
On Computing k-CNF Formula Properties

Ryan Williams�

Computer Science Department
Carnegie Mellon University

Abstract. The latest generation of SAT solvers (e.g. [9, 5]) generally have three
key features: randomization of variable selection, backtracking search, and some
form of clause learning. We present a simple algorithm with these three features
and prove that for instances with constant ∆ (where ∆ is the clause-to-variable
ratio) the algorithm indeed has good worst-case performance, not only for com-
puting SAT/UNSAT but more general properties as well, such as maximum sat-
isfiability and counting the number of satisfying assignments. In general, the al-
gorithm can determine any property that is computable via self-reductions on the
formula.
One corollary of our findings is that for all fixed ∆ and k ≥ 3, Max-k-SAT is
solvable in O(cn) expected time for some c < 2, partially resolving a long-
standing open problem in improved exponential time algorithms. For example,
when ∆ = 4.2 and k = 3, Max-k-SAT is solvable in O(1.8932n) expected
time. We also improve the known time bounds for exact solution of #2SAT and
#3SAT , and the bounds for k-SAT when k ≥ 5.

1 Introduction/Background

Exponential time algorithms for SAT with improved performance have been theoreti-
cally studied for over 20 years. Beginning in 1979, Monien and Speckenmeyer [7] gave
a Õ(1.618n) algorithm for 3-SAT [7]. Reviewing the literature, it appears that studies in
improved worst-case time bounds for SAT were mostly dormant for many years, until
a resurgence in the late 1990s (e.g. [10, 4, 1]). The first improvements used DPLL-style
variants, where variables were repeatedly chosen in some way, and the algorithm re-
cursed on both possible values for the variables. The improved time bounds came about
due to clever case analysis about the number of variables or the number of clauses re-
moved from consideration in each of these recursive branches. In 1999, Schöning [13]
gave a Õ(1.3333n) algorithm for 3-SAT that is essentially the WalkSAT algorithm [14];
this was followed by a Õ(1.3303n) improvement a couple of years later [6].

The work on Max-k-SAT has been less successful than that for k-SAT: it has been
open whether or not Max-k-SAT can be solved in cn steps for c < 2. In this work, we
will resolve the question in the affirmative, when the clause density is constant. Further,

� Supported in part by an NSF Graduate Research Fellowship and the NSF ALADDIN Center
(www.aladdin.cs.cmu.edu). Email address: ryanw@cs.cmu.edu.

there has been strong recent progress in counting satisfying assignments [2]: #2SAT
and #3SAT are solvable in 1.3247n and 1.6894n time, respectively. Our approach sup-
plants these bounds, having 1.2923n and 1.4461n expected time. Also, for large k, our
algorithm outperforms any other in the SAT case. For example, for k = 20, Schöning’s
random walk algorithm runs in Õ(1.9n) whereas ours runs in Õ(1.8054n). This bound
improvement occurs for all k ≥ 5. It is important to stress that our randomized method
is of the Las Vegas variety and thus complete, unlike the previous randomized algo-
rithms for these problems [10, 13, 6] which are Monte Carlo (with one-sided error).

One disadvantage of some improved exponential time algorithms is their limited
applicability: often, an improved algorithm for one variant of SAT yields little or no
insight about other SAT variants. Here, our strategy can in general be applied to deter-
mine most interesting hard-to-compute properties of an arbitrary k-CNF formula that
have been considered, under conditions that we will formally specify. We deliberately
make our approach as abstract as possible, so that perhaps its ideas may be useful in
other areas as well.

2 Notation

Let T (n) be super-polynomial and p(n) be a polynomial. We will express runtime
bounds of the form T (n) · p(n) as Õ(T (n)), the tilde meaning that we are suppressing
polynomial factors.

Boolean variables will be denoted as xi ∈ {true, false}. Literals (negated or non-
negated variables) will be denoted by l i ∈ {xi, xi}. F will denote a Boolean formula
in conjunctive normal form over variables x1, . . . , xn. We represent F as a family of
subsets over {x1, x1, . . . , xn, xn}. The sets of F are called clauses. We will implicitly
assume that F has no trivial clauses containing both xi and xi for some i. The number
of clauses in F is denoted by m(F), the number of variables is n(F), and the density
of F is ∆(F) = m(F)/n(F). Typically we will just call these n, m, and ∆ when the
formula F under consideration is clear. Two special kinds of formulas are � and ⊥. �
is the empty formula ∅, or trivially true formula. ⊥ := {∅}, the formula with a single,
empty constraint, a trivially false formula.

The formula F [xi = v] is the formula that results when value v ∈ {true, false} is
substituted for variable xi in F .

3 Self-Reducible Properties

Let us formalize the sort of formula properties that are computable by the algorithm
we will describe. Intuitively, they are those properties that may be described due to
self-reducibility. For example, satisfiability of a formula F is a self-reducible property,
since satisfiability of F may be deduced by testing satisfiability on the smaller formulas
F [x = true] and F [x = false].

Definition 1. Let f be a function from k-CNF formulas and natural numbers to a set
V . f computes a feasibly self-reducible property iff:

(1) ∀i, f(�, i) and f(⊥, i) are polytime computable.

(2) There exists a polytime computable function g such that f(F, n) = g(x, f(F [x =
true], n − 1), f(F [x = false], n− 1)), for all formulas F and variables x.

In English, this means we can easily compute f on F using g, provided we are given
f ’s values when some variable is true, and when it is false.

To motivate this definition, we demonstrate that interesting (e.g. NP and #P com-
plete) properties normally determined of SAT instances are feasibly self-reducible, pro-
vided we begin our computation of f(F, n) with n = n(F). The following table shows
some of the properties that fall under our framework, given g and f ’s definition on the
trivially true and trivially false formula. We also provide our algorithm’s expected time
bounds when k = 2 and k = 3 for these various properties. For the first two rows of the
table, the vi are truth values; for the second two rows, they are natural numbers.

f g(x, v1, v2) f(�, i) f(⊥, i) k = 2 k = 3
SAT v1 ∨ v2 true false trivial 1.4461n

UNSAT v1 ∧ v2 false true trivial 1.4461n

Max-SAT max{n(x1, F) + v1, n(x1, F) + v2} 0 0 cn (c < 2) if ∆ = O(1)
#SAT v1 + v2 2i 0 1.2923n 1.4461n

(We define n(l, F) to be the number of occurrences of literal l in F .) #SAT (F) is
the number of satisfying assignments. Max-SAT(F) is the maximum number of clauses
satisfied by any assignment. (A simple modification of the algorithm will be able to
extract an assignment satisfying the maximum number, with no increase in asymptotic
runtime.) We remark that Max-SAT is the only function above that uses the variable x
in the specification for g.

4 Algorithm

We now present a way to compute any feasibly self-reducible f on k-CNF formulas
with density ∆. The methodology is quite similar in nature to previous improved expo-
nential time algorithms using dynamic programming [12, 15]. The three major differ-
ences here are the use of randomness, the manner in which dynamic programming, and
the tighter analysis that results from analyzing k-CNF formulas.

Roughly speaking, the algorithm chooses a random ordering on the variables, then
does a standard depth-first branching on the first δn variables in this ordering, for some
calculated δ ∈ (0, 1). After depth δn has been reached, the algorithm continues branch-
ing, but saves the computed f -values of all formulas considered after this point. The
key is that for suitable δ (depending on k and ∆), the space usage necessary is small,
and the expected runtime is greatly reduced asymptotically.

4.1 Preliminary initialization

Before the main portion of the algorithm is executed, a few preliminary steps are taken
to set up the relevant data structures.

0. Let ∆ = m/n, and δ be the smallest root of the polynomial ∆δ k + δ − ∆ over
the interval (0, 1). (Existence of such a root will be proven later.) Since k is constant,
one can numerically compute this root to a suitable precision in polynomial time.

1. Choose a random permutation σ : N → N. Let Fcover ⊆ F be the subset of
clauses that have each of their k variables in {xσ(1), . . . , xσ(δn)}.

2. Define ≤c to be a lexicographic (total) ordering on the clauses of F cover, where
the ordering is obtained from the variable indices. For instance, given i 1 < j1 < k1

and i2 < j2 < k2, {xi1 , xj1 , xk1} ≤c {xi2 , xj2 , xk2} iff either i1 < i2 or (i1 = i2 and
j1 < j2) or (i1 = i2 and j1 = j2 and k1 ≤ k2). Define ci to be the ith clause w.r.t. the
ordering ≤c.

3. Let V be the co-domain of f . (Typically, V is either {true, false} or N.) Initial-
ize the set Learned ⊆ {0, 1}m(Fcover) × {1, . . . , n} × V of learned f -values as empty.

4.2 Search

The search portion of the algorithm recurses on a formula F r and integer i, which are
initially F and n, respectively.

Compute-f(Fr, i):

1. [If i = 0 then either Fr = ⊥ or Fr = �; take step 2.]

2. If Fr = ⊥ or Fr = �, return f(�, i) or f(⊥, i), respectively.

3. (Branching phase) If i ≥ n − δn, then return:
g(xσ(n−i+1),Compute-f(Fr [xσ(n−i+1) = true], i − 1),Compute-f(Fr[xσ(n−i+1) =
false], i− 1)).

4. (Learned values phase) Else, let F k
r ⊆ F be the set of original k-clauses in F that

correspond to the remaining (possibly < k-)clauses of F r. It follows that F k
r ⊆ Fcover.

Represent Fr as a pair (b(Fr), i), where b(Fr) is a vector of m(Fcover) = |Fcover | bits:
b(Fr)[j] := 1 iff cj (the jth clause in ≤c) has not yet been satisfied in Fr.

5. If (b(Fr), i, v) ∈ Learned , then return v. Let bt and bf be the bit vector represen-
tations of F [xσ(n−i+1) = true] and F [xσ(n−i+1) = false], respectively.

5a. Set vt := Compute-f(f(F [xσ(n−i+1) = true]), i + 1) and
vf := Compute-f(f(F [xσ(n−i+1) = false]), i + 1).
5b. Update Learned := Learned ∪ {(bt, i, vt), (bf , i, vf)}. Return g(xσ(i+1), vt, vf).
6. Otherwise, branch as before; that is, return

g(xσ(n−i+1),Compute-f(Fr [xσ(n−i+1) = true], i − 1),Compute-f(Fr[xσ(n−i+1) =
false], i− 1)).

4.3 Analysis

Sketch of correctness Here, we assume the choice of δ is suitable and defer its justi-
fication until later. We consider each step in the above algorithm one by one.

• Steps 1 and 2, the base cases, are clear. Step 3 is obvious assuming Compute-
f(Fr [xσ(i) = true], i + 1) and Compute-f(Fr [xσ(i) = false], i + 1) return correct
answers.

• i always equals the number of variables that have not been set by the algorithm;
the proof is a simple induction. Hence when i > δn, then the first δn variables have
been set in Fr , so letting F k

r ⊆ F be the set of original k-clauses in F corresponding to
the (possibly < k) clauses of Fr , F k

r ⊆ Fcover follows from the definition of Fcover.

• In Steps 4 and 5, notice the representation (b(Fr), i) tells us two things: which
clauses of Fcover have not (yet) been satisfied, and which variables have already been
set (those xσ(j) where j < i). Thus, if literals of these variables appear in the clauses
specified by b(Fr), we may infer that these literals are false. Therefore we can recon-
struct Fr given (b(Fr), i), so the map Fr �→ (b(Fr), i) is 1-1. Hence it is semantically
correct to return v for f(Fr) when we find (b(Fr), i, v) ∈ Learned in Step 5.

So we store every f -value computed in Learned and search for it before recom-
puting. The Learned set used in step 5 can be implemented using a binary search tree,
where the keys are pairs containing (a) the |Fcover | bit vector representations of the
Frs and (b) the variable index i. The relevant operations (insert and find) take only
polynomial time.

Runtime analysis We claim the algorithm devotes Õ(2δn) time for the branching phase
(when i ≤ δn) and a separate count of Õ(2E[m(Fcover)]) expected time for the learned
values phase, where E[m(Fcover)] is the expected number of clauses in Fcover over the
choice of random σ. (Hence in total, the expected runtime is Õ(2E[m(Fcover)] + 2δn),
and the optimal choice of δ to minimize the this will make E[m(Fcover] = δn.)

To simplify the analysis, we consider an “unnatural” procedure, for which our al-
gorithm has runtime no worse than it. The procedure will perform the phases of the
algorithm described above, but in the opposite order. First, it (a) determines all of the
possible f -values in Learned recursively, saving each discovered value as it goes along.
Then it (b) runs the branching phase until depth δn, in which case it simply refers to the
stored values in Learned.

It is clear that if the runtime of (a) is bounded by T , then the runtime of this pro-
cedure is Õ(2δn + T). So it suffices for us to prove that (b) takes Õ(2E[m(Fcover)])
expected time. Each (b(Fr), i) pair’s f -value in Learned is computed at most once, and
is determined in polynomial time using g and assuming the f -values for smaller F r are
given. (We defer the cost of computing the f -values for smaller F r to those smaller
formulas). Moreover, the base cases f(�, i) and f(⊥, i) are polytime computable by
self-reducibility.

Thus the total time used by the learned formula phase will be at most

poly(n)· [number of possible (b(Fr), i) pairs] = Õ(2E[m(Fcover)]),

since the total number of pairs possible in Learned is at most n · 2m(Fcover).

Let us specify the procedure more formally. [We can omit this part from the final
version if the above sketch is convincing.] Start with (⊥, i) and (�, i) for every i, and
put (⊥, i, f(⊥, i)) and (�, i, f(�, i)) in Learned.

0. Initialize i := n − 1.

1. Repeat steps 2-5 until i = δ:

2. Set F := {Fr∪{c ∈ F |xσ(i) ∈ c∨ xσ(i) ∈ c} | ∃v.(b(Fr), i+1, v) ∈ Learned}.
3. For all Fr ∈ F ,

4. Find v1 and v2 such that (b(Fr[xσ(i) = true]), i + 1, vt) and
(b(Fr[xσ(i) = false]), i + 1, vt) in Learned, using a search tree.

5. Put (b(Fr), i, g(vt, vf)) in Learned, and set i := i − 1.

Notice we are always placing a value for a new pair in Learned. Hence we place at
most n2m(Fcover) values in Learned. Each iteration of the for-loop for a fixed F r takes
polynomial time. The number of possible Fr in F is at most 2m(Fcover) (though it will
be much less in most cases). There are at most n − δn repetitions of the repeat loop,
hence this procedure takes Õ(2E[m(Fcover)]) expected time.

Note that while our procedure takes exponential space, as in [12, 15], a tradeoff may
be exhibited between time and space usage, by varying δ. In other words, for larger
values of δ, less space is required at the cost of a longer runtime.

Theorem 1. For every k and ∆, there exists a constant c < 2 such that any feasibly
self-reducible f on k-CNF Boolean formulas with density ∆ is computable in O(cn)
expected time.

Proof. It suffices to show that the optimal choice of δ is always less than 1. Let c i be
a k-CNF clause. For a randomly chosen σ, the probability that a particular variable v
is among the first δn variables is δ. Hence the probability that every variable in c i is
among the first δn variables designated by σ is at least δk(1 − o(1)). More precisely,
the probability is

k−1∏
i=0

δn − i

n − i
≥ δk

k−1∏
i=0

(
1 − i

n

)
≥ δk

(
1 − d

n

)
,

for some constant d > 0. Thus the probability that c i ∈ Fcover is at most 1 − δk(1 −
o(1)). For each clause ci ∈ F , define an indicator variable Xi that is 1 iff ci ∈ Fcover.
Then the expected number of clauses in Fcover is

E[Fcover] =
∑m

i=1 E[Xi] = m · [1 − δk(1 − d/n)],

by linearity of expectation. Hence the expected time for the learned value phase is
(modulo polynomial factors)

2[1−δk](1−d/n)∆n = 2[1−δk]∆n−d·∆·[1−δk] ∈ Õ(2[1−δk]∆n),

and the optimal choice of δ satisfies the equation

δ = (1 − δk)∆ =⇒ ∆δk + δ − ∆ = 0.

Notice that the variance in m(Fcover) will be small in general (more precisely, suscepti-
ble to Chernoff bounds), thus our expectation is not a mathematical misnomer; we will
not analyze it in detail here.

We now show that for k > 0 and ∆ > 0, the polynomial p(x) = ∆xk + x − ∆ has
at least one root x0 ∈ (0, 1); the theorem will follow.

First, p(x) has at least one real root r. Note p(1) = 1 for all k and ∆, so r �= 1.
If r > 1, then ∆rk > ∆, a contradiction. Hence r < 1. If k is even, then p(x) has at
least one positive root r, so r ∈ (0, 1). On the other hand, if k is odd and r < 0, then
all three terms in p(r) are negative; hence r ∈ (0, 1). �

We have empirically observed that as either ∆ or k increase, the relevant root of
p(x) approaches 1.

4.4 Max-k-SAT solution

Ever since Monien and Speckenmeyer [8] showed in 1980 that there exists an algorithm
for Max-3-SAT running in Õ(2m/3), it has been a well-studied open problem as to
whether Max-k-SAT could actually be solved in O(cn) time for c < 2. All previous
proposals towards answering this question have given algorithms of the form O(c m),
with c decreasing slowly over time (e.g. [8, 1, 4]).

A corollary of the above result is that the answer is yes, when the clause density ∆ is
constant. While this is probably the more relevant situation for applications, it remains
open whether Max-k-SAT can be solved when ∆ is an unbounded function of n.

Corollary 1. For every k and ∆, there exists a constant c < 2 such that Max-k-SAT on
formulas of density ∆ is solvable in Õ(cn) expected time.

4.5 Improvements on Counting and SAT for high k

If the property we seek is some function on the satisfying assignments of F , then a
better runtime bound can be achieved; we will outline our modified approach here.
For instance, if we wish to count the number of satisfying assignments or determine
satisfiability, then we can use the unit clause rule in branching. The unit clause rule has
been used since [3] for reducing SAT instances.

Rule 1 (Unit clause) If {lj} ∈ F then set F := F [lj = true].

For feasibly self-reducible f on satisfying assignments, let us incorporate the unit
clause rule into the previous algorithm, between Steps 2 and 3. Now we observe that, in
order to say that a clause c ∈ F is not in Fcover, rather than requiring all k lvariables of
c to be assigned values in the first δn variables, now we only need k−1 of the variables
to be assigned. For if one of them made c true, c is no longer present, and if all k − 1 of
them were false in c then the unit clause rule applies.

This leads us to a better equation for δ, namely δ = (1 − δ k − kδk−1)∆, since the
probability that at least k − 1 variables of any clause c appear in the first δn variables
of σ is 1 − δk − kδk−1, the third term coming from the fact that there are k ways to
choose k − 1 of the variables in c that do not appear.

As might be expected, this equation yields better time bounds. There is no longer a
dependence on ∆, and we obtain bounds such as the following:

Corollary 2. #3SAT is solvable in Õ(1.4461n) expected time.

For k ≥ 5, even an improvement in SAT (over previous algorithms) is observed.
The best known algorithm in that case has been that of Paturi, Pudlak, Saks, and Zane
[11], which has the bounds 1.5681n and 1.6370n for k = 5 and 6. We have found
through numerical experiments that our algorithm does strictly better for k ≥ 5. An
example:

Corollary 3. 5-SAT and #5-SAT are solvable in Õ(1.5678n) expected time, while 6-
SAT and #6-SAT are solvable in Õ(1.6065n).

A sharper improvement can be made for #2SAT, since for large ∆, single variable
branches can remove many variables due to the unit clause rule. Specifically, in the
worst case, one variable is assigned in one branch, while at least 2∆ variables are as-
signed in another. We omit the analysis for space considerations, but can include it later
if you like.

Theorem 2. #2SAT is solvable in Õ(1.2923n) expected time.

5 Conclusion

We have shown, in a very general manner, how various hard properties of k-CNF prop-
erties may be determined in less than 2n steps. However, our procedure requires ex-
ponential space in order to achieve this. Therefore one obvious open problem is to find
algorithms that can compute self-reducible formula properties in polynomial space. An-
other question (which we believe to be not so difficult, but did not work in time for
submission) is how to derandomize the algorithm– i.e. convert it a deterministic one,

without much loss in efficiency. A further direction is to use some clever properties of
Max-k-SAT when ∆ = ω(1) to get an less-than-2n algorithm for general Max-k-SAT.

Finally, it is worth exploring what other useful properties of CNF formulas can be
expressed via our definition of self-reducible functions, to determine the full scope of
the method we have described. One hard problem that probably cannot be computed
with it is solving quantified Boolean formulas; this is because in QBFs, it seems crucial
to maintain the fixed variable ordering given by the quantifiers. On the other hand, if
we assume the number of quantifier alternations is small, this may permit one to use a
variable-reordering approach of the form we have described.

References

1. N. Bansal and V. Raman. Upper bounds for MaxSat: Further improved. Proc. of the 10th
ISAAC, 1999.

2. V. Dahllöf, P. Jonsson, Magnus Wahlstrm. Counting Satisfying Assignments in 2-SAT and
3-SAT. Proc. of COCOON, 535-543, 2002.

3. M. Davis and H. Putnam, A computing procedure for quantification theory. Journal of the
ACM, 7(1):201-215, 1960.

4. E. A. Hirsch. New worst-case upper bounds for SAT. Journal of Automated Reasoning, Spe-
cial Issue II on Satisfiability in Year 2000, 2000. A preliminary version appeared in Proceed-
ings of SODA 98.

5. I. Lynce and J. Marques-Silva. Complete unrestricted backtracking algorithms for satisfi-
ability. In Fifth International Symposium on the Theory and Applications of Satisfiability
Testing, 2002.

6. T. Hofmeister, U. Schoening, R. Schuler, O. Watanabe. A probabilistic 3-SAT algorithm fur-
ther improved. Proc. of STACS, 192202, 2002.

7. B. Monien, E. Speckenmeyer, 3-satisfiability is testable in O(1.62r) steps, Bericht Nr.
3/1979, Reihe Theoretische Informatik, Universität-Gesamthochschule-Paderborn.

8. B. Monien and E. Speckenmeyer. Upper bounds for covering problems. Bericht Nr. 7/1980,
Reihe Theoretische Informatik, Universität-Gesamthochschule-Paderborn.

9. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an Effi-
cient SAT Solver. Proc. DAC-01, 2001.

10. R. Paturi, P. Pudlak, and F. Zane. Satisfiability Coding Lemma. Proc. of the 38th IEEE FOCS,
566-574, 1997.

11. R. Paturi, P. Pudlak, M. E. Saks, and F. Zane. An improved exponential-time algorithm for
k-SAT. Proc. of the 39th IEEE FOCS, 628-637, 1998.

12. M. Robson. Algorithms for maximum independent sets. Journal of Algorithms, 7(3):425-440,
1986

13. U. Schoening. A probabilistic algorithm for k-SAT and constraint satisfaction problems.
Proc. of the 40th IEEE FOCS, 410-414, 1999.

14. B. Selman, H. Kautz, and B. Cohen. Local Search Strategies for Satisfiability Testing.
Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, 1993.

15. R. Williams. Algorithms for quantified Boolean formulas. Proc. ACM-SIAM SODA, 299-
307, 2002.

