
Server Scheduling in the Lp Norm:
A Rising Tide Lifts All Boat

[Extended Abstract]

Nikhil Bansal
∗

Department of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

nikhil@cs.cmu.edu

Kirk Pruhs
†

Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

kirk@cs.pitt.edu

ABSTRACT
Often server systems do not implement the best known algo-
rithms for optimizing average Quality of Service (QoS) out
of concern of that these algorithms may be insufficiently fair
to individual jobs. The standard method for balancing aver-
age QoS and fairness is optimize the Lp metric, 1 < p < ∞.
Thus we consider server scheduling strategies to optimize the
Lp norms of the standard QoS measures, flow and stretch.
We first show that there is no no(1)-competitive online algo-
rithm for the Lp norms of either flow or stretch. We then
show that the standard clairvoyant algorithms for optimiz-
ing average QoS, SJF and SRPT, are O(1+ε)-speed O(1/ε)-
competitive for the Lp norms of flow and stretch. And that
the standard nonclairvoyant algorithm for optimizing aver-
age QoS, SETF, is O(1+ε)-speed O(1/ε(2+2/p))-competitive
for the Lp norms of flow. These results argue that these
standard algorithms will not starve jobs until the system is
near peak capacity. In contrast, we show that the Round
Robin, or Processor Sharing algorithm, which is sometimes
adopted because of its seeming fairness properties, is not
O(1 + ε)-speed no(1)-competitive for sufficiently small ε.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Se-
quencing and Scheduling; C.4 [Performance of Systems]:
Performance Attributes

General Terms
Algorithms, Peformance, Theory

∗Supported by IBM Research Fellowship.
†Supported in part by NSF grant CCR-0098752, NSF grant
ANIR-0123705, and by a grant from the US Air Force.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-674-9/03/0006 ...$5.00.

Keywords
scheduling, resource augmentation, flow time, shortest elapsed
time first, shortest remaining processing time, multilevel
feedback, shortest job first

1. INTRODUCTION
The algorithms Shortest Remaining Processing Time

(SRPT) and Shortest Elapsed Time First (SETF) are gen-
erally regarded as the best clairvoyant and nonclairvoyant
server scheduling policies for optimizing average Quality of
service (QoS). SRPT is optimal for average flow time, and
is 2-competitive for average stretch [25]. SETF is an (1+ ε)-
speed (1 + 1/ε)-competitive algorithm for average flow time
[21] — no O(1)-competitive nonclairvoyant algorithm exists
for average flow time [24] — and a randomized variation
RMLF of SETF is known to be asymptotically strongly com-
petitive amongst randomized algorithms for average flow
time [7, 20, 24].

In spite of this, SRPT and SETF are generally not imple-
mented in server systems. Apache, currently most widely
used web server [18], uses a separate process for each re-
quest, and uses a First In First Out (FIFO) policy to de-
termine the request that is allocated a free process slot [17].
The most commonly cited reason for adopting FIFO is a
desire for some degree of fairness to individual jobs [16],
i.e. it is undesirable for some jobs to be starved. In some
sense FIFO is the optimally fair policy in that it optimizes
the maximum flow time objective. Operating systems such
as Unix don’t implement pure SETF, or even pure MLF,
the less preempting version of SETF. Once again this is
out of fear of starving jobs [28, 29]. Unix systems adopt
compromise policies that attempt to balance the competing
demands of average QoS and fairness. In particular, Unix
scheduling policies generally raise the priority of processes
in the lower priority queues that are being starved [28].

The desire to optimize for the average and the desire to not
have extreme outliers generally conflict. The most common
way to compromise is to optimize the Lp norm, generally for
something like p = 2 or p = 3. For example, the standard
way to fit a line to collection of points is to pick the line
with minimum least squares, equivalently L2, distance to
the points, and Knuth’s TEXtypesetting system uses the L3

metric to determine line breaks [22, page 97]. The Lp, 1 <
p < ∞, metric still considers the average in the sense that

it takes into account all values, but because xp is strictly a
convex function of x, the Lp norm more severely penalizes
outliers than the standard L1 norm.

This leads us in this paper to consider server scheduling
algorithms for optimizing the Lp norms, 1 < p < ∞, of
the two standard QoS metrics: flow and stretch. In section
4, we show that that are no no(1)-competitive online server
scheduling algorithms for any Lp metric, 1 < p < ∞ of either
flow or stretch. Perhaps this is a bit surprising, at least
for the flow metric, as there are optimal online algorithms,
SRPT and FIFO, for the L1 and L∞ norms.

This negative result motivates us to fall back to resource
augmentation analysis, which compares the online algorithm
against an optimal offline algorithm with a slower processor.
More formally, in the context of a scheduling minimization
problem with an objective function F , an algorithm A is
s-speed c-competitive if

max
I

F (As(I))

F (Opt1(I))
≤ c

where As(I) denotes the the schedule that algorithm A with
a speed s produces on input I , and similarly Opt1(I) denotes
the adversarial schedule for I with a unit speed processor.

Lp Norm Lp norm
Algorithm Speed of Flow of Stretch

Any

Clairvoyant 1 nΩ(1) nΩ(1)

Algorithm
SJF (1 + ε) O(1/ε) O(1/ε)
SRPT (1 + ε) O(1/ε) O(1/ε)

SETF (1 + ε) O(1/ε2+
2
p) O(1

ε
3+ 1

p
lg1+ 1

p B)

RR (1 + ε) Ω(n1−2εp) Ω(n)
Any Non-
clairvoyant (1 + ε) Ω(min{n, log B})
Algorithm

Table 1: Resource augmentation results for the stan-
dard average QoS algorithms.

We first consider the standard online algorithms aimed
at average QoS, that is, Shortest Job First (SJF), SRPT,
and SETF. We show that the clairvoyant algorithms, SJF
and SRPT, are O(1 + ε)-speed O(1/ε)-competitive for the
Lp norms of flow and stretch. We show that the nonclair-
voyant algorithm SETF is O(1 + ε)-speed O(1/ε(2+2/p))-
competitive for the Lp norms of flow. Further for the Lp

norm of stretch, we show that given constant speed-up,
SETF is poly-logarithmically competitive in B, the ratio
of the length of the longest job to the shortest job. And we
give an essentially matching lower bound. We summarize
our results in table 1. Note that all of the results assume
that p is constant, so that multiplicative factors, that are a
function of p alone, are absorbed into the constant in the
asymptotic notation.

These resource augmentation results argue that the con-
cern, that the standard algorithms aimed at optimizing aver-
age QoS might unnecessarily starve jobs, is unfounded when
the server is less than fully loaded. Average QoS curves such
as those in figure 1(a) are ubiquitous in server systems [23].
That is, there is a relatively modest degradation in average

Average
QoS

Load

Average
QoS

OptimalOnline

Load

(a) (b)

Figure 1: (a) Standard QoS curve, and (b) The
worst possible QoS curve of an (1 + ε)-speed O(1)-
competitive online algorithm.

QoS as the load increases until some threshold is reached —
this threshold is essentially the capacity of the system — af-
ter which any increase in the load precipitously degrades the
average QoS. The concept of load is not so easy to formally
define, but generally reflects the number of users of the sys-
tem. If A is an (1+ ε)-speed c-competitive server scheduling
algorithm, and Opt1(I) ≤ d · Opt1+ε(I) then A is at worst
(c · d)-competitive on input I . The loads in the usual per-
formance curve shown in figure 1(a) where Opt1(I) is not
approximately Opt1+ε(I) are those points near or above the
the capacity of the system. Thus the performance curve of a
(1 + ε)-speed c-competitive online algorithm A should be at
no worse than shown in figure 1(b). That is, A should scale
reasonably well up to quite near the capacity of the system.

It might be tempting to conclude that all reasonable al-
gorithms should have such scaling guarantees. However, we
show that this is not the case in section 9. More precisely,
the standard Processor Sharing, or equivalently Round Robin,
algorithm is not (1 + ε)-speed O(1)-competitive for any Lp

norm of flow, 1 < p < ∞ and for sufficiently small ε. This is
perhaps surprising, since fairness is a commonly cited reason
for adopting Processor Sharing [28].

2. RELATED RESULTS
The results in the literature that are closest in spirit to

those here are found in a series of papers, including [6, 13, 16,
27]. These papers also argue that SRPT will not unnecessar-
ily starve jobs any more than Processor Sharing does under
“normal” situations. In these papers, “normal” is defined
as there being a Poisson distribution on release times, and
processing times being independent samples from a heavily
tailed distribution. More precisely, these papers argue that
every job should prefer SRPT to Processor Sharing under
these circumstances. Experimental results supporting this
hypothesis are also given. So informally our paper and these
papers reach the same conclusion about the superiority of
SRPT. But in a formal sense the results are incomparable.

Resource augmentation analysis was proposed as a method
for analyzing scheduling algorithms in [21]. We adopt the
notation and terminology from [26]. Highest Density First
was shown to be (1+ε)-speed O(1/ε)-competitive for weighted
flow time in [8]. This immediately implies a similar result
for SJF for average flow time and for average stretch. RR is
also known to be O(1)-speed O(1)-competitive for average
flow time [14].

For minimizing average stretch, [25] show that SRPT is 2-
competitive. In the offline case, there is a PTAS for average
stretch [9]. In the non-clairvoyant case, [5] showed that any
algorithm is Ω(n) competitive (without speedup) and gave
a (1 + ε)-speed O(poly(ε−1 · log B))-competitive algorithm.

There have been some prior results on scheduling prob-
lems with Lp norms. Load balancing in the Lp norm is
discussed in [1, 3, 2]. PTAS for Lp norms of completion
times, without release times, is given in [15].

A seemingly related problem is that of minimizing the
weighted flow time, studied recently by [12, 11, 4]. Observe
that minimizing the sum of squares of flow time is equiva-
lent to minimizing the weighted flow time where the weight
of a job at any time is equal to its age (hence the weights
are linearly increasing with time). However, the fact that
the weights are changing makes our problem substantially
different. For example, [4] give an O(log W) competitive al-
gorithm for weighted flow time (which would correspond to
an O(log n + log B) competitive algorithm in our case, since
the maximum weight W in our case is at most nB). How-
ever, our lower bounds in section 4 show that any random-
ized online algorithm is Ω(max{n1/5, B1/5}) competitive for
minimizing flow time squared.

3. DEFINITIONS
We assume that all job sizes are integers in the range

[1, . . . , B]. We assume a collection of jobs J = J1, . . . , Jn.
The release time of Ji is ri and the processing time of Ji is
pi. The completion time CS

j of a job Ji in a schedule S is the
first time after ri where Ji has been processed for pi time
units. The flow time of Ji in S is CS

i − ri, and the stretch of
Ji is (CS

i − ri)/pi. A clairvoyant algorithm learns pi at time
ri. A nonclairvoyant algorithm only knows a lower bound
on pi equal to the length of time that has run pi. Finally, for
an algorithm A, F p(A) (respectively Sp(A)) will denote the
sum of the pth powers of the flowtime (respectively stretch)
of all jobs under A. Note that the Lp norm of flowtime (resp

stretch) under algorithm A is (F p(A))1/p (resp (Sp(A))1/p).

4. GENERAL LOWER BOUNDS

Theorem 1. The competitive ratio of any randomized al-
gorithm A against an oblivious adversary for F p and Sp,
1 < p < ∞, is nΩ(1).

Proof. We use Yao’s minimax principle for online cost
minimization problems [10] and lower bound the expected
value of the ratio of the objective functions on A and Opt
on input distribution which we specify. The inputs are pa-
rameterized by integers L, α, and β in the following manner.
A long job of size L arrives at t = 0. From 0 to time until
time Lα − 1 a job of size 1 arrives every unit of time. With
probability 1/2 this is all of the input. With probability 1/2,
Lα+β short jobs of length 1/Lβ arrive every 1/Lβ time units
from time Lα until 2Lα − 1/Lβ .

We first consider the F p objective. In this case, α = p+1
p−1

,

and β = 2. We now compute F p(A) and F p(Opt). Consider
first the case that A doesn’t finish the long job by time Lα.
Then with probability 1/2 the input contains no short jobs.
Then F p(A) is at least the flow of the long job, which is at
least Lαp. In this case the adversary could first process the
long jobs and then process the unit jobs. Hence, F p(Opt) =

O(Lp + Lα · Lp) = O(Lα+p). The competitive ratio is then
Ω(Lαp−α−p), which is Ω(L) by our choice of α.

Now consider the case that A finishes the long job by time
Lα. Then with probability 1/2 the input contains short jobs.
One strategy for the adversary is to finish all jobs, except for
the big job, when they are released. Then F p(Opt) = O(Lα ·
1p +Lα+β · (1/Lβ)p +Lαp). It is obvious that the dominant
term is Lαp, and hence, F p(Opt) = O(Lαp). Now consider
the subcase that A has at least L/2 unit jobs unfinished
by time 3Lα/2. Since these unfinished unit jobs much have
been delayed by at least Lα/2, F p(A) = Ω(L ·Lαp). Clearly
in this subcase the competitive ratio is Ω(L). Alternatively,
consider the subcase that A has finished at least L/2 unit
jobs by time 3Lα/2. Then A has at least Lα+β/2 released,
and unfinished, small jobs at time 3Lα/2. By the convexity
F p, the optimal strategy for A from time 3Lα/2 onwards
it to delay each small job by the same amount. Thus A
delays Lα+β/2 short jobs by at least L/2. Hence in this
case, F p(A) = Ω(Lα+β · Lp). This gives a competitive ratio
of Ω(Lα+β+p−αp), which by the choice of β is Ω(L).

We now consider the Sp objective. In this case, α =
2p+1
p−1

, and β = 1. We now compute Sp(A) and Sp(Opt).
Consider first the case that A doesn’t finish the long job by
time Lα. Then with probability 1/2 the input contains no
short jobs. Then Sp(A) is at least the stretch of the long

job, which is at least (Lα/L)p = Lp(α−1). In this case the
adversary could first process the long jobs and then process
the unit jobs. Hence, Sp(Opt) = O(1+Lα ·Lp) = O(Lα+p).
The competitive ratio is Ω(Lαp−α−2p), which is Ω(L) by our
choice of α.

Now consider the case that A finishes the long job by time
Lα. Then with probability 1/2 the input contains short jobs.
One strategy for the adversary is to finish all jobs, except for
the big job, when they are released. Then Sp(Opt) = O(Lα ·
1p+Lα+β ·1p+(Lα/L)p). Algebraic simplification shows that
α + β ≤ αp − p for our choice of α and β. Hence dominant
term is Lαp−p, and Sp(Opt) = O(Lαp−p). Now consider the
subcase that A has at least L/2 unit jobs unfinished at time
3Lα/2. Since these unfinished unit jobs much have been
delayed by at least Lα/2, Sp(A) = Ω(L · Lαp). Clearly in
this subcase the competitive ratio is Ω(Lp+1). Alternatively,
consider the subcase that A has finished at least L/2 unit
jobs by time 3Lα/2. Then A has at least Lα+β/2 released,
and unfinished, small jobs at time 3Lα/2. By the convexity
Sp when restricted to jobs of size 1/Lβ , the optimal strategy
for A from time 3Lα/2 onwards always delays each small
job by the same amount (we can gift A the competition
of the unit jobs at time 3Lα/2). Thus A delays Lα+β/2
short jobs by at least L/2. Hence in this case, Sp(A) =

Ω(Lα+β ·L(β+1)p). This gives a competitive ratio of Sp(A) =
Ω(Lα+β+βp+2p−αp).

By the choice of α and β, this once gives a competitive
ratio of Ω(L2p+1).

It is easy to see that there is no O(1)-speed O(1)-competitive
nonclairvoyant algorithm for Sp, 1 < p < ∞ using the input
instance from [19]. Consider n jobs of sizes 1, 2, 4, 8, . . . , B =
2n arriving at time 0. By scheduling the jobs from shortest
to longest, Sp(Opt) = O(n). While for any non-clairvoyant
algorithm A, Sp(A, s) = Ω(np+1/sp).

5. ANALYSIS OF SJF
In this section we show that SJF is a (1+ε)-speed O(1/εp)-

competitive for F p and Sp objective functions.
We fix a time t. Let U(SJF, t) and U(Opt, t) denote the

unfinished jobs at time t in SJF and Opt respectively, and
D = U(SJF, t) − U(Opt, t). Let Agep(X, t) denote the sum
over all jobs Ji ∈ X of (t − ri)

p−1. Let SAgep(X, t) denote
the sum over all jobs Ji ∈ X of (t − ri)

p−1/pp
i . We will

demonstrate the following local competitiveness condition
for all times t

Agep(D, t) ≤ O(1/εp)Agep(U(Opt, t), t)

This will establish our desired results because
F p(A) = p

�
t
Agep(U(A, t), t)dt and

Sp(A) = p
�

t
SAgep(U(A, t), t)dt.

Before proceeding we introduce some needed notation.
Let V (t, α) denote the aggregate unfinished work at time
t among those jobs Jj that satisfy the conditions in the list
α. So for example, in the next lemma we consider
V (ri, Jj ∈ U(Opt, ri), rj ≤ ri, pj ≤ pi), the amount of work
that Opt has left on jobs Jj that arrived before Ji, are
shorter than Ji and that Opt has not finished by time ri.
Let P (α) will denote the aggregate initial processing times
of jobs Jj that satisfy the conditions in the list α.

We prove local competitiveness in the following manner.
Let 1, . . . , k denote the indices of jobs in D such that p1 ≤
p2 . . . ≤ pk. Consider the jobs in D in the order in which
they are indexed. Assume that we are considering job Ji.
We allocate to Ji an εpi/4(1 + ε) amount of work from
V (t, Jj ∈ U(Opt, t), rj ≤ t − ε(t − ri)/(4(1 + ε)), pj ≤ pi)
that was previously not allocated to a lower indexed job in
D. This establishes O(1/εp) local competitiveness for F p

for the following reasons. The total unfinished work in each
Jj ∈ U(Opt, t) is associated with O(1/ε) longer jobs in D.
Since the jobs Jj are Ω(ε) as old as Ji, the contribution of to
Agep(U(Opt, t), t) for Jj is Ω(εp−1) as large as the contribu-
tion of Ji to Agep(U(SJF, t), t). Using the same reasoning,
and the fact that pj ≤ pi, establishes local competitiveness
for Sp.

We now turn to proving that this association scheme works,
that is, the scheme never runs of work to assign to the jobs
in D. Consider a fixed job Ji ∈ D. Let t′ denote the time
t − ε

4(1+ε)
(t − ri). If this scheme is going to fail on job Ji

then, informally, the amount of work on jobs of size ≤ pi

that Opt had left at time ri, plus the work made up by
jobs of size ≤ pi that arrived during (ri, t

′], minus the work
that Opt did during (ri, t], minus the work that is allocated
to J1, . . . , Ji should be negative. The amount of work in
V (t, Jj ∈ U(Opt, t)) that is allocated to J1, . . . , Ji is at most

ε

4(1 + ε)
P (Jj ∈ D, rj ≤ ri, pj ≤ pi)

+
ε

4(1 + ε)
P (Jj ∈ D, rj > ri, pj ≤ pi)

Moreover, as Opt can finish at most (t − ri) work during
time (ri, t], it is sufficient to show that

V (ri, Jj ∈ U(Opt, ri), rj ≤ ri, pj ≤ pi)

+P (rj ∈ (ri, t
′], pj ≤ pi) − (t − ri)

− ε

4(1 + ε)
P (Jj ∈ D, rj ≤ ri, pj ≤ pi)

+
ε

4(1 + ε)
P (Jj ∈ D, rj > ri, pj ≤ pi) ≥ 0

Or equivalently,

V (ri, Jj ∈ U(Opt, ri), rj ≤ ri, pj ≤ pi) (1)

+P (rj ∈ (ri, t
′], pj ≤ pi)

− ε

4(1 + ε)
P (Jj ∈ D, rj ≤ ri, pj ≤ pi)

+
ε

4(1 + ε)
P (Jj ∈ D, rj > ri, pj ≤ pi) ≥ (t − ri)

The rest of this section will be devoted to establishing
equation 1. We know that

(t − ri) ≥ P (Jj ∈ D, rj > ri, pj ≤ pi) (2)

since Opt had to finish all such jobs considered on the right
hand side between time ri and time t. Then by substitution,
to prove equation 1 it suffices to prove:

V (ri, Jj ∈ U(Opt, ri), rj ≤ ri, pj ≤ pi) (3)

+P (rj ∈ (ri, t
′], pj ≤ pi)

− ε

4(1 + ε)
P (Jj ∈ D, rj ≤ ri, pj ≤ pi)

≥ (
4 + 5ε

4(1 + ε)
)(t − ri) (4)

We now concentrate on replacing the term V (ri, Jj ∈
U(Opt, ri), rj ≤ ri, pj ≤ pi) in equation 3. This is where
the 1 + ε speedup is crucially used.

Lemma 2. For all times u and for all values pi,

V (u, Jj ∈ U(Opt, u), rj ≤ u, pj ≤ pi) ≥
ε

1 + ε
(P (Jj ∈ U(SJF, u), pj ≤ pi)

+
ε

1 + ε
V (u, Jj ∈ U(SJF, u), pj ≤ pi))

Proof. The proof is by induction on the time u. When-
ever there is a job Jj ∈ U(SJF, u) with pj ≤ pi, then the
right hand side of the inequality decreases at least as fast
as the left hand side since SJF has a (1 + ε)-speed proces-
sor. If the is no such job Jj , then the right hand side of the
inequality is zero.

Using lemma 2 with u = ri, then to prove equation 3 it is
sufficient by substitution to prove:

ε

1 + ε
P (Jj ∈ U(SJF, ri), pj ≤ pi) (5)

+
1

1 + ε
V (ri, Jj ∈ U(SJF, ri), pj ≤ pi)

+P (rj ∈ (ri, t
′], pj ≤ pi)

− ε

4(1 + ε)
P (Jj ∈ D, rj ≤ ri, pj ≤ pi)

≥ (
4 + 5ε

4(1 + ε)
)(t − ri)

Since obviously, P (Jj ∈ U(SJF, ri), pj ≤ pi) ≥ P (Jj ∈
D, rj ≤ ri, pj ≤ pi) and also V (ri, Jj ∈ U(SJF, ri), pj ≤
pi) ≤ P (Jj ∈ U(SJF, ri), pj ≤ pi), to prove equation 5 it
suffices to show that

4 + 3ε

4(1 + ε)
V (ri, Jj ∈ U(SJF, ri), pj ≤ pi) (6)

+P (rj ∈ (ri, t
′], pj ≤ pi) ≥ (

4 + 5ε

4(1 + ε)
)(t − ri)

During [ri, t
′], SJF does (1+ε)(t′−ri) work on jobs shorter

than Ji. By algebraic simplification (1+ε)(t′−ri) = 4+3ε
4

(t−
ri). The jobs that SJF worked on during [ri, t

′] either had
to arrive before ri or during [ri, t

′]. Therefore, it trivially
follows that

(t − ri) ≤ 4

4 + 3ε
V (ri, Jj ∈ U(SJF, ri), pj ≤ pi) (7)

+
4

4 + 3ε
P (rj ∈ (ri, t

′], pj ≤ pi)

Hence by substitution using equation 7, to prove equation 6
it suffices to prove:

4 + 3ε

4(1 + ε)
V (ri, Jj ∈ U(SJF, ri), pj ≤ pi) (8)

+P (rj ∈ (ri, t
′], pj ≤ pi)

≥ 4 + 5ε

(4 + 3ε)(1 + ε)
V (ri, Jj ∈ U(SJF, ri), pj ≤ pi)

+
4 + 5ε

(4 + 3ε)(1 + ε)
P (rj ∈ (ri, t

′], pj ≤ pi)

Now, it is easy to see that equation 8 is true since,

1 ≥ 4 + 5ε

(4 + 3ε)(1 + ε)

and

4 + 3ε

4(1 + ε)
≥ 4 + 5ε

(4 + 3ε)(1 + ε)

Thus we have proved our main theorem for this section.

Theorem 3. SJF is (1 + ε)-speed O(1
ε
)-competitive for

the Lp norms of flowtime and stretch, for p ≥ 1.

Note that the above proof also holds for maximum flow
and stretch, that is when p = ∞, which prompted the
metaphorical portion of this paper’s title.

6. ANALYSIS OF SRPT
In this section we prove identical results for SRPT. The

analysis is somewhat more involved than that for SJF be-
cause we need to handle the remaining times of jobs under
SRPT more carefully.

Let us define the relaxed age, denoted by rAgep(Ji, t), of
a job Ji at time t to be 0 if (t − ri) ≤ 8pi/ε and (t − ri)

p−1

otherwise. Similarly, we define rSAgep(Ji, t) to be 0 if (t −
ri) ≤ 8pi/ε and (t − ri)

p−1/pp
i otherwise.

Note that if F (Ji) ≤ 8pi/ε, then p
�

t
rAgep(Ji, t) = 0 and

if F (Ji) > 8pi/ε, then p
�

t
rAgep(Ji, t) = F p(Ji) − (8pi/ε)p.

Thus, we always have that

F p(Ji) ≤ p

�
t

rAgep(Ji, t) + (8pi/ε)p

Similarly, Sp(Ji) ≤ p
�

t
rSAgep(Ji, t) + (8/ε)p

Define rAge(X, t) and rSAge(X, t) for a set of jobs X as
the sum of rAge’s and sAge’s of jobs in X. Now, if we show
that for all t,

rAgep(U(SRPT, t) \ U(Opt, t), t)

≤ O(1/εp)Agep(U(Opt, t), t)

then it follows that,

rAgep(U(SRPT, t), t) = O(1/εp)Agep(U(Opt, t), t)

and hence that�
t

rAgep(U(SRPT, t), t) = O(1/εp)

�
t

Agep(U(Opt, t), t)

Now since the flow time of Ji it at least pi, it is easy to see
that F p(SRPT) ≤ �

t
rAgep(U(SRPT, t), t)+

�
i(8pi/ε)p =

O(1/ε)pF p(Opt). Similarly, it suffices to show that

rSAgep(U(SRPT, t) \ U(Opt, t), t)

≤ O(1/εp)SAgep(U(Opt, t), t)

for proving O(1/ε)p competitive for Sp.
To prove these, we modify the analysis for SJF as fol-

lows: Given a time t, define D to consist of only those jobs
which have age more that 8/ε times their size, and which
Opt has finished but are present under SRPT. Mimick-
ing the proof for SJF, for every job Ji in D will we show
that we can associate εpi/4(1 + ε) units of work (which has
not been already allocated to a lower indexed job in D)
from some job of size ≤ pi in Opt and which has age at

least ε(t−ri)
4(1+ε)

. Clearly, this implies that rAgep(U(SRPT, t)−
U(Opt, t), t) ≤ O(1/εp)Agep(U(Opt, t), t) and also that

rSAgep(U(SRPT, t) \ U(Opt, t), t)

≤ O(1/εp)SAgep(U(Opt, t), t)

For job Jj , let rem(j, t) denote its remaining processing re-
quirement at time t. We begin by a result similar to Lemma
2.

Lemma 4. For all times u and values of pi,

V (u, Ji ∈ U(Opt, u), rj ≤ u, pj ≤ pi) (9)

≥ ε

1 + ε
P (Jj ∈ U(SRPT, u), pj ≤ pi)

+
1

1 + ε
V (u, Jj ∈ U(SRPT, u), pj ≤ pi) − 1

1 + ε
pi

Proof. First observe that by the nature of SRPT, at any
time u and any value p, there can be at most one which has
both size greater than p and remaining time less than p.
Thus the term

V (u, Jj ∈ U(SRPT, u), rem(j, u) ≤ pi, pj > pi)

never exceeds pi.
We now prove the lemma by induction on the time u.

Whenever there is a job in with size less than pi or remaining
time less than pi then the right hand side of the inequality
decreases at least as fast as the left hand side. If the is no
such job Jj , then the right hand side of the inequality is −pi

where as the left hand side is 0. Now, it might happen that
SRPT works on some job of size > pi and its remaining time
becomes pi or less. However, it is easy to see that in this
case the right hand side is no more than 0.

We now apply Equation 9 with u = ri to Lemma 3. We
also use the obvious facts that P (Jj ∈ U(SRPT, ri), pj ≤
pi) ≥ P (Jj ∈ D, rj ≤ ri, pj ≤ pi) and
P (Jj ∈ U(SRPT, ri), pj ≤ pi) ≥
V (ri, Jj ∈ U(SRPT, ri), pj ≤ pi). Thus it suffices to show
that

4 + 3ε

4(1 + ε)
P (Jj ∈ U(SRPT, ri), pj ≤ pi) (10)

+P (rj ∈ (ri, t
′], pj ≤ pi) − 1

1 + ε
pi ≥ (

4 + 5ε

4(1 + ε)
)(t − ri)

Since SRPT does not finish Ji by time t (and hence by
time t′). It must be the case that (1+ε)(t′−ri) ≤ V (ri, Jj ∈
U(SRPT, ri), rem(j) ≤ pi) + P (rj ∈ (ri, t

′], pj ≤ pi). Since,

V (ri, Jj ∈ U(SRPT, ri), rem(j) ≤ pi)

≤ V (ri, Jj ∈ U(SRPT, ri), pj ≤ pi) + pi

we get that

4 + 3ε

4
(t − ri) ≤ V (ri, Jj ∈ U(SRPT, ri), pj ≤ pi)i

+P (rj ∈ (ri, t
′], pj ≤ pi) + pi

Now, since pi ≤ ε
8
(t − ri) (this is where we use that we are

considering relaxed ages) we have that,

4 + 2ε

4
(t − ri) ≤ V (ri, Jj ∈ U(SRPT, ri), pj ≤ pi)(11)

+P (rj ∈ (ri, t
′], pj ≤ pi) − pi

Using 12, to prove 10 it suffices to show that

4 + 3ε

4(1 + ε)
V (Jj ∈ U(SRPT, ri), pj ≤ pi) (12)

+P (rj ∈ (ri, t
′], pj ≤ pi) − 1

1 + ε
pi

≥ (
4 + 5ε

4(1 + ε)
)(

2

2 + ε
)V (ri, Jj ∈ U(SRPT, ri), pj ≤ pi)

+(
4 + 5ε

4(1 + ε)
)(

2

2 + ε
)P (rj ∈ (ri, t

′], pj ≤ pi) − pi

However, comparing term by term, it is easy to see that
equation 12 always holds.

7. FLOW ANALYSIS OF SETF
Our goal is to show that SETF is (1+ε)-speed O(1/ε2+2/p)-

competitive for the Lp norm of flowtime. We first compare
SETF to an intermediate policy MLF, and then compare
MLF to Opt. Our MLF is a variation of the standard Mul-
tilevel Feedback Queue algorithm where the quanta for the
queues are set as a function of ε. Let �i = ε((1 + ε)i − 1),
i ≥ 0, and let qi = �i+1 − �i = ε2(1 + ε)i, i ≥ i. In MLF a
job Jj is in level k at time t if the work done on Jj by time
t is ≥ �k and < �k+1. MLF maintains the invariant that
it is always running the earliest arriving job in the smallest
nonempty level.

Lemma 5. For any instance I, and for any Jj ∈ I, Jj

completes in SETF1+ε before Jj completes in MLF1.

Proof. For any job Jj ∈ I and any time t, let w(j, t)
denote the work done on Jj by time t. For a job with
w(j, t) ≤ x, let rem≤x(j, t) = min(pj , x) − w(j, t), that is,
the amount of work that must be done on Jj until either Jj

completes or until Jj has been processed for x units. Let
U(A, t, w(j, t) ≤ x) denote the set of unfinished jobs in al-
gorithm A at time t which have less than x work done on
them. Let W≤x(A, t) denote

�
Jj∈U(A,t,w(j,t)≤x) rem≤x(j, t).

Now, as SETF is always working on the job with least work
done, it is easy to see that W≤p(SETF, t) ≤ W≤p(A, t) for
any algorithm A with the same speed processor at SETF.

Suppose to reach a contradiction that there some job Jj

which completes earlier in MLF1 than in SETF1+ε. Clearly
MLF1 must finish the work W≤pj (MLF1, rj) before time

CMLF1
j since MLF1 will complete earlier arriving shorter

jobs before later arriving longer jobs. Moreover, at time

CMLF1
j all the jobs in U(MLF1, t) have at least pj/(1 + ε)

amount of work done on them, otherwise Jj wouldn’t be

run by MLF1 at time CMLF1
j since there would be a lower

level job than Jj at this time. Consider the schedule A1+ε

that at all times t, runs the job that MLF1 is running at
time t (and idles if this job is already completed). Hence,
A1+ε would have completed Jj , and all previously arriving

jobs with processing time less that pj , by time CMLF1
j since

A1+ε has a (1 + ε)-speed processor. Hence, by the property
of SETF from the previous paragraph, SETF1+ε completes

Jj by time CMLF1
j , which is our contradiction.

Lemma 5 implies that

F p(SETF(I), s) ≤ F p(MLF(I), s/(1 + ε)) (13)

Now our goal will be to relate MLF and Opt. Let the original
instance be I. Let J be the instance obtained from I as
follows. Consider a job Jj and let i be the smallest integer
such that pj + ε ≤ ε(1 + ε)i. The processing time of Jj in
J is then ε(1 + ε)i. Let K be the instance obtained from
J by decreasing each job size by ε. Thus, each job in K
has size �k = ε((1 + ε)k − 1) for some k. Note that in
this transformation from I to K, the size of a job doesn’t
decrease, and it increases by at most a factor of (1 + ε)2.
Since MLF is has the property that increasing the length of
a particular job will not decrease the completion time of any
job, we can conclude that

F p(MLF(I), s/(1 + ε)) ≤ F p(MLF(K), s/(1 + ε)) (14)

Finally we create an instance L by replacing each job of size
ε((1 + ε)k − 1) job in K by k jobs of size q1, . . . , qk−1. Note
that �k = q0 + q1 + . . . , qk−1. For a job of Jj ∈ K, we denote
the corresponding jobs in L by Jj0 , Jj1 , . . . , Jjk−1 .

Notice that any time t, SJF(L) is working on a job Jjb ∈ L
if and only if MLF(K) is working on job Jj ∈ K that is
in level b at time t. In particular, this implies that the
completion time of Jj in MLF(K) is exactly the completion
time of some job Jjb ∈ SJF(L). Hence,

F p(MLF(K), s/(1 + ε)) ≤ F p(SJF(L), s/(1 + ε)) (15)

By Theorem 3, we know that

F p(SJF(L), s/(1 + ε) = O(1/εp)F p(Opt(L), s/(1 + ε)2)
(16)

We relate the optimal schedule for L back to the optimal
schedule for I. To do this we first relate L to J as follows.
Let L(k) denote the instance obtained from J by multi-
plying each job size in J by ε/(1 + ε)k. Next, we remove
from L(k) any job whose size is less than ε2. We claim that
L = L(1) ∪ L(2) ∪ To see this, let us consider some job
Jj ∈ J of size ε(1+ε)i. Then, L(1) contains the correspond-
ing job Jji−1 of size ε/(1+ε) ·ε(1+ε)i = ε2(1+ε)i−1 = qi−1.
Similarly L(2) contains the job Jji−2 of size qi−2 and so on.
Thus, L is exactly L(1)∪L(2)∪ Summarizing, we have
that the L(k)′s are geometrically scaled down copies of J
and that L is exactly the union of these L(k)′s.

Our idea at a high level is as follows: Given a good schedule
of J , we obtain a good schedule for L(k). This will be easy
to do as L(k) is a scaled down version of J . Finally, we
will superimpose the schedules for each L(k) to obtain a
schedule for L. This will give us a procedure to obtain a

good schedule for L given a good schedule for J . To put
everything in place, we need the following lemma from [5]
while relates J and L(k).

Lemma 6. Let L(k) be as defined above. Let F (s, Ji,G))
(respectively S(s, Ji,G)) denote the flow time (respectively
stretch) of job Ji ∈ G when SJF is run on G with a speed s
processor. Then, for all x ≥ 1,

F (ε(1 + ε)−k · x · s, Jik ,L(k)) ≤ 1

x
F (s, Ji,J)

S(ε(1 + ε)−k · x · s, Jik ,L(k) ≤ (1 + ε)k

εx
S(s, Ji,J)

Proof. We first show that for all jobs Jj ∈ J ,
F (s, Jj ,J) ≤ (1/s)F (1, Jj ,J). Let w(x, s, Jj) denote the
work done on job Jj , after x units of time since it arrived,
under SJF using an s speed processor. We will show a
stronger invariant that for all jobs Jj and all times t, w((t−
rj)/s, s, Jj) ≥ w(t − rj , 1, Jj).

Consider some instance where this condition is violated.
Let Jj be the job and t be the earliest time for which w((t−
rj)/s, s, Jj) < w(t − rj , 1, Jj). Clearly, SJFs is not working
on Jj at time t, due to minimality of t. Thus, SJFs is
working on some other smaller job i. Since SJF1 is not
working on i, SJF1 has already finished i by some time t′ < t.
However, this means that w((t′−ri), s, Ji) < w(t′−ri, 1, Ji),
which contradicts the minimality of t.

We now show the main result of the lemma. It is easy to
see that the flow time of every job Jj(k) ∈ L(k) (where Jj(k)
is job corresponding to Jj ∈ J but scaled down by ε(1+ε)−k

times) under SJF with a speed ε(1 + ε)−k processor is at
most that of the corresponding job Jj ∈ J , under SJF with
a unit speed processor. Thus by the fact above, running
SJF on L(k) with an x · ε(1 + ε)−k-speed processor yields a
1/x times smaller flow time for each job in L(k) than the
corresponding job in J .

Finally, since the size of jobs in L(k) are ε(1 + ε)−k times
smaller than in J , the result for stretch follows from the
result for flow time.

Lemma 7.

F p(Opt(L), 1 + 2ε) = O(1/ε2)F p(SJF(J), 1)

Proof. Given the schedule SJF(J), we construct a fol-
lowing schedule A for L as follows. The jobs in L(k) are run
with a speed xk = ε(1 + ε

1+ε
)−k processor using the algo-

rithm SJF. Note that the total speed required by A is at
most

∞�
i=1

xi =
∞�

i=1

ε
1

(1 + ε
1+ε

)i
=

ε

1 − 1+ε
1+2ε

= 1 + 2ε

By Lemma 6, F p(A(L(k)), 1 + 2ε) will be at most�
ε(1+ε)−k

xk

�p

=
�

(1+2ε)

(1+ε)2

�kp

times F p(SJF(J , 1). Hence,

F p(A(L), 1 + 2ε)

F p(SJF(J), 1)
≤

∞�
i=1

�
1 + 2ε

(1 + ε)2

�ip

≤
∞�

i=0

�
1 − ε2

(1 + ε)2

�i

= O(1/ε2)

The proof then follows because Opt is at least as good as
A.

Hence by Lemma 7, Theorem 3, and the fact that that
jobs lengths in J are at most (1 + ε)2 times as long as they
are in I, we get that

F p(Opt(L), s/(1 + ε)2)

= O(1/ε2) · F p(SJF(J),
s

(1 + 2ε)(1 + ε)2
)

= O(1/εp+2) · F p(Opt(J),
s

(1 + 2ε)(1 + ε)3
)

= O(1/εp+2) · F p(Opt(I),
s

(1 + 2ε)(1 + ε)5
) (17)

By stringing together the inequalities 13, 14, 15, 16, 17,
we find that

F p(SETF(I), s) = O(1/ε2p+2)F p(Opt(I),
s

(1 + 2ε)(1 + ε)4
)

Hence, we conclude that SETF is (1+ ε)-speed O(1/ε2+2/p)-
competitive for the Lp norm of flowtime.

8. STRETCH ANALYSIS OF SETF
We consider stretch analysis of SETF. The analysis is

similar to the analysis for flow time. By Lemma 5, it follows
that Sp(SETF(I), 1 + ε) ≤ Sp(MLF(I), 1). Similarly, since
each job in Ji ∈ I is at most (1+ ε)2 times smaller than the
corresponding job in K, and also has size no more than that
of the corresponding job in J , we get that Sp(MLF(I), 1) ≤
(1 + ε)2pSp(MLF(K), 1). These together give us that

Sp(SETF(I), 1 + ε) ≤ (1 + ε)2pSp(MLF(K), 1) (18)

For a job of size ε[(1+ε)k−1] in K, the corresponding job of
size ε2(1+ε)k ∈ L has equal flow time. Thus the ratio of the
contributions to the pth power of stretch for L and K will be

at least (ε2(1+ε)k

ε[(1+ε)k−1]
)p, which is at least (ε

1−(1+ε)−k)p. Now

since ε[(1+ε)k−1] ≥ 1 for all valid job sizes in K, we get that
(1 + ε)−k ≤ ε

1+ε
and hence that (ε

1−(1+ε)−k)p ≤ (ε(1 + ε))p.

Thus we get that Sp(MLF(K), 1) ≤ (ε(1+ε))pSp(SJF(L), 1).
Now, applying Theorem 3 it follows that Sp(SJF(L), 1+ε) =
O(1/εp)Sp(Opt(L), 1). Thus we get that

Sp(MLF(K), 1) = O((1 + ε)p)Sp(SJF(L), 1) (19)

Recall Theorem 3 that

Sp(SJF(L), 1 + ε) = O(1/εp)Sp(Opt(L), 1) (20)

We now prove a result similar to Lemma 7 for stretch.

Lemma 8.

Sp(Opt(L), 1 + ε) = O(
logp+1

1+ε B

εp
)Sp(SJF(J), 1)

Proof. Set xi = ε(1 + ε)−i for i = 1, . . . ,
log1+ε log1+ε(B/ε), and xi = ε/ log1+ε(B/ε) for
i > log1+ε log1+ε(B/ε). We run the jobs in L(i) using SJF on
a speed xi processor. Notice that the total speedup required

is
�log1+ε(B/ε)

i=1 xi which is at most 1 + ε.
By, lemma 6, Sp(SJF(L(i)), xi) is at most

(1/xp
i)S

p(SJF(J), 1). By simple algebraic calculation it can

be seen that
�

i(
1
xi

)p is O(1
εp logp+1

1+ε B).

Combining equations 18, 19, and 20, and lemma 8, we get
that

Sp(SETF(I), (1 + ε)2)

= O(
(1 + ε)3p

εp
· logp+1

1+ε B)Sp(SJF(J), 1) (21)

Now by Theorem 3 we have that

Sp(SJF(J), 1 + ε) = O(1/εp)Sp(Opt(J), 1) (22)

Also, since each job Ji ∈ J has size at most (1 + ε)2 times
more than the corresponding job Ji ∈ I (and is not smaller),
we trivially have that

Sp(Opt(J), (1 + ε)2) ≤ Sp(Opt(I), 1) (23)

Now combining equations 21, 22 and 23 it follows that

Sp(SETF, (1 + ε)5, I) = O(
1

ε2p
· logp+1

1+ε B)Sp(Opt(I), 1)

or equivalently that

Sp(SETF, (1 + ε)5, I) = O(
1

ε3p+1
· lgp+1 B)Sp(Opt(I), 1)

Thus we shown that,

Theorem 9. SETF is a (1 + ε)-speed

O(1

ε3+1/p · lg1+1/p B)-competitive algorithm for the Lp norm
of stretch.

9. LOWER BOUND FOR ROUND ROBIN
We now show that for every p ≥ 1, there is an ε > 0

such that Round Robin (RR) is not an (1 + ε)-speed no(1)-
competitive algorithm for the Lp norm of flow time. Ob-
serve, that as any non-clairvoyant algorithm is Ω(n) com-
petitive with respect to the Lp norm of stretch, so is RR.

Suppose ε < 1/2 and RR has a processor of speed 1 + ε.
Consider the following instance. Two jobs of size p0 = 1
arrive at r0 = 0. Next we have a collection of n jobs whose
release times and sizes are defined as follows. The first job
of size p1 = p0(1 − 1+ε

2
) arrives at time r1 = p0. In general

the ith job has size pi = (1 − 1+ε
i+1

)pi−1 and ri =
�i−1

j=0 pj .
The instance has the following properties which are easily
verified:

1. Except for one job of size 1 which arrives at time 0,
each job under SRPT has a flow time equal to its size.
The job of size 1 has flow time t′ = 1 +

�n
j=0 pj .

2. Under RR (with a 1 + ε speed processor) all the jobs
keep accumulating and finish simultaneously at time
t = (2p0 +

�n
j=1 pi)/(1 + ε).

We now consider the relevant quantities. First observe

that pi = Πi
j=1

(j−ε)
j+1

= 1
i+1

Πi
j=1(1 − ε/j). Using the fact

that for all x ≥ 0, 1 − x ≤ e−x we get that pi ≤ 1
i+1

e−H(i)ε

where H(i) is the ith Harmonic number. Finally using that

H(i) ≥ ln i, we get that pi ≤ 1
i+1

i−ε ≤ i−(1+ε).

We now upper bound F p(SRPT, 1), and hence F p(Opt, 1).

Observing that
�n

j=0 pj ≤�∞
j=0 pj ≤�∞

j=0 j−(1+ε) = O(1)

and that
�n

j=0 pp
j ≤ �∞

j=0 j−(1+ε)p = O(1) we get that

F p(SRPT, 1) = O(1).
On the other hand, in RR each job with size pi has flow

time at least (i + 2)pi (since this job time-shares with at
least i + 2 jobs throughout its execution). We now lower
bound pi. Using the fact that e−2x ≤ 1 − x for x ≤ 1

2
,

we get that pi = 1
i+1

Πi
j=1(1 − ε/j) ≥ 1

i+1
e−2εH(i). Since

H(i) ≤ ln i + 1 we get, pi ≥ 1
i+1

(ei)−2ε = Ω(i−(1+2ε)). Thus

(i + 2)pi = Ω(i−2ε). This gives us that F p(RR, 1 + ε) is at
least

�n
i i−2εp which is Ω(nδ) for 2εp ≤ 1− δ. In particular,

if p = 2, then RR is not O(1)-competitive even with an
(1 + ε) speedup if ε < 1

4
.

Acknowledgments: We thank Cliff Stein for helpful dis-
cussions.

10. REFERENCES
[1] N. Alon, Y. Azar, G. Woeginger, and T. Yadid.

Approximation schemes for scheduling. In ACM-SIAM
Symposium on Discrete Algorithms, pages 493–500,
1997.

[2] A. Avidor, Y. Azar, and J. Sgall. Ancient and new
algorithms for load balancing in the lp norm.
Algorithmica, 29(3):422–441, 2001.

[3] B. Awerbuch, Y. Azar, E. Grove, M. Kao,
P. Krishnan, and J. Vitter. Load balancing in the lp
norm. In IEEE Symposium on Foundations of
Computer Science, 1995.

[4] N. Bansal and K. Dhamdhere. Minimizing weighted
flow time. In Symposium on Discrete Algorithms
SODA, pages 508–516, 2003.

[5] N. Bansal, K. Dhamdhere, J. Konemann, and
A. Sinha. Non-clairvoyant scheduling for minimizing
mean slowdown. In Symposium on Theoretical Aspects
of Computer Science (STACS), to appear, 2003.

[6] N. Bansal and M. Harchol-Balter. Analysis of srpt
scheduling: Investigating unfairness. In ACM
Sigmetrics, pages 279–290, 2001.

[7] L. Becchetti and S. Leonardi. Non-clairvoyant
scheduling to minimize the average flow time on single
and parallel machines. In ACM Symposium on Theory
of Computing (STOC), pages 94–103, 2001.

[8] L. Becchetti, S. Leonardi, A. M. Spaccamela, and
K. Pruhs. Online weighted flow time and deadline
scheduling. In RANDOM-APPROX, pages 36–47,
2001.

[9] M. Bender, S. Muthukrishnan, and R. Rajaraman.
Improved algorithms for stretch scheduling. In 13th
Annual ACM-SIAM Symposium on Discrete
Algorithms, 2002.

[10] A. Borodin and R. El-Yaniv. On-Line Computation
and Competitive Analysis. Cambridge University
Press, 1998.

[11] C. Chekuri and S. Khanna. Approximation schemes
for preemptive weighted flow time. In ACM
Symposium on Theory of Computing (STOC), 2002.

[12] C. Chekuri, S. Khanna, and A. Zhu. Algorithms for
weighted flow time. In ACM Symposium on Theory of
Computing (STOC), 2001.

[13] M. Crovella, R. Frangioso, and M. Harchol-Balter.
Connection scheduling in web servers. In USENIX
Symposium on Internet Technologies and Systems,
pages 243–254, 1999.

[14] J. Edmonds. Scheduling in the dark. Theoretical
Computer Science, 235(1):109–141, 2000.

[15] L. Epstein and J. Sgall. Approximation schemes for
scheduling on uniformly related and identical parallel
machines. In European Symposium on Algorithms
(ESA), pages 151–162, 1999.

[16] M. Harchol-Balter, M. Crovella, and S. Park. The case
for srpt scheduling of web servers.

[17] http://httpd.apache.org/docs/.

[18] http://www.netcraft.com/survey/.

[19] B. Kalyanasundaram and K. Pruhs. Fault-tolerant
scheduling. In STOC, 1994.

[20] B. Kalyanasundaram and K. Pruhs. Minimizing flow
time nonclairvoyantly. In IEEE Symposium on
Foundations of Computer Science, pages 345–352,
1997.

[21] B. Kalyanasundaram and K. Pruhs. Speed is as
powerful as clairvoyance. Journal of the ACM,
47(4):617–643, 2000.

[22] D. Knuth. The TeXbook. Addison Wesley, 1986.

[23] J. Kurose and K. Ross. Computer networking: A
top-down approach featuring the Internet.
Addison-Wesley, 2002.

[24] R. Motwani, S. Phillips, and E. Torng. Nonclairvoyant
scheduling. Theoretical Computer Science,
130(1):17–47, 1994.

[25] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and
J. Gehrke. Online scheduling to minimize average
stretch. In IEEE Symposium on Foundations of
Computer Science (FOCS), pages 433–442, 1999.

[26] C. A. Phillips, C. Stein, E. Torng, and J. Wein.
Optimal time-critical scheduling via resource
augmentation. In ACM Symposium on Theory of
Computing (STOC), pages 140–149, 1997.

[27] B. Schroeder and M. Harchol-Balter. Web servers
under overload: how scheduling can help.

[28] A. Tanenbaum. Operating systems: design and
implementation. Prentice-Hall, 2001.

[29] K. Thompson. Unix implementation. The Bell System
Technical Journal, 57(6):1931–1946, 1978.

