also arise for much larger backdoors
than those we saw yielding efficient restart strategies earlier. Letting n be the total number of variables,
our intuition is confirmed by a calculation:

Theorem 3. (Heavy-tail lower bound) If B ∈ o(n/ logn) and there exists α ∈ (0, 2) such that the
probability of heuristic failure is at least (1− 1/h) = 1/bα, then the tail probability of the search cost
on V (B) is lower bounded by a heavy-tail.

Proof. Omitted due to lack of space - to be included in the proceedings version.

Observe that (1−1/h) in the above is treated as a lower bound on the failure probability. Intuitively,
the theorem shows that if the success probability of the heuristic is sufficiently bad with respect to the
branching factor, then there is a large potential for reaching a node in the variable choice tree V (B)
with high search cost.

Now let us discuss what bearing these results on variable choice trees have on randomized back-
tracking. Consider a model of randomized depth-first search (DFS) with a sub-solver A, running on
an instance C, having a backdoor of size B, armed with a heuristic H , that chooses a variable from

7

a minimal strong backdoor with probability 1/h, and then randomly chooses an arbitrary assignment
to the given variable 1/d (d is the variable domain size). We will use the notation (DFS,H ,A) to de-
note a solver with the above properties. In such a model, the worst-case search cost at a leaf of the
corresponding variable choice tree will be f(k) = dk (recall that k here is the depth of the variable
choice tree, i.e. the number of variables chosen before a complete backdoor is chosen), simply because
backtracking may have to try all possible assignments on the strong backdoor before the sub-solver
can decide the instance. Therefore our above discussion concerning runs of length b i+B immediately
applies to measuring the runtime cost of backtracking with heuristics, by setting b = d. We conclude
with the following, which follows from the previous theorem:

Theorem 4. (DFS,A,H) on SAT with o(n/ log n) strong backdoors has a runtime distribution that is
lower-bounded by a heavy-tail, if the success probability of H is at most 1/2α, for some α ∈ (0, 2).

Proof. Omitted due to lack of space - to be included in the proceedings version.

5 Conclusions

We propose a general scenario that provides valuable insights into the structure of real world instances
and the way state-of-the art procedures solve such instances. Experimentally, it appears that backdoors
can be surprisingly small (O(log(n)) for certain structured problems (cf. Table 1). Given the condi-
tions of our heavy-tail lower bound result when α ≤ 1 (the failure probability of the heuristic is at
least 1/b and the backdoor size is o(n/ log n)), the expected runtime of the solver (DFS,A,H) is expo-
nential in the number of variables. 7 In contrast, when the minimum backdoor size is O(log n) and the
heuristic success probability is bounded from below by some constant, there exists a polytime restart
strategy [21].

Thus we have reasonable conditions under our model for which, without restarts, the underlying
distribution of backtrack search is heavy-tailed, with an exponential expected runtime; however, with
the proper restart strategy, the backtrack search takes polynomial time. (These conditions are precisely
when the probability of heuristic success is at least ε but less than 1−1/b, for some ε > 0.) This scenario
appears to be quite close to what one observes on structured practical instances. We therefore believe
that our model captures some of the key features of practical DPLL style SAT solvers. In essence, we
have a subtle interplay between a set of critical variables (backdoors) and the heuristics that attempt
to guide the search. On the other hand, there are instances that do not have small backdoors, such
as hard random instances or instances based on cryptographic protocols. Such instances appear to be
inherently hard for backtrack search and defy the current state-the-art complete SAT solvers. Of course,
other strategies such as clause learning may yet prove to be effective on such instances.

Overall, we have shown theoretical and experimental connections between the existence of back-
door sets and heavy-tailed runtimes.We hope that our work will inspire further investigation into these
notions, leading to the discovery of new properties and relationships between solvers and instances.

6 Acknowledgements

We thank the anonymous referees for their insightful comments and corrections.

7 This follows from the heavy-tail lower bound via a similar argument as that in [4]; we do not prove it here.

8

References

1. D. Achlioptas, P. Beame, and M. S. O. Molloy. A sharp threshold in proof complexity. In ACM Symposium
on Theory of Computing, pages 337–346, 2001.

2. L. Baptista, I. Lynce, and J. Marques-Silva. Complete restart strategies for satisfiability. In Proc. of the
Workshop on Stochastic Search Algorithms (IJCAI), 2001.

3. R. Bayardo and R.Schrag. Using CSP look-back techniques to solve real-world SAT instances. In Proc. of
the Fourteenth National Conference on Artificial Intelligence (AAAI-97), pages 203–208, New Providence,
RI, 1997. AAAI Press.

4. H. Chen, C. Gomes, and B. Selman. Formal models of heavy-tailed behavior in combinatorial search. In
Proc. of 7th Intl. Conference on the Principles and Practice of Constraint Programming (CP-2001), Lecture
Notes in Computer Science, Vol. 2239, Springer-Verlag, pages 408–422, 2001.

5. F. Copty, L. Fix, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Vardi. Benefits of bounded model checking
at an industrial setting. In Proc. 13th Conf. on Computer Aided Verification (CAV’01), 2001.

6. J. Crawford and L. Auton. Experimental Results on the Crossover Point in Random 3SAT. Artificial Intelli-
gence, 81(1–2), 1996.

7. E. Giunchiglia. Personal communication, 2003.
8. E. Goldberg and Y. Novikov. Berkmin: A fast and robust SAT solver. In Proc. of Design Automation and Test

in Europe (DATE-2002), pages 142–149, 2002.
9. C. Gomes, B. Selman, and H. Kautz. Boosting Combinatorial Search Through Randomization. In Proceedings

of the Fifteenth National Conference on Artificial Intelligence (AAAI-98), pages 431–438, New Providence,
RI, 1998. AAAI Press.

10. C. P. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in satisfiability and constraint
satisfaction problems. J. of Automated Reasoning, 24(1–2):67–100, 2000.

11. Y. Interian. Manuscript submitted to SAT 2003.
12. H. Kautz, D. McAllester, and B. Selman. Exploiting variable dependency in local search. In Proceedings of

the International Joint Conference on Artificial Intelligence. AAAI Pess, 1997.
13. C. M. Li. A constrained-based approach to narrow search trees for satisfiability. Information Proc. Lett.,

71:75–80, 1999.
14. C. M. Li and Anbulagan. Heuristics based on unit propagation for satisfiability problems. In Proceedings of

the International Joint Conference on Artificial Intelligence, Nagoya, Japan, 1997.
15. M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of Las Vegas algorithms. Information Process.

Lett., pages 173–180, 1993.
16. I. Lynce and J. Marques-Silva. Building state-of-the-art SAT solvers. In Proceedings of the European Con-

ference on Artificial Intelligence (ECAI), 2002.
17. J. Marques-Silva. Search algorithms for satisfiability problems in combinatorial switching circuits. PhD

Thesis, Dept. of EECS, U. Michigan, 1995.
18. J. Marques-Silva and A. Sakallah. Boolean satisfiability in electronic design automation. In Proceedings of

the IEEE/ACM Design Automation Conference (DAC-2000), 2000.
19. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient SAT

solver. In Design Automation Conference, pages 530–535, 2001.
20. B. Selman, H. A. Kautz, and D. A. McAllester. Ten challenges in propositional reasoning and search. In Proc.

of the International Joint Conference on Artificial Intelligence. AAAI Pess, 1997.
21. R. Williams, C. Gomes, and B. Selman. Manuscript under review for IJCAI-03, 2003.
22. S. Wolfram. A New Kind of Science. Stephen Wolfram, 2002.
23. H. Zhang. A random jump strategy for combinatorial search. In Proc. of International Symposium on AI and

Math, 2002.

9

