
Union��nd with deletions

Haim Kaplan � Nira Shafrir y Robert E� Tarjan z

Abstract
In the classical union��nd problem we maintain a partition
of a universe of n elements into disjoint sets subject to the
operations union and �nd� The operation union�A�B�C�
replaces sets A and B in the partition by their union� given
the name C� The operation find�x� returns the name of
the set containing the element x� In this paper we revisit
the union��nd problem in a context where the underlying
partitioned universe is not �xed� Speci�cally� we allow a
delete�x� operation which removes the element x from the
set containing it� We consider both worst�case performance
and amortized performance� In both settings the challenge
is to dynamically keep the size of the structure representing
each set proportional to the number of elements in the set
which may now decrease as a result of deletions�

For any �xed k� we describe a data structure that
supports �nd and delete in O�logk n� worst�case time and
union in O�k� worst�case time� This matches the best
possible worst�case bounds for �nd and union in the classical
setting� Furthermore� using an incremental global rebuilding
technique we obtain a reduction converting any union��nd
data structure to a union��nd with deletions data structure�
Our reduction is such that the time bounds for �nd and
union change only by a constant factor� The time it takes
to delete an element x is the same as the time it takes to
�nd the set containing x plus the time it takes to unite a
singleton set with this set�

In an amortized setting a classical data structure of
Tarjan supports a sequence of m �nds and at most n unions
on a universe of n elements in O�n �m��m� n� n� log n��
time where ��m�n� l� � minfk j Ak�bmn c� � lg and Ai�j�
is Ackermann	s function as described in
��� We re�ne the
analysis of this data structure and show that in fact the cost
of each �nd is proportional to the size of the corresponding
set� Speci�cally� we show that one can pay for a sequence
of union and �nd operations by charging a constant to each
participating element and O���m�n� log�l��� for a �nd of an
element in a set of size l� We also show how keep these
amortized costs for each �nd and each participating element
while allowing deletions� The amortized cost of deleting an
element from a set of l elements is the same as the amortized
cost of �nding the element namely� O���m�n� log�l����

� Introduction

A union��nd data structure allows the following opera�
tions on a collection of disjoint sets�

�School of Computer Science� Tel Aviv University� Tel Aviv

������ Tel Aviv� Israel� haimk�math�tau�ac�il
ySchool of Computer Science� Tel Aviv University� Tel Aviv

������ Tel Aviv� Israel� nira�math�tau�ac�il
zDepartment of Computer Science� Princeton University�

Princeton� NJ ���		� and InterTrust Technologies Corpora

tion 	��� Patrick Henry Drive� Santa Clara� ����	
�����

ret�cs�princeton�edu

� make�set�x�� Creates a set containing the single
element x�

� union�A�B�C�� Combines the sets A and B into a
new set C� destroying sets A and B�

� find�x�� Finds and returns �the name of� the set
that contains x�

We can extend in a straightforward way a data
structure supporting these operations to also support
an insert�x�A� operation that inserts an item x not yet
in any set into set A� We perform insert�x�A� by �rst
performing B � make�set�x� followed by union�A�B��
The time it takes to perform insert is the time it takes
to perform make�set plus the time it takes to perform
union of a set with a single element with another set�

In this paper we study the union��nd with deletions
problem where we allow in addition to the three opera�
tions above a delete operation� de�ned as follows�

� delete�x�� Deletes x from the set that contains it�
Note that the delete operation does not get the set
containing x as a parameter�

Classical analysis of union��nd data structures as�
sumes a �xed universe of n items dynamically parti�
tioned into a collection of disjoint sets� The starting
point is a collection of n sets each containing a single
item� Some of these sets are subsequently combined by
performing unions but the underlying universe of items
in all sets remains the original universe� In the union�
�nd with deletions problem the underlying universe is a
moving target� We can remove an item x from the uni�
verse by performing delete�x� and we can add an item
x to a set S by doing an insert�x� S� operation�

We believe that the union��nd with deletions prob�
lem is of general interest� A data structure that allows
an e	cient delete operation would be useful in any con�
text where the partition that we maintain is not over a
�xed set of items� Consider for example an application
where the size of a set may be too large to �t into mem�
ory if we count deleted elements while without them it
is much smaller and always �ts into main memory� Our
starting point for studying this problem was the classi�
cal meldable heap data type implemented for example

by Fibonacci heaps
��� A data structure implementing
this data type maintains an item�disjoint� set of heaps
subject to the following operations�
make�heap� Return a new� empty heap�
insert�i� h�� Insert a new item i with prede�ned key into
heap h�
�nd�min�h�� Return an item of minimum key in heap
h� This operation does not change h�
delete�min�h�� Delete an item of minimum key from
heap h and return it�
meld�h�� h��� Return the heap formed by taking the
union of the item�disjoint heaps h� and h�� This oper�
ation destroys h� and h��
decrease�key�� i� h�� Decrease the key of item i in heap
h by subtracting the nonnegative real number � This
operation assumes that the position of i in h is known�
delete�i� h�� Delete item i from heap h� This operation
assumes that the position of i in h is known�

Notice that the operations decrease�key and delete
get both the target item and the heap containing it
as parameters� Therefore in order to use this data
structure we have to keep track of which heap contains
an item while heaps undergo melds� One could do this
using an external union��nd data structure containing
a set for each heap� When melding two heaps we unite
the corresponding sets and when we need to �nd out
which heap contains an item x we perform find�x� and
discover the corresponding set� Furthermore� when we
delete an item from a heap we may want to be able to
delete the item also from the corresponding set� This
will prevent the union��nd operations from becoming
too expensive because they act on large sets�

One simple way to add a delete operation to any
union��nd data structure is simply by doing nothing
during delete� Deleted items remain in the data struc�
ture mixed with live ones� The drawback of this simple
scheme is that the size of the data structure does not
remain proportional to the number of live items in it�
As a result the space requirements of the data structure
may become prohibitive and the performance of �nd
operations is degraded�

For some applications� such as the incremental
graph biconnectivity algorithm implemented in
��� this

straightforward implementation of delete su	ces�
The incremental graph biconnectivity algorithm keeps
track of nodes containing deleted items and reuses them
to store new items that are added to the set� As a result
the total number of elements does not become too large�

In this paper we suggest some general techniques
and data structures� not speci�c to a particular ap�
plication� to overcome the di	culties that arise when

�Items may have the same key�

deletions are allowed� We consider both worst�case and
amortized performance�

In a worst�case setting� a classical result of Smid

�� �building upon a previous result of Blum
��� gives
for any �xed k a data structure that supports union
in O�k� time and �nd in O�logk n� time where n is
the size of the corresponding set� Our �rst result is a
simple data structure with the same performance for
�nd and union as the data structure of Smid� that
also supports delete in O�logk n� time� where n is the
size of the set containing the element that we delete�
Like Smid and Blum� we use k�ary balanced trees as
our data structures� The essence of our result is a
technique to keep such trees balanced when we perform
deletions� while paying only O�logk n� time per deletion�
Note that with respect to �nd and union these time
bounds are known to be optimal in the cell probe model

��� �See also
���� We believe that our technique
for incrementally shrinking a k�ary tree that undergoes
deletions� while keeping it balanced� may be useful in
other contexts�

Still with respect to worst�case performance� we
develop a general technique to add a delete operation
to a union��nd data structure that does not support
delete to begin with� We use an incremental rebuilding
technique� where each set is gradually being rebuilt
without the deleted items in it� Let D be a union��nd
data structure that supports �nd� union� and insert� in
O�tf �n��� O��tu�n��� and O�ti�n��� respectively� where
n is the maximumsize of a set involved in the operation�
Then by applying our transformation to D we obtain a
data structure that supports delete froma set of size n in
O�tf �n�� ti�n�� time� without hurting the time bounds
of the other operations� By applying this reduction to
the structure of Smid� we obtain an alternative to the
data structure we obtained by directly modifying Smid�s
structure� This alternative also supports union in O�k�
time and �nd and delete in O�logk n� time �� Our direct
approach however� consumes less space than the data
structure obtained via this reduction� We also point
out that the O�tf �n�� component in the time bound of
delete stems from the need to �nd the corresponding
set in order to delete from it� We can obtain a faster
implementation of delete by this reduction if we assume
that delete gets not only a pointer to the deleted element
but also a pointer to the set containing it�

In an amortized setting Tarjan
�� and Tarjan and
Van Leeuwen
�� showed that a classical data structure
supports a sequence of m �nds and at most n unions on
a universe of n elements in O�n�m��m � n� n� logn��
time where ��m�n� l� � minfk j Ak�b

m
n
c� � lg and

�Smid�s data structure supports insert in constant time�

Ai�j� is Ackermann�s function as de�ned in
��� This
data structure uses a tree to represent each set and
its e	ciency is due to two simple heuristics� The �rst
heuristic called union by rank makes the root of the
set of smaller rank a child of the root of the set of
larger rank to carry out a union�� The second heuristic
called path compression makes all nodes on a �nd�path
children of the root� We re�ne the analysis of this
data structure and show that in fact the cost of each
�nd is proportional to the size of the corresponding set�
Speci�cally� we show that one can pay for a sequence
of union and �nd operations by charging a constant to
each participating element and O���m�n� log�l��� for a
�nd of an element in a set of size l� Here m is the total
number of �nds and n is the total number of elements
participating in the sequence of operations� This re�ned
analysis raises the question of whether we can keep
this time bound while adding a delete operation� In
such a context we would like the charge per �nd to
be O���m�n� log�l��� where l is the actual size of the
corresponding set when we perform the �nd�

We show that indeed this is possible� By marking
items as deleted and rebuilding each set when the
number of non�deleted items in it drops by a factor
of � we can also support delete in O���m�n� log�l���
amortized time where l is the size of the set containing
the deleted item� This time bound for delete stems
from the need to discover the set from which we delete
in order to check whether we need to rebuild it� A
possible drawback of set rebuilding is the bad worst�
case time bound for delete �proportional to the size of
the corresponding set�� By applying the incremental set
rebuilding technique of Section � to the union by rank
with path compression data structure� we can preserve
the amortized time bounds mentioned above while
keeping the worst�case time bound of delete logarithmic�
The space requirements however� will increase by a
constant factor�

The structure of this paper is as follows� Section �
describes a union��nd with deletions data structure that
builds upon the structure of Smid� In this section we
develop a technique to keep a k�ary tree balanced while
it undergoes deletions� Section � shows how to add a
delete operation to any union��nd data structure using
incremental rebuilding� Section � re�nes the analysis
of Kozen
�� for the compressed tree data structure� to
show that the amortized time per �nd is proportional
to the size of the set in which the �nd is performed� In
Section � we show how to maintain these re�ned time
bounds while allowing deletions� We conclude in Section

�An alternative heuristic in which we make the union by size

has similar performance�

� where we introduce some open questions� A simple
presentation of Smid�s data structure is provided in the
Appendix�

� Union��nd with deletions via k�ary trees

In this section we extend the data structure of Smid
��
to support delete in O� lognlogk � time �A simple presenta�

tion of this data structure is provided in the Appendix���
we store each set in a tree such that the elements of the
set reside at the leaves of the tree� We maintain the trees
such that all leaves are at the same distance from the
root� Each internal node v is classi�ed as either short�
gaining� or losing� Node v is short if h�p�v�� � h�v����
where p�v� is the parent of v and h�v� is the distance
from v to a leaf� If v is not short then it is either gaining
or losing� Each node v such that h�v� � � has exactly
one gaining child� For every internal node v we denote
by g�v� its unique gaining sibling�

We represent the trees such that each node v points
to its parent �except when v is the root�� to its gaining
child� to a list containing its short children and to a list
containing its losing children� In addition each node is
marked as short� losing� or gaining� and has a counter
�eld that stores the number of its non�short children� If
v is a root then it also stores the height of the tree and
the name of the corresponding set�

Our forest satis�es the following invariant�

Invariant ���� A root of a tree does not have short
children�

In addition if we cut subtrees rooted at short nodes
from the trees of our union��nd forest then the resulting
set of trees will always satisfy the following invariants�

Invariant ���� �� A root of height h � � has at least
two children� A root of height h � � has at least one
leaf child�
�� A gaining node of height h has at least k children�
	� A losing node of height h � � has at least two
children�

Each node v such that h�v� � � has a gaining
child and therefore by invariant ������ v has at least k
grandchildren of height h��� This implies the following
lemma�

Lemma ���� The height of a tree representing a set with
n elements is O�logn� logk��

��� operations We will show how to implement
�nd� union� and delete without violating any of the
invariants�

Find�x�	 We follow parent pointers until we get to the
root� we return the name of the set stored at the root�

Union�A
B
C�	 Let a be the root of A and let b be the
root of B� Assume without loss of generality that the
height of A is no greater than the height of B and that
if A and B are of the same height then b has at least as
many children as a� Recall that by invariant ���� a and
b do not have short children� There are three cases�

�� The height of A is strictly smaller than the height
of B� Let v be an arbitrary child of b� There are
three subcases�
Case a� h�a� � h�v� � �� We make a a short child
of v�
Case b� h�a� � h�v���� If a has less than k children
we make the children of a be short children of v� To
achieve this we change the parent pointers of the
children of a to point to v and we add the children
of a to the list of short children of v� We change
the gaining child of a to be a short child of v and
add it to the list of short children of v
If� on the other hand� a has at least k children then
we make a a losing child of v and add it to the list
of losing children of v�
Case c� h�a� � h�v�� If a has less than k children
we make the children of a be losing children of v�
To that end� we change the parent pointers at the
children of a to point to v� We concatenate the
list of losing children of a with the list of losing
children of v� and we change the gaining child of a
to be a losing child of v and add it to the list of
losing children of v�
If� on the other hand� a has at least k children we
make a a losing child of b�

In all three cases we update the number of children
of b and v if it changes and store at b the name of
the new set�

�� The trees A and B have equal heights� and the
number of children of a is smaller than k� We
make the children of a point to b instead of a�
We concatenate the lists of losing children of a and
b� We store the resulting list with b� We set the
gaining child of a to be a losing child of b and add
it to the list of losing children of b� We store in b
the new name of the set� and increase the �eld that
counts the number of children of b by the number
of children of a�

�� The trees A and B have equal heights� and the
number of children of a is at least k� We create a
new root c� We make a and b be children of c� We
make b a gaining child of c and a a losing child of
c� We store with c the name of the new set� set
its children counter to two� and set its height to be
one greater than the height of a�

It follows immediately from the de�nition of union
that the resulting tree satis�es Invariants ��� and ����
It is also easy to see that in all cases we change at most
k pointers and therefore the running time of union is
O�k��

Delete�x�	 Let T be the tree in which x is a leaf� First
we assume that there are no short nodes in T � Later we
show how to extend the algorithm to the case where T
may have short nodes�

Our deletion algorithm uses a recursive procedure
delete� that deletes a node w with no children from
T � As a result of the deletion a new node with no
children may be created� in which case the procedure
applies itself recursively to the new node� We start
the delete by applying delete� to x� Any subsequent
recursive application of delete� is on a losing node that
has lost all its children� Here is the de�nition of delete��
We denote the node to delete by w and its parent by v�
The procedure delete� has three cases�

�� Node v is losing� Delete w from the list of
children of v� If after deleting w� v has one child�
�a gaining child if h�v� � �� a leaf otherwise�� we
move this child to be a losing child of g�v� and apply
delete� to v�

�� Node v is gaining� Node v has a losing sibling
u� We switch w with a losing child of u� say y� as
follows� We add w to the list of losing children of
u� and add y to the list of losing children of v� We
change parent pointers in all the nodes that change
parents� We continue as in Case ��

�� Node v is the root of the tree� If w is the only
child of v we get an empty set so we discard both
w and v� If w is a leaf but it is not the only child of
v we simply delete w� If w is not a leaf and w and
g�w� are the only children of v we discard w and
v� and node g�w� becomes the new root of the tree
representing the set� We move the name of the set
to g�w� and set its height to be one less than the
height of v�

We now extend the delete operation to the case
where there are short nodes in T � We traverse the path
from x to the root to discover whether x has a short
ancestor� If x has a short ancestor� let v be the short
ancestor of x closest to x� We delete x� if x was the
only child of its parent we delete the parent of x� and
we keep discarding ancestors of x until either we hit an
ancestor with more than one child or we delete v� If x
does not have a short ancestor� then we �rst simulate
delete
 as described above without actually performing
the updates� If none of the nodes that would have been

deleted by delete
 and their gaining siblings have short
children we perform delete
 again� this time carrying out
the updates� So assume that we discover a node v that
has short children� We follow a path from v to a leaf
x�� We replace x and x�� Then we delete x as described
above in the case where x has a short ancestor�

The following lemma proves that our implementa�
tion is correct�

Lemma ���� A sequence of union� �nd� and delete
operations on a forest that initially satis�es Invariants
��� and ��� results in forest that satis�es Invariants ���
and ����

Proof� It is easy to see that union produces a tree that
satis�es Invariants ��� and ��� � Next we consider a
delete operation� We assume that the nodes we refer to
in the remainder of the proof don�t have short ancestors�

When the root loses its next to last child� say w� and
w is not a leaf� then g�w� becomes the new root� Since
the root may lose a child only if g�w� does not have short
children we obtain that Invariant ��� holds throughout
the sequence� Since g�w� has at least k children when
it becomes a root then it follows that Invariant ������
also holds throughout the sequence�

Let v be a gaining node� Node v becomes gaining
when it becomes a child of another node when perform�
ing union� At that point v has at least k children of
height h�v�� �� As long as v is gaining� delete may not
delete a child of v of height h�v� � �� delete may only
replace a losing child of v with another losing child of
a losing sibling� Therefore the number of children of
height h�v� � � of a gaining node remains at least k as
long as the node is gaining� so Invariant ������ holds�

Since delete� recursively deletes every losing node
that has less than � children we obtain that Invariant
������ holds throughout the sequence� When we create
a new node v and h�v� � � we assign a gaining child
to it� The algorithm does not move or delete this child
unless v is deleted too� Therefore every node v such
that h�v� � � always has a gaining child�

It is easy to see that each application of delete�

takes O��� time� Therefore the running time of delete is
no greater than the height of the tree representing the
corresponding set� For a set with n elements Lemma
��� shows that this height is at most O�logn� logk��

� Union��nd with deletions using incremental
copying

All the proposed algorithms for union��nd represent a
set by a tree and handle �nds by following the path
of ancestors to the root� The time bound for �nd and
union can be stated in terms of the sizes of the sets

involved� not in terms of the total universe size� In
this section we show how to add a delete operation
to any such union��nd algorithm by using incremental
copying� By applying this technique to the union��nd
data structure of Smid �described in Appendix A� we
obtain a data structure with performance similar to the
data structure of Section �� The advantage of the data
structure of Section � over the one we obtain here is its
smaller �by a constant factor� space requirements�

Given a union��nd data structure which supports
�nd�x� in O�tf �n�� worst�case time where n is the size
of the set containing x� and insert �make�set � union
in which one of the sets is a singleton set� in O�ti�n��
worst�case time where n is the size of the set to which
we insert the new item� we will augment this data
structure to support delete�x� in O�tf �n��ti�n�� worst�
case time where n is the size of the set containing x�
while keeping the worst�case time bounds for union
and �nd the same as in the original data structure�
In particular if we apply this technique to Smid�s
data structure we get a union��nd data structure that
supports delete in O� lognlog k � worst�case time� since Smid�s

structure supports insert in O��� time�
We represent each set S by one or two sets� each in

a di�erent union��nd data structure without deletions�
We denote the �rst such set by Sn and the second set if
it exists by So� If x is an item in S then x is represented
by a node either in Sn or in So� Item x points to the
node representing it� In case x is represented by a node
in Sn there may also be a node associated with x in So
that is not being used any more�

At the beginning we represent S only by Sn� and
So is empty� When we perform a delete operation on S
we mark the item as deleted and increment the number
of deleted items in Sn by one� We perform union of S
and S� by uniting Sn with S�n and So with S�o� When
at least ��� of the items in Sn are marked deleted we
rename Sn to be So and start a new set Sn� Each time
we delete an element from S and both Sn and So exist�
we mark the item as deleted in the set that contains it
and insert four items that are not marked deleted from
So into Sn� We maintain So to contain at least four
undeleted items that are not contained in Sn� If after
renaming Sn into So or after we insert four undeleted
items from So to Sn� So contains less than four items
that are not in Sn� we insert these remaining items into
Sn and discard So� When an item x from So is inserted
into Sn we consider the node corresponding to x in Sn
as representing x� and make x point to it� When there
are no more undeleted items in So we discard it and
represent S by Sn only� To establish the correctness of
this algorithm we will show that So is empty when at
least ��� of the items in Sn are marked deleted�

In order to implement this algorithm� with each
set Sn and So we maintain a list of nodes� denoted by
L�Sn� and L�So�� respectively� The list L�Sn� contains
a node for each undeleted item in Sn� The node which
corresponds to x in Sn has a pointer to the node
associated with x in L�Sn�� The list L�So� contains
a node for each undeleted item in So that has not yet
been inserted into Sn� The node which corresponds to
x in So points to the node corresponding to x in L�So��
The node corresponding to x in L�Sn� or L�So� has a
pointer to x� We also maintain the total number of
items in Sn� and the number of items marked deleted
in Sn� We assume that from the node identifying S we
can get to the nodes identifying Sn and So and vice
versa� We also assume that a �nd in Sn or So returns
the node identifying Sn or So respectively� from which
we can easily get to the node identifying S�

Next we describe the implementations of the oper�
ations using this representation�

Union�A�B�C�	 We perform union�An� Bn� Cn� and
union�Ao� Bo� Co�� We also concatenate L�An� with
L�Bn� to form L�Cn�� and L�Ao� with L�Bo� to form
L�Co�� We set the number of items in Cn to be the sum
of the number of items in An and the number of items
in Bn� We similarly set the counter of the number of
deleted items in Cn� We make the node identifying C
point to the nodes identifying Cn and Co and vice versa�

Find�x�	 We perform �nd using the node identifying
x in a union��nd data structure without deletions� We
get to a node identifying either Sn or So for some set S�
From that node we get to the node identifying S and
return it�

Delete�x�	 We �rst perform �nd�x� on the node rep�
resenting x in a union��nd data structure without dele�
tions as described above� We get the node identifying
the set S containing x� and a node identifying the set
among Sn and So containing x� We denote this set
by Sx� We delete the node which corresponds to x in
L�Sx�� If Sx � Sn we also increment the number of
deleted items in Sn� If the number of deleted items in
Sn after the increment reaches ��� of the total number
of items in Sn then we rename Sn to So and set Sn to
be empty�

Next if L�So� is not empty� we remove four nodes �or
less if there are less than four such items in L�So�� from
L�So� and insert them to Sn �performing � make set
operations and � union operations of each of these new
sets and Sn�� We also insert four nodes corresponding
to these � items into L�Sn�� If after removing these
items from L�So�� L�So� contains less than four items�
we insert those items to Sn� insert corresponding nodes
into L�Sn�� remove them from L�So�� and discard So�

To establish the correctness of this algorithmwe will
show that the fraction of deleted items in Sn is never
greater than ���� Furthermore� when the fraction of
deleted items in Sn reaches ���� So must be empty�

Lemma ���� For every set S� at most ��� of the items
in Sn are deleted� When exactly ��� of the items in Sn
are deleted� So is empty� and we rename Sn to So�

Proof� The proof is by induction on the sequence of
operations� Assume the claim holds before the ith
operation� If the ith operations is a �nd then the claim
clearly holds after the ith operation� If the ith operation
is a union�A�B�C� then since less than ��� of An is
deleted and less than ��� of Bn is deleted then also less
than ��� ofCn is deleted� Therefore the claim also holds
after the ith operation�

Assume that the ith operation is delete�x�� Let S
be the set containing x� If x � So and x �� Sn then
the claim clearly holds after the deletion� If x � Sn
and So �� � then the number of deleted items in Sn
before the delete was less than �����jSnj� After the
delete the number of deleted item increases by one
but we also insert at least four new items from So�
Therefore the fraction of deleted items in Sn is less than
������jSnj � ����jSnj � �� � ���� It follows that the
fraction of deleted items in Sn can reach ��� only when
So is empty� If indeed So is empty and the fraction of
deleted items in Sn reaches ��� we rename Sn to So
and then insert items into a newly created Sn� so the
fraction of deleted items in Sn is � after the delete�

The running time of the operations is dominated by
the time it takes to manipulate the underlying union�
�nd data structure without deletions� To analyze the
running time of the operations on the underlying union�
�nd data structure we bound the fraction of deleted
items in any one of these sets� Lemma ��� proved that
for every S the fraction of deleted items in Sn is at most
���� We now show that a similar claim is also true for

So� Speci�cally we show that at most ��� of the
items in So are deleted� Here when we count the number
of items in So we do consider elements that were moved
to Sn but nodes corresponding to them still belong to
So� Furthermore� an element in So that was moved and
subsequently deleted is counted as one of the deleted
elements in So� When for some S we rename Sn to So�
the fraction of deleted items in So is ���� Subsequently
we may delete more items in So� but the following
lemma shows that by the time the fraction of deleted
items in So reaches ��� we have inserted all undeleted
items in So into Sn and discarded So�

Lemma ���� Let c be the fraction of deleted items in
So� �Recall that c is the ratio between the number of

deleted items in So and the total number of items in So
including ones that have been inserted into Sn�� The
number of undeleted items from So that have already
been inserted into Sn is at least ��c� ��jSoj�

Proof� the proof is by induction on the number of
operations� We assume that the claim holds before the
ith operation� The claim clearly holds after the ith
operation if the ith operation is a �nd� Assume the ith
operation is delete�x�� If So is empty after the delete�
then the fraction of deleted items in it is de�ned as �
and the claim holds� Otherwise let c be the fraction
of deleted items in So before the ith operation and let
c� be the fraction of deleted items in So after the ith
operation� Clearly c� � c � �

jsoj
� Since we copied �

undeleted items from So to Sn� the number of items
already copied from So to Sn after the delete is at least
��c� ��jSoj� � � ���c� ��jSoj�� ��jSoj � ��c� � ��jSoj
so the claim holds after the delete�

Assume the ith operation is union�A�B�C�� Let
a be the fraction of deleted items in Ao� and b be
the fraction of deleted items in Bo� Clearly� jCoj �
jAoj � jBoj� The fraction of deleted items in Co is

c � ajAoj�bjBoj
jCoj

� The number of items already copied

from Co to Cn is at least

��a� ��jAoj� ��b� ��jBoj �

� ��ajAoj� bjBoj�� �jAoj� jBoj�

� ��ajAoj� bjBoj�� jCoj

�

�
��ajAoj� bjBoj�

jCoj
� �

�
jCoj

� ��c� ��jCoj

so the claim holds after the union as well�

As a corollary we get that the fraction of deleted
items in So is between ��� and ����

Lemma ���� Let c be the fraction of items marked as
deleted in So� Then ��� � c � ����

Proof� When So is created �by renaming Sn�� ��� of
its items are deleted� Let c be the fraction of deleted
items in So� By Lemma ��� the number of items already
copied from So to Sn is at least ��c� ��jSoj� If c � ���
then we have already copied all undeleted items from
So to Sn and discarded So� Therefore c � ����

Lemma ��� and Lemma ��� show that the number
of items in Sn and So is within a constant factor of
the number of undeleted items in S� Therefore the
time it takes to do union and �nd in our union��nd
data structure with deletions is proportional to the
time it takes to do union and �nd� respectively� in the

underlying union��nd data structure without deletions�
We perform a delete operation by a �nd followed by
a constant number of insert operations� Therefore the
time for delete is proportional to the time it takes to
do a �nd plus the time it takes to do insert on the
underlying union��nd data structure without deletions�
Assume that we start with a union �nd data structure
without deletions in which union of sets of size at most
n takes O�tu�n��� �nd of an item in a set of size n takes
O�tf �n�� and insert into a set of size n takes O�ti�n���
We obtain a union��nd with deletions data structure in
which union takes O�tu�n�� time� �nd of an item in a
set of size n takes O�tf �n��� and delete of an item from
a set of size n takes O�tf �n� � ti�n���

� Union��nd via path compression and linking
by rank or size revisited

In this section and the following one n will denote the
total number of elements involved in the sequence of
operations� and m will denote the total number of �nds�
We represent each set by a rooted tree where each node
points to its parent� We denote the parent of a node x
by p�x�� Each node represents an element� and the root
of a tree also represents the corresponding set� Each
node has a rank associated with it� We maintain in the
data structure the ranks of the roots� Ranks of other
nodes are static and need not be maintained in the data
structure� The rank of a set is de�ned to be the rank
of the root of the tree representing the set�

We perform find�x� by following parent pointers
starting from x until we get to the root� We return the
root� We also use a heuristic called path compression�
where we make all nodes on the �nd path from x to the
root children of the root� We perform make�set�x� by
creating a new tree with x as its root� We set the rank
of x to be �� We perform union�A�B�C� by making the
root with smaller rank a child of the root with higher
rank� In case rank�A� � rank�B� we arbitrarily choose
one of the roots and make it a child of the other� If
rank�A� � rank�B� we also increment the rank of the
node that becomes the root of the new set C�

It is clear from the de�nitions of the operations that
only the rank of a root node can increase by performing
a union� Therefore� the rank of a node does not change
once it stops being a root of a tree� It is easy to prove
by induction that the number of nodes in the subtree
rooted at a node of rank r is at least �r �see
����

To analyze the algorithm we use the following
de�nition of Ackermann�s function�

A��x� � x� � for x � ��
Ak���x� � Ax��

k �x� for x � �� � where A��x� � x and
Ai��
k �x� � Ak�Ai

k�x���

We also de�ne the following three�parameter
inverse to Ackermann�s function ��m�n� l� �
minfk jAk�b

m
n
c� � lg�

We de�ne the cost of each union or make�set
operation to be one� and the cost of find�x� to be
equal to the number of vertices on the path from x
to the root of the set containing it at the time of the
�nd �inclusive�� Thus� the actual cost of a sequence
of operations is proportional to number of union and
make�set operations� which is O�n�� plus the sum of the
lengths of all �nd paths� We show that if we charge
a constant to each participating element and charge
O���m � n� n� r�� to a �nd on a set of rank r then the
sum of the charges su	ces to pay for the sequence�

For a non�root node x� we de�ne the level of x�
k�x� � maxfk jAk�r�x�� � r�p�x��g� We also de�ne the
index of x� i�x�� to be the largest i for which r�p�x�� �
Ai
k�x��r�x��� By the de�nition of Ackermann�s function

and the level function we have that � � i�x� � r�x��
The threshold of a �nd operation f is t�f� � ��m�

n� n� r� where r is the rank of the corresponding set�
We de�ne Sif � for � � i � t�f� to be the set of all nodes

on the �nd path whose level is i� We also de�ne St�f�f

to be the set of all nodes on the �nd path except the
last whose level is at least t�f��� We denote by Lf the
set containing the last node on the �nd path in Sif � for
every � � i � t�f�� and all nodes on the �nd path whose
rank is at most t�f�� We denote by N i

f the set of nodes

v � Sif � Lf for every � � i � t�f�� Clearly the sets Lf
and the sets N i

f � � � i � t�f� partition the set of all the
nodes on the �nd path except the root�

The �nd path contains at most one last node from
each Sif � and at most one node of each rank smaller than
t�f�� Therefore the number of nodes in Lf is at most
�t�f� � � � ��m � n� n� r�� where r is the rank of the
corresponding set�

Next we count the total number of nodes in sets
N i
f � for � � i � ��m � n� n� n�� and for all �nd

operations� We will count separately the nodes in sets

N
t�f�
f and the nodes in the sets N i

f for i � t�f�� To

count the total number of nodes in the sets N i
f for

i � t�f� we will repartition them into multisets Mt�
� � t � ��m�n� n� n�� de�ned as follows� The multiset
Mt contains all nodes that occur in sets N i

f where
t�f� � t and i � t�

We observe that node x cannot occur more than
r�x� times in a set N i

f for a �nd f with i � t�f�� This is

because each time x occurs in a set N i
f its level must be i

and its index is incremented� After r�x� such increments

�Note that the root node has no level associated with it and

therefore does not belong to one of the sets Si
f
�

the level of the node increases to i � � and therefore it
cannot belong to N i

f if i � t�f��
We have at most n��r nodes of rank r� each

occurring in Mt at most r times at a �xed level by the
observation above� Therefore for every level i � t there
are at most

P�
r	t��

n
�r r nodes inMt of level i� Summing

over the t levels � � i � t we �nd that

Mt � t

�X
r	t��

n

�r
r�

By summing up the sizes of Mt for all values of t�
� � t � ��m� n� n� n�� we �nd that

��m�n�n�n�X
t	�

Mt �

��m�n�n�n�X
t	�

t

�t

�X
r	�

n

�r
�r � t� � O�n��

Last we count the number of nodes in sets N
t�f�
f

for all �nd operations� Suppose x � N
t�f�
f for some �nd

operation f � We will show that r�p�x�� � bm�n
n

c� From

the de�nition of N t�f�
f � it follows that k�x� � t�f�� and x

is followed by another node y with k�y� � t�f�� Clearly�
r�y� � r�p�x��� Let r be the rank of the set containing
this �nd path� By the de�nition of t�f� and k�y� we
have that At�f��b

m�n
n

c� � r � r�p�y�� � Ak�y��r�y���
Since Ak�w� is increasing both in k and in w� it must
be the case that r�y� � bm�n

n
c� and therefore r�p�x�� �

bm�n
n

c� Since following each �nd where x � N
t�f�
f �

r�p�x�� increases by at least one� x cannot be in a set

N
t�f�
f more than bm�n

n
c times� Summing over all nodes

we obtain that the number of nodes in sets N t�f�
f for all

�nd operations is at most m� n�
Thus we have proved the following theorem

Theorem ���� � A sequence of m �nds mixed with
at most n unions on sets containing n elements takes
O�n�

Pm

i	� ��m�n� n� log�ni��� where ni is the number
of nodes in the set returned by the i�th �nd�

� Handling deletions by set rebuilding

To add deletions to the data structure described in the
previous section while keeping the same time bounds
for union and �nd� we have to associate two counters
with each set� A pointer to these counters is stored
at the root of the tree corresponding to each set� The
�rst counter counts the total number of elements in the
set and the second counter counts the total number of
elements that have been deleted but are still represented
by a node in the corresponding tree� We also keep a
mark bit with each node in each set� This mark bit is
set in every node that corresponds to a deleted item�
We perform �nd as before� We also perform union as

before and in addition we set each of the two counters
of the resulting sets to store the sum of the values of the
corresponding counters in the original sets�

We perform delete�x� as follows� First we mark
the node corresponding to x as deleted� Then we
perform find�x� to discover the corresponding set S�
We increment the counter that counts the number of
deleted items in S� Then if the number of deleted items
in S at least bjSj��c� we rebuild S� To rebuild S� we
pick one of its live nodes to be the root� and set its rank
to �� We make all other elements children of the root�
We update the counters to show that the number of
deleted items is zero and the total number of elements
is jSj � bjSj��c�

The analysis of this data structure is similar to
the analysis of the data structure in Section �� Here
however we can no longer assume that the rank of a
node never decreases� and that the rank of the parent
of a node never decreases� since this happens when we
rebuild sets� To overcome this di	culty we think of the
elements in the set after rebuilding as new elements�
By thinking of the elements this way we at most double
the number of elements involved in the sequence� This
is because we can associate the elements in the set
after rebuilding with the deleted elements in the set
before the rebuilding� This way each real element is
associated with at most one arti�cial element resulting
from rebuilding� Clearly the total cost of rebuilding is
O�n� since we can charge the cost of each rebuilding to
the deleted items� Thus each item gets only a constant
charge� The dominating factor in the amortized cost of
delete is the need to �nd the corresponding set by doing
a �nd� In summary� we have obtained the following
generalization of Theorem ����

Theorem ���� � A sequence of m �nds mixed with d �
n delete operations and at most n unions and n make�
set operations takes O�n�

Pm

i	���m � n� n� log�ni�� �Pd

j	� ��m�n� n� log�dj��� time where ni is the number
of live nodes in the set returned by the i�th �nd and dj is
the number of live node in the set where we do the j�th
delete operation� The size of the data structure at any
time during the sequence is proprtional to the number
of live items in it�

� Summary

We have presented several union��nd data structures
that support deletions� Some are designed for appli�
cations where worst�case performance is important and
another has good amortized performance�

In an amortized setting� if one is only interested in
keeping the overall size of the data structure propor�
tional to the number of live elements in it� it su	ces

to use a single global counter� This counter counts the
number of live elements in the data structure� Each
time an item is deleted we just mark it as such� and
decrement the counter of live items� When the num�
ber of live elements changes by a constant factor we can
rebuild the whole collection of sets� With this global
approach we can have individual sets in which the frac�
tion of items marked deleted is large even though the
overall number of such items is only a constant fraction
of the total number of items� In applications where the
space requirement of each set separately matters� this
approach may not be good enough� Furthermore� the
performance of �nds on sets full of deleted items de�
grades� We have shown that by maintaining a counter
per set we can keep the size of each set proportional to
the actual size of the set and avoid any degradation in
the performance of �nds�

The issue is even more subtle to solve in a worst�
case setting� where we need to remove deleted elements
from sets incrementally while the sets are subject to
regular operations� We have described an incremental
rebuilding technique to achieve this� Furthermore we
have shown directly how to modify the data structure of
Smid� which has best possible worst�case performance�
to support deletions� The direct approach is more space�
e	cient�

In all our structures� the time bound for delete is
the same as the time bound for �nd� Intuitively� this is
a result of the need to discover the set we are deleting
from in order to do rebuilding or rebalancing operations�
Whether a faster implementation of delete is possible is
an open question�

References

�� A� M� Ben�Amram and Z� Galil� A generalization of
a lower bound technique due to fredman and saks�
Algorithmica� ��������� �����

�� N� Blum� On the single�operation worst�case time
complexity of the disjoint set union problem� SIAM

J� Computing� ���������������� �����

�� M� L� Fredman and M� E� Saks� The cell probe

complexity of dynamic data structures� In Proc� ��st

ACM Symposium on Theory of Computing� pages ����
���� �����

�� M� L� Fredman and R� E� Tarjan� Fibonacci heaps
and their uses in improved network optimization algo�
rithms� Journal of the ACM� �������������� �����

�� M� Korupolu� R� Mettu� V� Ramachandran� and
Y� Zhao� Experimental evaluation of algorithms for in�
cremental graph connectivity and biconnectivity� �����

�� D� Kozen� The design and analysis of algorithms� �����

�� M� Smid� A data structure for the union��nd problem

having good single�operation complexity� ALCOM�

algorithms review� Newsletter of the ESPRIT II Basic

Research action program project no� ���	� �� �����

�� R� E� Tarjan� E�ciency of a good but not linear set

union algorithm� Journal of the ACM� �����������
�����

Appendix

A Simple Union�Find structure with optimal
worst�case performance

In this section we give a simple description of Smid�s
data structure for union��nd
��� For a �xed parameter
k the data structure that we describe supports union in
O�k� time and �nd in O� lognlog k � time�

We represent each set by a tree such that the
elements of the set reside at the leaves of the tree� Each
node of a tree contains a pointer to its parent if it is not
the root� and a linked list of its children if it is not a leaf�
The root of the tree also contains the name of the set�
the number of its children� and the height of the tree�
We call every node which is not the root and not a leaf
an internal node� The height of a node v� denoted by
h�v�� is the length of the longest path from v to a leaf�
Each tree also satis�es the following two invariants�

�� The height of the root is at least �� A root of height
h � � has at least one child� A root of height h � �
has at least two children� All children of the root
are of height h� ��

�� Each internal node of height h has at least k
children of height h� �� Internal nodes of height h
may have any number of children of height � h���

It is easy to see that these properties ensure that the
height of a tree T representing a set with n elements is
O� lognlog k �� Next we describe how to implement union and
�nd�

Find�x�	 We follow parent pointers from the leaf
containing x until we get to the root� We return the
name of the set stored at the root�

Union�A
B
C�	 Let a be the root of A and let b be the
root of B� Assume without loss of generality that the
height of A is no greater than the height of B and that
if A and B are of the same height then b has at least as
many children as a� There are three cases�

�� The height of A is strictly smaller than the height
of B� Let v an arbitrary child of b� If a has less
than k children� we make the children of a point to
v� and concatenate the list of children of v with the
list of children of a� We discard a� If a has at least
k children and h�a� � h�b� � � we make a a child
of b� Otherwise� h�a� � h�b�� �� and we make a a

child of v� We change the name of the set stored at
b to be the name of the new set� We also increment
the �eld that stores the number of children of b in
case the root a becomes a child of b�

�� The trees A and B have equal heights� and the
number of children of a is smaller than k� We
make the children of a point to b instead of a�
concatenate the lists of children of a and b and
store the resulting list with b� We store in b the
new name of the set� We increase the number of
children of b by the number of children of a�

�� The trees A and B have equal heights� and the
number of children of a is at least k� We create a
new root c� We make a and b be children of c by
concatenating them into a list� making this list the
list of children of c� and setting the parent pointers
of a and b to point to c� We store with c the name
of the new set� set its children counter to two� and
set its height to be one greater than the height of
a�

It is easy to see that the properties of the trees
stated above are maintained through a sequence of
union and �nds� therefore union takes O�k� time and
�nd takes O� lognlogk � time�

