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ABSTRACT distributed system, supercomputing, matrix analytic, star-

We consider the scenario of two processors, each serving its vation, unfairness

own workload, where one of the processors (known as the

“donor”) can help the other processor (known as the “benefi- 1. INTRODUCTION
ciary”) with its jobs, during times when the donor processor o
is idle. That is the beneficiary processor “steals idle cycles” Motivation

from the donor processor. We assume that both donor jobs
and beneficiary jobs may have generally-distributed service
requirements. We assume that there is a switching cost re-
quired for the donor processor to start working on the bene-
ficiary jobs, as well as a switching cost required for the donor
processor to return to working on its own jobs. We also al-
low for threshold constraints, whereby the donor processor
only initiates helping the beneficiary if both the donor is idle
and the number of jobs at the beneficiary exceeds a certain
threshold.

We analyze the mean response time for the donor and ben-
eficiary processors. Our analysis is approximate, but can be
made as accurate as desired, and is validated via simulation.
Results of the analysis illuminate several interesting princi-
ples with respect to the general benefits of cycle stealing and
the design of cycle stealing policies.

Since the invention of networks of workstations, systems de-
signers have touted the benefits of allowing a user to take
advantage of machines other than her own, at times when
those machines are idle. This notion is often referred to
as cycle stealing. Cycle stealing allows a user, Betty, with
multiple jobs to offload one of her jobs to the machine of
a different user, Dan, if Dan’s machine is idle, giving Betty
two machines to process her jobs. When Dan’s workload
resumes, Betty must return to using only her own machine.
We refer to Betty as the beneficiary, to her machine as the
beneficiary machine/server, and to her jobs as beneficiary
jobs. Likewise, we refer to Dan as the donor, to his machine
as the donor machine/server, and to his jobs as donor jobs.

Although cycle stealing provides obvious benefits to the
beneficiary, these benefits come at some cost to the donor.
For example, the beneficiary’s job may have to be check-
pointed and the donor’s working set memory reloaded before
Categoriesand Subj ect Descriptors the donor can resume, delaying the resumption of process-
ing of donor jobs. In our model we refer to these additional
costs associated with cycle stealing as switching costs.

A primary goal of this paper is to understand what is the
General Terms benefit of cycle stealing for the beneficiary and what is the
Performance, Algorithms penalty to the donor, as a function of switching costs. A sec-
ondary goal is to derive parameter settings for cycle stealing.
In particular, given non-zero switching costs, cycle stealing
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Keywor ds may pay only if the beneficiary’s queue is “sufficiently” long.
Cycle stealing, task assignment, load sharing, server farm, We seek to understand the optimal threshold on the bene-
— ficiary queue. More broadly, we seek general insights into
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on the effectiveness of cycle stealing.

The analytical model

We assume there are two queues, the beneficiary queue and
the donor queue, with independent arrival processes and ser-
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and pp = Ap - E[Xp]. If the donor server is idle, and if
the number of jobs at the beneficiary queue is at least N&,
the donor transitions into the switching state, for a random
amount of time, K. After K, time, the donor server
is available to work on the beneficiary queue and the ben-
eficiary queue becomes an M/Gp/2 queue. If a donor job
arrives during K, or during the time the donor is helping
the beneficiary, the donor transitions into a switching back
state, for a random amount of time, Kp,. After the comple-
tion of the switch back, the donor server resumes working
on its own jobs. We assume the first three moments of the
service times are finite, and queues are stable. The donor
server cannot work on any job while it is in the switching or
switching back state.

A few details are in order. First, in the above model, the
donor processor continues to cooperate with the beneficiary
even if there is no beneficiary work left for it to do — the
donor processor only switches back when a donor job ar-
rives. (We also analyzed the case where the donor processor
switches back when it is not needed, see [10]. We found
that this has almost no effect on performance, even under
high switching costs). Second, we assume that if the donor
processor is working on a beneficiary job and a donor job
arrives, that beneficiary job is returned to the beneficiary
queue and will be resumed by the beneficiary processor as
soon as that processor is available. The work done on the job
is not lost, i.e., the job is checkpointed.! Third, our model
can be generalized to the case where there is a threshold,
N on the number of donor jobs as well — i.e., the donor
processor only returns to the donor queue when the number
of jobs at the donor queue is at least N&'. Throughout this
paper, aside from the stability section (Section 4), we as-
sume NI = 1 for simplicity, and focus on the effect of N§.
In the associated technical report [10], we extend the anal-
ysis to general N&'. Our performance metric throughout is
mean response time for each class of jobs.

Difficulty of analysis and Previous work

Consider the simplest instance of our problem — where the
service requirements of all jobs are each drawn from expo-
nential distributions and the switching costs and thresholds
are zero. Even for this simplest instance the continuous-time
Markov chain, while easy to describe, appears computation-
ally intractable. This is due to the fact that the stochas-
tic process having state (number beneficiary jobs, number
donor jobs ) grows infinitely in two dimensions and contains
no structure that can be easily exploited in practice to ob-
tain an exact solution. While solution by truncation of the
Markov chain is possible, the errors that are introduced by
ignoring portions of the state space (infinite in two dimen-
sions) can be quite significant, especially at higher traffic
intensities.? Thus truncation is neither sufficiently accurate
nor robust for our purposes.

Tt is easy to generalize our analysis to the case where the
beneficiary requires a “switching time” before it can resume
a job that the donor started. It is also trivial to extend our
results to the case where all work on the job in progress is
lost if a donor job arrives, provided that we assume that the
job is restarted with a new service time — which we feel is
unrealistic. It is also possible to extend our results to the
case where the donor must complete the beneficiary job in
progress before it switches back (see Section 7).

2For pp = 1.2 and pp = 0.7, truncation leads to > 15%
error, even with 642 states, and takes > 10 minutes to com-

To our knowledge, there has been no previous analyti-
cal work on the problem of cycle stealing with switching
costs. Below we describe prior work on the “coupled pro-
cessor model”. In this model two processors each serve their
own class of job, and if either is idle it may help the other,
increasing the rate of the other processor. This help incurs
no switching cost and has a benefit if even a single job is
present. These models inherently assume a preemptive re-
sume discipline: when a processor returns to its own queue,
none of its work is lost. In addition, because the processors
work in concert, rather than on different jobs, these systems
will gain no multi-server benefit when serving highly vari-
able jobs; short jobs may get stuck waiting behind long jobs
in the single queue for each class. All works we mention
below consider Poisson arrivals.

Early work on the coupled processor model was by Fayolle
and Tasnogorodski [4] and Konheim, Meilijson and Melkman
[6]. Both papers assume exponential service times, deriving
expressions for the stationary distribution of the number
of jobs of each type. Fayolle and Iasnogorodski use com-
plex algebra, eventually solving either a Dirichlet problem
or a homogeneous Riemann-Hilbert problem for a circle, de-
pending on the accelerated rates of the servers. Konheim
et. al. assume that the accelerated rate is twice the origi-
nal rate, which yields simpler expressions (still in the form
of complex integrals). While it is possible to numerically
evaluate these analytical expressions, they were not evalu-
ated in either work, thus no intuition was provided on the
performance of these systems.

The above work was extended by Cohen and Boxma [3] to
the case of general service times. They consider stationary
workload, which they formulate as a Wiener-Hopf boundary
problem. This leads to complex expressions involving either
integrals or infinite sums; if the queues are symmetric sim-
pler expressions for mean total workload are found, but not
for response time. They again have the two processors work-
ing in concert, without a switching cost, providing complex
analytical expressions, rather than numerical values.

In more recent work, Borst, Boxma and van Uitert [2]
apply a transform method to the expressions in [3], yielding
asymptotic relations between the workloads and the service
requirement distributions. This leads to the insight that if a
processor has a load less than one, it is “insulated” from the
heavy-tail of the other, as long periods without cooperation
will not lead to large backlogs. This is not the case if the
load is greater than one, as the queue now must rely on help
to be stable. Borst, Boxma and Jelenkovic [1] consider a
very similar question under generalized processor sharing.
Using probabilistic bounds, they show that different service
rates can either insulate the performance of different classes
from the others or not, again depending on whether the non-
cooperative load is larger than one. Both of these papers
are concerned with the asymptotic behavior of workload,
whereas our work isolates mean performance. Our work is
thus complementary to these results.

Our approach

This paper presents the first analysis of cycle stealing un-
der general service requirements with switching costs and
thresholds. Recall that the difficulty in analyzing cycle steal-
ing is that the corresponding stochastic process defines a

pute. As pp nears 1.3, the error increases indefinitely. Under
job sizes more variable than exponential, the error increases.



Markov chain which grows infinitely in two dimensions (2D),
making it computationally intractable. The key idea in our
approach is to find a way to transform this 2D chain into
some 1D infinite Markov chain which can be analyzed. The
questions in applying such a transformation are (i) what
should the 1D Markov chain track, and (ii) how can all the
relevant information from the 2D chain be captured in the
1D chain. Our 1D chain tracks the number of beneficiary
jobs. For the donor jobs, our state space contains only bi-
nary knowledge: zero jobs or > 1 jobs. Nevertheless we
are able to capture detailed information on the number of
donor jobs by using special transitions in our Markov chain,
where these transitions represent the lengths of an assort-
ment of busy periods. The difficulty lies in specifying the
right busy periods, some of which transcend the definition
of the analytical model.

Once the 1D Markov chain is specified, the hard work
is finished, since this chain can be solved efficiently using
known numerical (matrix analytic) techniques. While a
closed-form solution may be preferable, our chain is com-
pact enough, and matrix analytic methods powerful enough,
that only a couple of seconds are required to generate most
of the results plots in this paper. Furthermore, our method
very easily generalizes to more complex problem formula-
tions e.g., multiple donors (Section 7).

Our analysis is approximate, but can be made as accurate
as desired. The only approximation lies in representing the
length of the busy periods by a Coxian distribution fit to a
finite number of the busy period moments. In this paper, we
use a 2-stage Coxian to capture the first 3 moments of the
busy periods, and verify that this is sufficient via simulation.
However, our method naturally extends to matching more
moments.

Our analysis assumes a Poisson arrival process for both
classes of jobs. The service requirements of each class are
assumed to be drawn i.i.d. from general distributions (which
we approximate by a Coxian). The arrival process can easily
be generalized to a MAP — Markovian Arrival Process [7].

Summary of results

Our analysis yields many interesting results concerning cycle
stealing, detailed in Sections 4 and 6. While cycle stealing
obviously benefits the beneficiaries and hurts the donors,
we find that when pp > 1, cycle stealing is profitable over-
all even under significant switching costs, as it may ensure
stability of the beneficiary queue. For pp < 1, we define
load-regions under which cycle stealing pays. We find that
in general the switching cost is only prohibitive when it is
large compared with E[Xp]. Under zero switching cost, cy-
cle stealing always pays.

Two counterintuitive results are that when pp < 1, the
performance of the beneficiaries is surprisingly insensitive to
the switching cost, and also insensitive to the variability of
the donor job size distribution. Even when the variability
of the donor job sizes is very high, and donor help thus is
very bursty, the beneficiaries still enjoy significant benefits.

The effect of the thresholds, N&* and N, is also interest-
ing: Increasing N curbs the beneficiary gain only slightly,
but cuts the donor pain significantly. N&* does not affect the
stability region for either donor or beneficiary. By contrast,
increasing N increases the stability region of the beneficia-
ries (thus providing unbounded gain for the beneficiaries),
while only increasing donor pain by a finite amount (the

donor stability region is not affected). We describe the op-
timal choice of N&*, under a range of server loads, threshold
levels, and switching costs.

Outline

In Section 2 we present our analysis for the case of zero
switching cost, generalizing to non-zero cost in Section 3.
In Section 4 we provide stability conditions for the donor
and beneficiary servers. In Section 5 we validate our anal-
ysis by considering limiting analytical cases and via simu-
lation. In Section 6 we present results for mean response
times of donor and beneficiary jobs under various loads, job
size distributions, switching costs, and thresholds. Section 7
describes extensions to the model.

2. ANALYSISWITHOUT SWITCH COST

In this section we analyze the simpler case of zero switch-
ing cost. Figure 1 shows our Markov chain for the case where
NI = 3, i.e. the donor server switches to help beneficiary
jobs when there are zero donor jobs and there are at least
three beneficiary jobs. Figure 1(a) shows a simplified form
of our chain where job sizes and busy periods are assumed to
be exponentially-distributed. Figure 1(b) and (c) show al-
ternately the case of generally-distributed (Coxian) job sizes
or busy periods. The actual chain that we evaluate in the
paper is the superposition of the chains in Figures 1(b) and
(c) where job sizes and busy periods are Coxian, see [10].

The first two components of each state denote the num-
ber of beneficiary jobs and the number of donor jobs respec-
tively. The states of the Markov chain have been grouped
into three rows, labeled (i) cooperating row: indicating that
the donor processor is cooperating with the beneficiary; (ii)
independent row, with > 1 donor job: indicating that the
donor and beneficiary processors are each at their own queues
and there is at least 1 donor job present; (iii) independent
row, with 0 donor jobs: indicating that the donor and ben-
eficiary processors are each working independently on their
own queues and there are zero donor jobs present.

Observe that while the states track the precise number
of beneficiary jobs, they keep only a binary record (zero or
> 1) of the donor jobs. The key idea is that to determine
beneficiary performance we can avoid tracking the number
of donor jobs because we only need to know when the donor
queue is empty. Thus we use transitions (labeled Bp) to
represent the length of a busy period of donor jobs.

The logic behind the Markov chain in Figure 1(a) is as
follows: If we are in the row where the processors are work-
ing independently and the number of donor jobs is zero, the
left-right transitions allow us to track the number of bene-
ficiary jobs. If a beneficiary job arrives while we are in this
row and the number beneficiaries is at least NY', then we
transition to the cooperating row. If a donor job arrives
while we're in the row where the processors are working in-
dependently with zero donor jobs, we transition to the row
where processors are working independently and the num-
ber of donor jobs is at least one. The time spent in this row
is the length of a donor busy period. If at the end of the
donor busy period the number of beneficiaries is below N§,
then we return to the row where processors are working in-
dependently and the number of donor jobs is zero. If at the
end of the donor busy period the number of beneficiaries is
at least N, then we move to the cooperating row, where
we stay until there is a donor arrival. Note that the thresh-
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Figure 1: Markov chain for cycle stealing without
switching cost where N4 = 3. (a) Where X3 is expo-
nential and Bp is drawn using a single (exponential)
transition. (b) Where Xp is exponential, and Bp is
represented by a 2-stage Coxian. (c) Where X3 is
represented by a 2-stage Coxian and Bp is drawn
using a single (exponential) transition.

old N is used only to decide about the transition from
residing at separate queues to cooperating; the donor server
keeps working on the beneficiary jobs even when the number
of beneficiaries is < N, until a new donor job arrives.
Observe in Figure 1(c) that when the donor and benefi-
ciary are cooperating, the state space now must maintain
states for one or two partially-completed beneficiary jobs. If
a donor job arrives while we’re in the cooperating row, the
job that the donor was working on will be moved to the head
of the beneficiary queue (we currently assume zero cost for
the transfer, but this is easy to generalize to non-zero cost).
In order to specify the Markov chain, we need to compute
the first three moments of Bp and then find a 2-stage Coxian
which matches these. The Laplace transform of Bp is:

Bp(s) = Xp(s+ Ap — ApBp(s)).

The moments of Bp are obtained from the transform by
taking derivatives. In [9] we derive necessary and sufficient
conditions for matching the first three moments of a distri-
bution using a 2-stage Coxian.

2.1 Computing response times

The mean response time for donor jobs is trivial to com-
pute — it is simply the response time of the M/Gp/1 queue,
since the beneficiary jobs are preemptive and switching cost
is zero. The mean number of beneficiary jobs is easy to com-
pute from the chain in Figure 1 using the matrix analytic
method, described in [7, 8]. This is a simple, compact and ef-
ficient method for solving QBD (quasi-birth-death) Markov
chains which are infinite in one dimension, where the chain
repeats itself after some point, as does Figure 1. Applying
Little’s Law then yields their mean response time. Most of
the plots in this paper which uses matrix analytic methods
was produced within a couple of seconds using Matlab 6
running on Linux, on a 1 GHz Pentium IIT with 512 MB
RAM.

3. ANALYSISWITH SWITCHING COST

In this section, we analyze cycle stealing with switching
costs in both directions. We assume that (i) the donor only
makes the switch if the donor queue is empty and the num-
ber of jobs at the beneficiary queue is at least N, and
(ii) the donor stays at the beneficiary queue until there is a
donor arrival.

Let K denote the time required for the donor to switch
to working on the beneficiary queue, and K, the time to
switch back to the donor queue. Figure 2 shows the Markov
chain for cycle stealing with switching cost where N&* =
3. For simplicity, we have drawn Xp and K, as being
exponentially-distributed — these are easy to replace with
Coxian distributions.

The first two rows of the Markov chain in Figure 2 rep-
resent the case where the donor and beneficiary servers are
working independently, where row 2 indicates zero donor
jobs and row 1 indicates at least one donor job. A transi-
tion from row 2 to row 1 starts a donor job busy period,
the length of which is represented by Bp. When this busy
period completes, if there are < NY* beneficiary jobs in the
system, the Markov chain simply transitions back to row 2.
However if there are > NY' beneficiary jobs, the Markov
chain transitions to row 4 — the row for switching to help.
Observe that the Markov chain can also go from row 2, the
zero donor jobs row, directly to row 4, the switching to help



Working ) T )
independently OB,1D 000
Bp Bp Bp

#idonors = 1+ @ @
Working %

independently (0B,0D
#idonors = 0 :Region 1

Bp+ba
Switching back
and working

on donors jobs

Switching
to help

Figure 2: Markov chain for cycle stealing with
switching cost; Xp and K, are exponential, N = 3.

row, as soon as there are N4 beneficiary jobs. After K.,
time, if no donor job has arrived, the Markov chain transi-
tions to row 5, the cooperating row. As soon as a donor job
arrives, either during K, or during the cooperating phase,
the Markov chain immediately transitions into row 3 — the
switching back row. At the point of entering row 3, there is
a single donor job, which just arrived. The time to return
to the case of zero donor jobs is thus a busy period started
by the sum of Xp and Kp,, which we denote by Bpypa.

In our Markov chain, we have again drawn the busy period
transitions with a single bold transition, although in evalu-
ating the chain we will replace this bold transition with a
minimal Coxian that matches the first three moments of the
busy period duration. Computing the first three moments of
the busy period, Bpa, is straightforward from the Laplace
transform below:

Bpiva(s) = Kpa(s+Ap—ApBp(8)) Xp(s+Ap—ApBp(s)).
Calculation of response times

The mean response time for beneficiary jobs is easy to com-
pute, since the chain keeps track of the number of beneficiary
jobs and can be analyzed via matrix analytic methods. The
donor jobs see an M/GI/1 queue where, at times, the first
job in a busy period must wait for a time to switch back,
Kpo. Thus the response time for donor jobs is the response
time under an M/GI/1 queue with setup time S:

pr{Region 1}

0 with probablhty al W,

S =
pr{Region 2}

Kpa with probablhty az W,

where region 1 and region 2 are defined in Figure 2. We
consider only regions 1 and 2, as S is defined by what the
first job to start a busy period sees. The expected waiting
time for an M/GI/1 queue with only donor jobs and setup
time S is known [12]:

ApE[XD]

E[W]M/Gl/l/SetupS _ 2E[S] + ApE[S?]
2(1—pp)’

21+ A0 E[S))

We thus have:
E[Response time for donor] = E[Xp|+E[W]M/G1/1/Setups

4. STABILITY

In this section we derive stability conditions on pp and pgp
for cycle stealing with switching costs and thresholds N&*
and N (note: throughout this paper we assume N =1,
however, in this section we consider general N&).

The stability conditions are not always intuitive. We find
for example that the stability condition for the donor jobs
remains pp < 1, regardless of the fact that the donor jobs
experience switching costs. By contrast, the stability con-
dition for the beneficiary jobs is a function which can be
significantly below 2 — pp, specifically because the switch-
ing cost eats at the stability region. Also, interestingly, the
value of N4 does not affect the stability region of either the
donor or beneficiary jobs. By contrast, increasing N in-
creases the stability region of the beneficiary jobs; however
it has no effect of the stability region of the donor jobs.

THEOREM 1. The stability condition (necessary and suf-
ficient) for donor jobs is pp < 1.

ProOOF. We first prove sufficiency. Assume pp < 1. Let
Bp denote the length of a busy period at the donor queue.
We first consider the case N&' = 0. A busy period at the
donor queue is started by a switching cost Kp, and N
donor jobs. As pp < 1, the mean length of a busy period is

th
Np'E[Xp] + E[Kpd] <o

ElBp] = 1—-pp

In this case Bp clearly has a proper distribution and thus
the queue is positive regenerative, hence stable.

Next we consider the case NJ* > 0. In this case FE[Bp]
is smaller than in the case N¥* = 0 because there will be
donor busy periods in which the donor hasn’t left the donor
queue, implying (i) there is no switching back cost, and (ii)
the busy period is started by only one donor job.

Necessity follows immediately from the fact that the donor
queue is unstable for all pp > 1. [

Before we derive the stability condition on pp, we prove
a lemma allowing us to assume N&* = 0.

LEMMA 1. If the beneficiary queue is stable at N§* = 0,
then it is stable at N =n, ¥V 0 < n < .

PROOF. Let Lg) (t) denote the number of beneficiary jobs
at time ¢ given N = n > 1. Consider a new process EEB") (t)
in which the number of jobs at time t = 0 is n, instead of 0
as in the original process, and no service is given by either
server to a beneficiary job if there are < n jobs present
at the beneficiary queue. Note that Eg)(t) stochastically
dominates Lg)(t). Along any sample path, Zg”) (t) will be
equal to n + Lg) (t). Therefore, if Lg) (t) is proper, so too
is ESB") (t) and hence Lg)(t). O

We now prove the stability condition on pp.

THEOREM 2. The stability condition (necessary and suf-
ficient) for beneficiary jobs with donor threshold N3 is:

th i~ i
max(1 — pp,0) D8 (N — i) SSPER (Ab)
Nch +>\DE[Kba] ’

p3<1+
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Figure 3: Stability condition on beneficiaries for cycle stealing with switching costs and thresholds.

where Ky (s) is the Laplace transform of Ksw and I~{5(L)) (s) is
its i-th derivative. In particular, when Ks, is exponentially
distributed, the condition is expressed by the closed form:

max(1 — pp,0) {N/tjh - 1z—q (1 B qNEh)}

<1 ’
pB + NP+ Ap E[Kpa]
ADE[Ksw
where q = %'

PrOOF. We first prove sufficiency. By Lemma 1, we are
allowed to assume N4 = 0. Let F denote the time average
fraction of time that the donor helps the beneficiary. Then
the strong law of large numbers can be used to show that
the necessary and sufficient condition for stability of the
beneficiary jobs is

p <1+ F.

If pp > 1, F = 0. Thus we assume pp < 1 and derive
F using renewal reward theory. Let’s consider a renewal
to occur every time the donor queue becomes idle. Recall
N = 0. By renewal-reward theory:
F = Fraction of time donor helps beneficiary = ——,
E[Y]

where R denotes the help (reward) during the renewal cycle,
and Y denotes the length of the renewal cycle. Observe that
there may be any number of donor arrivals ranging from 0
to N during K. and we switch back only after the N
arrival.

‘ Ksw ’ Donor helping | Bs+ba ‘

} b ] ] }
Donor Donor  Donor Donor N§~th

Donor  arrival arrival arrival arrival Donor Doror

queue arrival quele

empties empties

Let S denote the sum of the service times of N3 donor
jobs and Bg4p, denote the length of the busy period started
by these jobs of total size S plus Kp,. Then, as pp < 1,

NY NBE[X E[Kpa
E[Y]:Nf;hE[IDHE[Bswa]:%—F D [l’i];; [Koa]

where Ip is the interarrival time for donor jobs.

To compute E[R] we condition on the number of donor
arrivals during K,,. If there are i arrivals, then the expected
time spent helping is the time until there are (N5 —4) more
donor arrivals, (N8 — i) E[Ip].

Let p; denote the probability that there are i donor ar-
rivals during Ks,. Then, p; = %Idz()\p). Using p;,

E[R] is now derived as follows:

th
N -1

NSNS
Z (Np —Z)Epv

i=

E[R] =

When K, is exponentially-distributed, p; = ¢*(1—¢q), where

q= ADi’i —. Therefore,
1 th
ER] = +— {NEh - %_q(l —q"'P )}-

The stability condition for the beneficiary jobs is thus

B[R] EXT (NG i
PB < 1 + =1 + l;h ’
E[Y] NE + ApE[Kpa]
where p; = “é—,D)if(gfﬂ)(/\D). In particular, when K, is

exponentially distributed, the condition becomes:

_ th
(1-pp) (N = 2(1 - ¢™F))
Nch + )\DE[Kba]

p3<1+

Above, we have proved the necessary and sufficient con-
dition for N¥* = 0. By Lemma 1, this is also the sufficient
condition for N¥* > 0. Now, we prove necessity for N > 0.
When N4 > 0, the donor server does not necessarily help
the beneficiary even when it is available for help. Therefore,
there are two types of renewal periods. In the first type of
renewal period, the donor server helps the beneficiary, i.e.
R > 0. In this case, E[Y] is the same as for N¥* = 0, and
E[R] for Ng* > 0 is at most E[R] for NJ* = 0. In the
second type of renewal period, the donor server does not
help the beneficiary, i.e. R = 0. (In this case E[Y] can be
smaller than that for N = 0.) The fraction of time, F,
that the donor server helps the beneficiary can be expressed
as F' = F1 + F», where Fi is the fraction of time that the
donor server helps the beneficiary and the renewal period is
type 1, and F is the fraction of time that the donor server
helps the beneficiary and the renewal period is type 2. In
fact, F» = 0. Therefore,

E[R]

= <
F Fl*E[

=

This proves the necessity for N&* > 0. [

Note that the right hand side of the stability condition
for beneficiaries is an increasing function of N4'; in terms
of stability, the larger NI, the better the performance of
beneficiaries. In particular, when N = 0, pp < 1; as
N — 00, p5 <2 — pp.



beneficiary response time

donor response time

Figure 3 shows the stability condition for beneficiaries as
a function of pp when K, is exponentially distributed. In
case (1), we set E[Xp] =1 and E[Ksw] = E[Kp] = 1. The
region below each line satisfies the stability condition. As
N increases as high as 100, the effect of switching overhead
becomes negligible, and the stability condition approaches
pB <2 —pp. In case (2), we set E[Xp] =1 and E[Ksw] =
E[K,] = 10. The switching cost is large, and it is observed
that there is little benefit at moderate or high pp in terms
of stability, unless N is large. However, there is still large
benefit at low pp. In case (3), we set E[Xp] = 10 and
E[Ksw] = E[Kpa] = 1. The stability region is much larger;
when N = 1, the stability region is almost the same as that
of N =10 in case (1). This is intuitive: when E[Xp] = 10
and N3 = 1, the expected amount of donor work when the
donor switches back is the same as that when F[Xp] = 1
and NJJ' = 10.
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Figure 4: Validation of our cycle stealing analysis
against four limiting cases. For lack of space we show
graphs only for the specific parameters: N4 = 3,
E[Ksw] = E[Kpo] = 1, Xp is exponentially-distributed
with mean 1 and Xp is a Coxian with mean 1 and
C% =8. (1) pp=0.9,pp — 0; (2) ps — 0,pp = 0.6; (3)
pB =0.9,pp — 1; (4) pp — 1.23,pp = 0.6.

5. VALIDATION OF ANALYSIS

Since our analysis involves approximation of busy periods
by Coxians, it is of paramount importance to validate the
analysis. Analytical validation against limiting cases is pre-
sented in Section 5.1, and simulation validation is reported
in Section 5.2.

5.1 Validation against known limiting cases

We evaluate the performance of cycle stealing under four
limiting situations: pp — 0, pp — 0, pp — 1, and pp —
pp", where pE®? is the stability condition for pp derived in
Section 4. We assume that Xp is generally distributed and
Xp is exponentially distributed. For these limiting cases,

the response times of the beneficiaries and donors are easy

to evaluate since they converge in performance to either an
M/GI/1, an M/GI/1 with setup cost, or an M/M/2.
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Figure 5: Validation of analysis against simulation.
E|Ksw] = E[Kpa] = 1. We fix ps = 0.9, and vary pr.
NY =3. Xp and Xp are exponentially-distributed.
(a) E[XB] = 1,E[Xp] =1. (b) E[XB] =1, E[Xp] = 10.
(¢) E[XB] =10,E[Xp] =1.

Figure 4 verifies that our analysis of cycle stealing has the
correct limiting behavior in all of these cases. (Although we
tested many different parameter settings, we show only a
representative sample.) In case (1), pg = 0.9 and pp — 0.
The response time for beneficiary jobs converges to that un-
der an M/M/2 queue, since the donor server can almost
always help when pp ~ 0. The response time for donor jobs
converges to that under an M/GI/1 queue with setup cost
Kpq. Since the interarrival time of donor jobs is huge when
pp ~ 0, the donor server is almost always at the benefi-
ciary queue when a new donor job arrives, requiring a setup
cost corresponding to the switching cost Kpq. In case (2),
pp = 0.6 and pp — 0. The response time for beneficiary
jobs converges to that under an M/M/1 queue, since the
number of beneficiary jobs is almost always < N when
pB ~ 0 and hence there is no help from the donor server.
The response time for donor jobs converges to that under an
M/GI/1 queue, since the donor server is almost always at
the donor queue and hence requires no setup cost. In case
(3), pp = 0.9 and pp — 1. The response time for benefi-
ciary jobs converges to that under an M/M/1 queue, and
the response time for donor jobs converges to that under an
M/GI/1 queue, since the donor server is almost always busy
working on donor jobs when pp ~ 1 and hence there is no
help from the donor server for the beneficiary and no setup
cost for the donor. In case (4), pp = 0.6 and pp — pB*".
The response time for beneficiary jobs diverges to infinity as
pB — pE*", as is predicted by the stability condition. The
performance of donor converges to that under an M/GI/1
with setup cost Ky, since the donor server almost always
goes to help the beneficiary when it becomes idle and hence
switching cost is almost always required to start working on

max

a new donor job when pp ~ p’g



5.2 Validation against simulation

The accuracy of our analysis was also validated against
simulation: a subset of out validation experiments is shown
in Figure 5. Job sizes are assumed to be exponential. We
show three cases: In case (a), E[Xg] = E[Xp] = 1. In case
(b), E[XB] =1 and E[Xp] = 10. In case (c), E[Xg] = 10
and E[Xp] = 1. In all cases, the results of analysis are
in very close agreement with simulation. The only mild
discrepancy is the performance of the beneficiaries in case
(b), under high load. Under case (b), donor jobs are large,
making their busy periods more variable, especially at high
loads. As our analysis is very dependent on these busy pe-
riods, matching only the first three moments may introduce
error in this case. We hypothesize that the accuracy of our
analysis would improve if we matched more moments of the
busy periods using Coxians with more stages.

6. RESULTSOF ANALYSIS

This section discusses our results, organized as take-home
messages. Throughout we will use the term “gain” to denote
the improvement (drop) in mean response time experienced
by beneficiary jobs under cycle stealing, as compared with
dedicated servers. We will use the term “pain” to refer to the
increase in mean response time experienced by donor jobs
under cycle stealing as compared with dedicated servers. We
define:

[TB ]Dedi cated

E[T5]%

E [TD]CS

and pazn = E[TD]Dedicated ’

gain =
where E[Tg]?**°***? refers to the mean response time of ben-
eficiaries under dedicated servers and E[T5]|% refers to the
mean response time of beneficiaries under cycle stealing;
E[Tp]**<***? and E[Tp]*® are defined similarly. Observe
that both pain and gain have been defined to range from
1 to oo, where infinite gain corresponds to the situation
where the response time under dedicated is infinite and the
response time under cycle stealing is finite.

6.1 Take-home messages

(Section 6.2) Cycle stealing is always a win when
pB > 1, but doesn’t pay when pg < 0.5. When pp > 1
(and pp < 1), cycle stealing can provide infinite gain to ben-
eficiaries over dedicated servers, with comparatively little
pain for the donors. This is because the stability region for
the beneficiaries under cycle stealing is much greater than
under dedicated servers. While factors such as increased
switching costs, increased pp, and increased NZ* do lower
the gain of the beneficiary, since the gain is still infinite,
these factors are less important in the domain pp > 1. When
pB < 0.5, there is so little gain to the beneficiaries that cycle
stealing with non-zero switching overhead doesn’t pay.

We therefore focus the rest of the results section on the
remaining case: 0.5 < pp < 1.

(Section 6.3) For .5 < pg < 1, cycle stealing has re-
gions of high gain and low pain and also regions
where the reverse is true. These regions depend
on job sizes, switching costs, thresholds and loads.
We organize performance into these gain/pain regions and
also look at the overall mean response time (averaged over
both beneficiary and donor jobs) to determine whether cycle
stealing is “good” or “bad” overall. In general under higher
pp and lower pp, cycle stealing is “good” overall, because

the gain of the beneficiaries is so high in this region. We
find that when the switching costs are low, cycle stealing
leads to high gain and low pain. However high switching
costs can reverse this effect. More important than the ab-
solute switching cost is the switching cost relative to the
mean donor job size. We find that the performance of the
donors is sensitive to the switching cost, while surprisingly,
the performance of the beneficiaries is far less sensitive to
the switching cost. We find that while increasing N&* hurts
the beneficiaries and helps the donors, increasing N (up
to a point) nevertheless helps the overall mean performance,
thus increasing the size of the “good” region.

(Section 6.4) For .5 < pp < 1, variability of donor
job sizes has very little effect. We find that the variabil-
ity of the donor jobs has little effect on beneficiary perfor-
mance. This is very surprising; we expected the beneficiary
to gain far less from the bursty help of a donor with irregu-
lar (highly variable) job sizes. We provide intuition for this
surprising result. This echoes findings in [2] and [1] for a
different model.

(Section 6.5) Setting the best threshold N is non-
trivial. Finally we tackle the practical problem of how to
set N& in the region .5 < pB < 1 so as to improve over-
all mean performance (averaged over both beneficiary and
donor jobs). The precise effect of N on overall mean per-
formance is irregular and delicate. We find that the optimal
value of N seems to increase with pp, decrease with pg,
and increase with switching cost.

Due to limited space we typically only show a couple of
options for each parameter. Many more graphs are available
in the associated technical report [10].

6.2 Ben€fitsof cycle stealing: widerange pg

Figure 6 shows the response time for beneficiary jobs (top
row) and donor jobs (bottom row) as a function of pg, where
pp is held fixed at 0.5 (columns 1 and 2) and at 0.8 (columns
3 and 4). Each graph shows response time under (i) cycle
stealing with N&* = 1, (ii) cycle stealing with N&* = 10,
and (iii) dedicated servers. The first and third columns have
no switching cost, and the second and fourth columns have
exponential switching cost with mean 1.

When pp > 1, cycle stealing can provide an unbounded
gain to beneficiary jobs over dedicated servers, due to an
increase in the stability region. We find that factors like
increased switching costs, increased load at donor, and in-
creased NI all result in lower gains for the beneficiary.
However since the gain is unbounded these factors are less
important when pp > 1. We also see that the response
time of donor jobs is bounded by the response time for an
M/GI/1 queue with setup cost K3, This bound is tight for
all Nfgh values as pp reaches its maximum. Below this maxi-
mal stable load, increasing N results in less penalty to the
donor, converging to the same point for all N&* values when
pB reaches its maximum.

When pp < 0.5, the beneficiaries benefit so little that
cycle stealing doesn’t pay, assuming non-zero switching cost.
We therefore focus the rest of the results section on the case:
0.5 < pp < 1.

6.3 Ben€fit of cyclestealing: .5 < pg < 1.0
Figure 7 evaluates cycle stealing in the region 0.5 < pp <

1.0, as a function of pp. In rows 1 and 2, Xg and Xp both

have mean 1, while rows 3 and 4 assume Xp has mean 1 and
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Figure 6: The response time for beneficiaries and donors as a function of pg. Graphs show the case of (i)
cycle stealing with NZ* = 1, (ii) cycle stealing with N = 10, and (iii) dedicated servers. In all figures Xz and
Xp are exponential with mean 1. Switching costs are exponential with mean 0 or 1, as labeled.

Xp has mean 10. Switching cost is 0 or 1, and N¥ is 1 or
3, as labeled. In our discussion below, we first concentrate
on the effect of switching cost, and then look at the effect
of N,

Odd-numbered columns show various regions of benefi-
ciary gain and donor pain. We define low gain as a bene-
ficiary gain of 1.1 or less; mid gain as a beneficiary gain of
between 1.1 and 1.5; and high gain as a beneficiary gain of
over 1.5. Pain regions are defined similarly for donors. Even-
numbered columns use the terms good and bad, where good
indicates that the overall mean response time has dropped
as a consequence of cycle stealing, and bad indicates the
reverse.

Consider first rows 1 and 2 in Figure 7. The first and
second columns show the case of zero switching cost. We
see that all regions are low pain regions (in fact zero pain),
and higher pp yields higher gain for the beneficiaries. The
third and fourth columns show switching cost of 1. The
non-zero switching cost creates only slightly reduced gain
for the beneficiaries. However, switching cost creates pain
for the donor jobs. When pp is very low, the pain appears
high, but this is primarily due to the fact that “pain” is
relative to the response time under dedicated servers, and
the response time under dedicated servers is obviously low
for small pp. The overall mean benefit (over all jobs) is
no longer always positive as shown in the fourth column of
rows 1 and 2 in Figure 7. Although not shown, we have also
investigated higher switching costs, and these lead to the
same trend of slightly less gain for beneficiaries and more
pain for donors.

Rows 3 and 4 in Figure 7 differ from rows 1 and 2 only
in Xp, which now has mean 10. The effect of this change
is dramatic: now a switching cost of 1 has almost no effect
on either beneficiaries or donors. This makes sense since
the setup cost experienced by the donor job is now rela-
tively small compared to its size. We can conclude that
cycle stealing is most effective when the switching cost is
small relative to the size of the donor jobs.

Focusing on columns 2 and 4 of Figure 7, which depict
the effect on overall mean response time, we see that when
the switching cost is zero, cycle stealing always overwhelms
the dedicated policy. When switching cost is non-zero, cy-
cle stealing is a good idea provided either pp is high, or
the switching cost is low compared to Xp. These trends
continue in our experiments with higher switching costs.

Finally, we discuss the effect of N&* in both figures. The
performance of the beneficiaries is relatively insensitive to
increasing N¥ from 1 to 3 in both figures; however the
donors benefit quite a bit from raising N&'. We further
investigate the selection of NI in Section 6.5.

6.4 Effect of donor job size variability

In this section, we consider the effect of variability in the
donor job sizes. It seems intuitive that when donor job sizes
are made more variable, two things should happen:

1. The donor pain should drop. This is because the donor
response times will be higher overall and so the relative
pain will appear diminished, and

The beneficiary gain should drop. This is because high
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Figure 7: Columns 1 and 3 show the gain of beneficiary jobs and pain of donor jobs relative to dedicated

servers.

Solid lines delineate high/mid/low gain regions, and dashed lines delineate high/mid/low pain

regions. Columns 2 and 4 show the effect of cycle stealing on the overall mean response time (over all jobs)
relative to dedicated servers. In all figures, Xp and Xp are exponentially-distributed, where Xp and Xp both
have mean 1 in rows 1 and 2, and X5 has mean 1 and Xp has mean 10 in rows 3 and 4.
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Figure 8: Beneficiary gain and donor pain shown for donor job sizes with low variability (top) and high
variability (bottom). Under higher donor variability, percentage of donor pain is lessened, but percentage of
beneficiary gain stays the same. All graphs assume: Xp and Xp have mean 1, N¥* = 3.

variability in the donor job sizes implies high variabil-
ity in the length of the donor busy periods, which im-
plies that the donor’s visits to the beneficiary queue
will become more irregular. Sporadic help should be
inferior to regular help, for the beneficiary.

Figure 8 shows that the first hypothesis above is in fact
true, while the second hypothesis is surprisingly false, at
least for pp < 1. Comparing row 1 (Xp has low variability:
C3 = 1) with row 2 (Xp has high variability: C% = 8),
we see that there is no discernible difference in beneficiary
performance.

To study this effect more closely, we next increase the
variability in donor job sizes further. Figure 9 shows the
performance of the beneficiary jobs under the case of zero
switching cost, when the squared coefficient of variation of
donor job size is 1, 8, or 50, and pp is fixed at 0.5. We
vary pp from 0 to the stability condition. As is observed in
Figure 8, the effect of variability of Xp on the performance
of Xp is small when pp < 1, and negligible when pp < 0.75.
When pp > 1 the effect of variability in donor sizes may be
significant. A critical factor seems to be whether the bene-
ficiary queue is stable in isolation; when this is not the case
high variability in donor visits leads to prolonged intervals
of instability, which inflates the mean response time.

6.5 Setting the beneficiary threshold Nt

This section seeks to determine a good value for the thresh-
old N, as a function of the system parameters. We start
with some obvious characteristics of Ni: (i) Increasing N
leads to lower gain for the beneficiaries and lower pain for
the donors. Perhaps less obvious, the relative drop in gain

for the beneficiaries is slight compared to the drop in pain
for the donors. This points towards choosing a higher value
of N¥'. (ii) If the switching cost is zero, the optimal N¥' is
1 (or 0), since there is never any pain for the donors.

Figure 10 shows optimal values of N for minimizing
overall mean response time (over all jobs) as a function of pp
and pp under various switching costs and donor job sizes.
The numbers on the contour curves show the optimal N
at each load. For clarity we only show lines up to N&* = 14.
The following additional characteristics of N&* are implied
by the figure: (iii) the optimal N is an increasing function
of pp and a decreasing function of pp; (iv) increasing the
switching cost increases the optimal N; (v) increasing the
donor job size leads to lower optimal N&'.

7. EXTENSIONS AND CURRENT WORK

This paper solves the problem of cycle stealing with switch-
ing costs and thresholds, presenting many insights into the
characteristics and performance of cycle stealing. Our an-
alytical approach easily generalizes to more complex cycle
stealing models [10]. For example, in this paper we have
assumed that the donor immediately switches back when
a donor job arrives. We can also solve the more general
case where the donor only switches back when N& donor
jobs are waiting. Furthermore, we don’t need to require
that the donor switches back immediately at this point;
we can allow the donor to first complete the beneficiary
job in progress. Completing the beneficiary job obviates
the need for checkpointing the job; however it sometimes
reduces system performance, particularly when beneficiary
jobs have higher variability than donor jobs. We can also
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Figure 10: Graphs showing the optimal value of N4 with respect to overall mean response time.
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Figure 9: The response time for beneficiary jobs
under different donor job size variability. We fix pp
at 0.5, and pp varies from 0 to the stability condition
of 1.5. The mean donor job size and beneficiary job
size is 1, and switching cost is zero.

handle the problem of one beneficiary and two or more donor
queues, where if ¢ donors are helping, the beneficiary sees
an M/GI/i queue. This extension also allows the different
donors to have different switching thresholds and switch-
ing costs. The case of multiple beneficiary queues does not
seem readily solvable for the model in this paper but has
been solved for a somewhat related model [5]. Another in-
teresting question involves servers which function as both
beneficiaries and donors. A model in which servers func-
tion as both beneficiaries and donors was looked at in [11].
Unlike our own model, in [11] there are assumed to be no
dependencies between the servers. This means there is no
need for a 2D-infinite chain, and no need for dimensional-
ity reduction. In our, more complex model, the analysis of
servers which function as both beneficiaries and donors is
still open at the present time.
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