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Abstract

Committed Oblivious Transfer (COT) is a useful cryptographic primitive that combines the
functionalities of bit commitment and oblivious transfer. In this paper, we introduce an extended
version of COT (ECOT) which additionally allows proofs of relations among committed bits, and
we construct an efficient protocol that securely realizes an ECOT functionality in the universal-
composability (UC) framework in the common reference string (CRS) model. Our construction is
more efficient than previous (non-UC) constructions of COT, involving only a constant number of
exponentiations and communication rounds. Using the ECOT functionality as a building block, we
construct efficient UC protocols for general two-party and multi-party functionalities (in the CRS
model), each gate requiring a constant number of ECOT’s.

1 Introduction

Committed Oblivious Transfer (COT) was introduced by Crépeau [18] (under the name “Verifiable
Oblivious Transfer”) as a natural combination of

(2
1

)

-Oblivious Transfer [22] and Bit Commitment.
At the start of the computation Alice is committed to bits a0 and a1 and Bob is committed to bit b;
at the end Bob is committed to ab and knows nothing about ab̄, while Alice learns nothing about b.
One can see that this allows each party engaged in an oblivious transfer to be certain that the other
party is performing the oblivious transfer operation on their declared inputs.1 This has been shown
to be useful in [19], who construct a protocol for general secure multi-party computation in the model
of [28] using COT.

In this paper we show how to improve on previous constructions of COT in the areas of efficiency
and universal composability. In terms of efficiency, the protocol we construct for COT uses only a
constant number of exponentiations and communication rounds per transfer.2 In contrast, the most
efficient previously known construction of COT [19] uses O(k) invocations of OT (thus implying at least
the same number of public-key operations using known constructions) and bit commitments, and O(k)
rounds, for k a security parameter. Furthermore, we show that our protocol securely realizes an ideal
COT functionality in the recently-proposed universal composability (UC) framework by Canetti [10],
in the common reference string (CRS) model. Recall that to define security in this framework, one first
specifies an “ideal functionality” describing the desired behavior of the protocol using a trusted party,

∗A preliminary version of this paper appeared in the Proc. 1st Theory of Cryptography Conference, Boston, MA,
February 2004.

†Bell Labs, Lucent Technologies, 600 Mountain Ave, Murray Hill, NJ 07974. {garay,philmac}@research.bell-
labs.com.

‡Computer Science Department, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213.
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1This contrasts with standard oblivious transfer, where some other method (perhaps another cryptographic building
block, or verification at some higher layer protocol) is required to guarantee that parties are performing their part of the
transfer on their declared inputs.

2Security is proved under some standard number theoretic assumptions, discussed later.
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and then one proves that a particular protocol operating in the real world “securely realizes” this
ideal functionality, by showing that no “environment” would be able to distinguish (1) an adversary
operating in the real world with parties running this protocol from (2) an “ideal adversary” operating
in an ideal process consisting of dummy parties that simply call the ideal functionality. A main virtue
of this framework is that the security of protocols thus defined is preserved under a general composition
operation called “universal composition,” which essentially means that protocols remain secure even
when composed with other protocols that may be running concurrently in the same system. We give
a more detailed review of the UC framework later in the paper. We note that a similar framework
was independently proposed by Pfitzmann and Waidner [37, 38]. Intuitively, these two frameworks
are similar, although there are a number of technical differences. We choose to use the UC framework
in this paper.3

Our protocol actually realizes an enhanced COT functionality, which we call ECOT, where in
addition to oblivious transfer, one can prove certain relations among committed bits (in particular,
among three bits). To demonstrate the usefulness of this functionality, we show that using ECOT
as a building block, any well-formed two-party and multi-party functionality can be securely realized
efficiently in the universal composability framework. Plugging in our protocol for realizing the ECOT
into this construction, we have an efficient protocol for any well-formed two-party and multi-party
functionality in the CRS model.

Canetti et al. [12] were the first to show that such functionalities are indeed realizable in this
model, even under general cryptographic assumptions and regardless of the number of corrupted
parties. More specifically, [12] follows the general “two-phase” approach of [27] of first designing
a solution for the case of honest-but-curious parties, and then turning it into a solution for the
actively malicious adversary, using a “compiler.” The compiler adds a zero-knowledge proof to every
message, proving that it is consistent with the history and the (committed) private input and the
randomness. Notice that since the “consistency” proofs are for relations involving the execution of
Turing machines, they are quite complex and it is unlikely that they admit efficient protocols; rather,
proofs for general NP statements are used (which involve a reduction to an NP-complete problem
like Hamiltonian Cycle), making the compiler a major source of inefficiency. Canetti et al. make
the protocol in [27] secure in the UC framework by replacing the basic primitives (namely, oblivious
transfer, bit commitment, and zero-knowledge) with their universally composable counterparts. The
resultant protocol becomes universally composable, but remains rather inefficient. In this paper we
follow a different approach. By incorporating stronger security into the basic building block (i.e.,
ECOT), we are able to build protocols secure against adaptive and malicious adversaries directly,
eliminating the need for a (normally inefficient) compiler. In this way, we are able to construct
protocols that are efficient and at the same time enjoy a high level of security.

Our results. We now present a more detailed account of our results. We start by defining an ECOT
functionality (FECOT), which, as mentioned above, additionally allows the sender to prove relations on
three committed bits to the receiver. Then we construct a protocol to realize the ECOT functionality.
The starting point for our construction is the standard Pedersen commitment scheme [35]. Then we
build an OT protocol over these commitments that is loosely based on the (non-concurrent version of
the) OT protocol of Garay and MacKenzie [24] (which in turn is based on the OT protocol of Bellare
and Micali [4]). Zero-knowledge (ZK) proofs are required in this OT protocol, and thus we work in a
hybrid model with ideal ZK functionalities. Naturally, the constructions for proving relations on three

3The ideal-process/real-world formulation of security and the simulator-based paradigm were initiated by Goldreich
et al. [27]. From then on, there have been many definitions in this (now standard) paradigm, with emphasis on different
aspects. For a number of examples, see Goldwasser and Levin [30], Micali and Rogaway [32], Beaver [2, 3], and Canetti [9],
for the formulations that precede the UC framework.
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committed bits also use these ideal ZK functionalities. Finally, to construct efficient protocols that
securely realize these ZK functionalities, we construct a special type of honest-verifier ZK protocol for
each desired relations, and then we use a result by Garay et al. [25] that shows how to convert this
special type of honest-verifier ZK protocol into a universally-composable ZK protocol. These results
are presented in Section 3.

The ECOT functionality can be naturally extended into one that performs
(4
1

)

-transfers (instead

of
(

2
1

)

) and proves relations on four committed bits (as opposed to three). We call this extended
functionality F4

ECOT, and show how to construct it using the original FECOT functionality as a building
block. Equipped with F4

ECOT, we then show how to securely realize a two-party functionality that
we call Joint Gate Evaluation (FJGE), which, as its name indicates, allows two parties to securely
compute any Boolean function over two bits shared between them. Essentially, the protocol realizing
this functionality uses a construction similar to that of [27] for the computation of the multiplication
gate. However, distinctive features of the protocol are that it deals directly with adaptively malicious
parties, and its efficiency: only a constant number of exponentiations and communication rounds per
gate evaluation. Joint Gate Evaluation is presented in Section 4.

Finally, we use FJGE to securely realize — efficiently — any adaptively well-formed two-party
and multi-party functionality, which is expressed by a boolean circuit, in a universally-composable
way. Again, since the realization is directly for the actively malicious adversary, and by means of an
efficient building block, the overall computational complexity is a small constant times the number
of gates in the representation of the functionality, and the number of rounds is a constant times the
depth of the circuit. The treatment of two-party functionalities is presented in Section 5, while the
case of multi-party functionalities, with the one-to-many extensions and realizations of the required
building blocks, is discussed in Section 6. Putting everything together, we construct efficient and uni-
versally composable two-party and multi-party computation protocols that are secure against adaptive
adversaries in the erasing model, where we allow parties to erase certain information reliably.

As a technical note, we use the gate-by-gate approach from [27], and make sure that each gate is
computed efficiently. We do not use the “encrypted circuit” approach due to Yao [40], which yields
constant-round protocols but is rather inefficient in terms of communication complexity, since one
needs to prove in zero-knowledge that the encrypted circuit is correct and these proofs are unlikely to
admit efficient protocols.

Related work. We already mentioned prior work on COT [18, 19]. Although the protocols presented
there are generic and hence may be implemented with or without computational assumptions (e.g.,
using primitives based on quantum channels), they are less efficient by at least a factor of k, where k
is the security parameter, and furthermore, they are not universally composable. (As a side note, a
“stand-alone” version of our ECOT protocol would be substantially simpler, in particular with respect
to the implementation of the necessary ZK proofs.)

We can also compare the ECOT functionality to the functionalities defined in [12], who use a “two-
phase” approach to construct universally composable two-party/multiple-party computation protocols.
In the first phase, where they construct a protocol secure against semi-honest adversaries, an important
tool is the OT functionality. In the second phase, where they exhibit a “compiler” that turns protocols
in the first phase into ones secure against malicious adversaries, an important tool is the “commit-
and-prove” functionality, which proves general NP statements. In some sense, the ECOT functionality
may be viewed as a “combination” of the OT functionality and the commit-and-prove functionality.
However, we stress that since ECOT only needs to prove very simple relations (among three bits), it
can be realized more efficiently.4

4We note that a commitment functionality with the capability to perform proofs on committed bits was also proposed
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Recently, Damg̊ard and Nielsen [21] presented efficient universally composable multi-party compu-
tation protocols using a different approach. Their construction is based on an efficient MPC protocol
by Cramer et al. [15], which in turn is based on threshold homomorphic cryptosystems. Compared to
our result, the Damg̊ard-Nielsen construction works in a slightly stronger model, namely the public
key infrastructure (PKI) model, where a trusted party not only generates a common reference string
(which contains the public keys of all the paries), but also a private string for each party (as the
party’s secret key). On the other hand, their protocol is secure against adaptive adversaries in the
so-called non-erasing model, where the parties are not allowed to erase any information, while our
construction is secure in the erasing model only.

2 Preliminaries and Definitions

All our results are in the common reference string (CRS) model, which assumes that there is a string
uniformly generated from some distribution and is available to all parties at the start of a protocol.
This is a generalization of the public random string model, where a uniform distribution over fixed-
length bit strings is assumed.

For a distribution ∆, we say a ∈ ∆ to denote any element that has non-zero probability in ∆,
i.e., any element in the support of ∆. We say a

R
←∆ to denote a is randomly chosen according to

distribution ∆. For a set S, we say a
R
← S to denote that a is uniformly drawn from S.

The universal composability framework. The universal composability framework was suggested
by Canetti for defining the security and composition of protocols [10]. In this framework one first
defines an “ideal functionality” of a protocol, and then proves that a particular implementation of
this protocol operating in a given computational environment securely realizes this ideal functionality.
The basic entities involved are n players P1, . . . , Pn, an adversary A, and an environment Z. The real
execution of a protocol π, run by the players in the presence of A and an environment machine Z,
with input z, is modeled as a sequence of activations of the entities. The environment Z is activated
first, generating in particular the inputs to the other players. Then the protocol proceeds by having
A exchanging messages with the players and the environment. Finally, the environment outputs one
bit, which is the output of the protocol.

The security of the protocols is defined by comparing the real execution of the protocol to an
ideal process in which an additional entity, the ideal functionality F , is introduced; essentially, F is
an incorruptible trusted party that is programmed to produce the desired functionality of the given
task. Let S denote the adversary in this idealized execution. The players are replaced by dummy
players, who do not communicate with each other; whenever a dummy player is activated, its input
is forwarded to F by S, who can see the “public header” of the input.5 As in the real-life execution,
the output of the protocol execution is the one-bit output of Z. Now a protocol π securely realizes an
ideal functionality F if for any real-life adversary A there exists an ideal-execution adversary S such
that no environment Z, on any input, can tell with non-negligible probability whether it is interacting
with A and players running π in the real-life execution, or with S and F in the ideal execution.
More precisely, if the two binary distribution ensembles, REALπ,A,Z and IDEALF ,S,Z , describing Z’s
output after interacting with adversary A and players running protocol π (resp., adversary S and ideal

functionality F), are computationally indistinguishable (denoted REALπ,A,Z
c
≈ IDEALF ,S,Z).

by Damg̊ard and Nielsen [20], along with efficient protocols realizing it under some specific number-theoretic assumptions.
However, it was not shown that their functionality could be used in constructing protocols for general secure multi-party
computation, and more specifically, oblivious transfer.

5This feature was added to the UC framework in [12].
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Protocols typically invoke other sub-protocols. In this framework the hybrid model is like a real-
life execution, except that some invocations of the sub-protocols are replaced by the invocation of an
instance of an ideal functionality F ; this is called the “F-hybrid model.” Let HYBF

π,A,Z denote the
distribution ensemble of random variables describing the output of Z, after interacting in the F-hybrid
model with protocol π. Let π be a protocol in the F-hybrid model, and ρ a protocol that secures
realizes F . The composed protocol πρ is now constructed by replacing the first message to F in π by
an invocation of a new copy of ρ, with fresh random input, the same sid, and with the contents of
that message as input; each subsequent message to that copy of F is replaced with an activation of
the corresponding copy of ρ, with the contents of that message as new input to ρ.

The UC composition theorem basically says that if ρ secure realizes F in the G-hybrid model, for
some functionality G, then an execution of the composed protocol πρ, running in the G-hybrid model,
“emulates” an execution of protocol π in the F-hybrid model. That is, no environment machine Z
can distinguish whether it is interacting with A and πρ in the G-hybrid model, or it is interacting with

S and π in the F-hybrid model. In other words, HYBG
πρ,A,Z

c
≈ HYBF

π,S,Z .
We are designing and analyzing protocols in the CRS model, and so they will be operating in

the FD
CRS-hybrid model, where FD

CRS is the functionality that chooses a string from distribution Dk

and hands it to all parties. Further, we will consider the “multi-session extension of F” of Canetti
and Rabin [13], denoted F̂ , which runs multiple copies of F by identifying each copy by a special
sub-session identifier.

The definition of F̂R
ZK, the multi-session extension of FR

ZK, is shown below. Note the two types of

indices: the sid, which differentiates messages to F̂R
ZK from messages sent to other functionalities, and

ssid, the sub-session identifier, which is unique per input message (or proof).

Functionality F̂R
ZK

F̂R
ZK proceeds as follows, running with security parameter k, parties P1, . . . , Pn, and an adver-

sary S:

• Upon receiving (zk-prover, sid, ssid, Pi, Pj , x, w) from Pi: If R(x,w) then send
(ZK-PROOF, sid, ssid, Pi, Pj , x) to Pj and S and halt. Otherwise, ignore.

Refer to [10, 12] for further description of the UC framework.

2.1 Ω-protocols

Our constructions will use a special type of zero-knowledge protocols, namely, Ω-protocols [25], which
are variants of the so-called Σ-protocols [16, 14].

We review some of the definitions and properties of these protocols.
Let R = {(x,w)} be a binary relation and assume that for some given polynomial p(·) it holds

that |w| ≤ p(|x|) for all (x,w) ∈ R. Furthermore, let R be testable in polynomial time. Let LR = {x :
(x,w) ∈ R} be the language defined by the relation, and for all x ∈ LR, let WR(x) = {w : (x,w) ∈ R}
be the witness set for x. For any NP language L, note that there is a natural witness relation R
containing pairs (x,w) where w is the witness for the membership of x in L, and that LR = L.

A Σ-protocol (A,B) is a three move interactive protocol between a probabilistic polynomial-time
prover A and a probabilistic polynomial-time verifier B, where the prover acts first. The verifier is
only required to send random bits as a challenge to the prover. For some (x,w) ∈ R, the common
input to both players is x while w is private input to the prover. For such given x, let (a, c, z) denote
the conversation between the prover and the verifier. To compute the first and final messages, the
prover invokes efficient algorithms a(·) and z(·), respectively, using (x,w) and random bits as input.
Using an efficient predicate φ(·), the verifier decides whether the conversation is accepting with respect
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to x. The relation R, the algorithms a(·), z(·) and φ(·) are public. The length of the challenges is
denoted tB , and we assume that tB only depends on the length of the common string x.

We will need to broaden this definition slightly, to deal with cheating provers. We will define L̂R

to be the input language, with the property that LR ⊆ L̂R, and membership in L̂R may be tested in
polynomial time. We implicitly assume B only executes the protocol if the common input x ∈ L̂R.

All Σ-protocols presented here will satisfy the following security properties:

• Weak special soundness: Let (a, c, z) and (a, c′, z′) be two conversations, that are accepting for
some given x ∈ L̂R. If c 6= c′, then x ∈ LR. The pair of accepting conversations (a, c, z) and
(a, c′, z′) with c 6= c′ is called a collision .

• Special honest verifier zero knowledge (SHVZK): There is a (probabilistic polynomial time) simu-
lator M that on input x ∈ LR generates accepting conversations with the exact same distribution
as when A and B execute the protocol on common input x (and A is given a witness w for x),
and B indeed honestly chooses its challenges uniformly at random. The simulator is special
in the sense that it can additionally take a random string c as input, and output an accepting
conversation for x where c is the challenge. In fact, we will assume the simulator has this special
property for not only x ∈ LR, but also any x ∈ L̂R.

An Ω-protocol (A,B)[σ] for a relation R = {(x,w)} and CRS σ, is a Σ-protocol for relation R
except for the following.

1. For a given distribution ensemble D, a common reference string σ is drawn from Dk and each
function a(·), z(·), and φ(·) takes σ as an additional input.

2. It is computational SHVZK, meaning that the simulator on input x ∈ LR generates a conver-
sation that is only computationally indistinguishable from one generated in a real execution
between A and B on common input x6. Specifically, there is a negligible function α(k) and a
polynomial-time simulator S such that for all non-uniform probabilistic polynomial-time adver-
saries A = (A1,A2), we have that |Pr[ExptA(k) = 1] − Pr[ExptSA(k) = 1]| ≤ α(k), where the
experiments ExptA(k) and ExptSA(k) are defined as follows:

ExptA(k) : ExptSA(k) :

σ
R

←Dk σ
R

←Dk

(x, w, s)←A1(σ) (x, w, s)←A1(σ)
If (x, w) 6∈ R return 0 If (x, w) 6∈ R return 0

r
R

←{0, 1}∗ c
R

← {0, 1}k

a← a(x, w, r, σ) Return A2(s,S(σ, c))

c
R

←{0, 1}k

Return A2(s, (a, c, z(x, w, r, c, σ)))

3. There exists a polynomial-time extractor E = (E1, E2) such that the reference string output by
E1(1

k) is statistically indistinguishable from Dk. Furthermore, given (σ, τ)←E1(1
k), if there

exists two accepting conversations (a, c, z) and (a, c′, z′) with c 6= c′ for some given x ∈ L̂R, then
E2(x, τ, (a, c, z)) outputs w such that (x,w) ∈ R.7

6Notice that the simulator does not generate the common reference string.
7Notice that this definition on extractor is similar to that of weak special soundness of Σ-protocols. Having two

accepting conversations sharing the same a guarantees that a witness will be extracted, although the extractor only
needs one conversation.
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Intuitively, Ω-protocols are proof of knowledge protocols with a straight-line extractor.
In our results to follow, we need a particular, simple instance of the main theorem from [16]. Specif-

ically, we use a slight generalization of a corollary in [16] which enables a prover, given two relations
(R1, R2), values (x1, x2) ∈ L̂R1 × L̂R2, and corresponding 3-move Σ-protocols ((A1, B1), (A2, B2)), to
present a 3-move Σ-protocol (Aor, Bor) for proving the existence of a w such that either (x1, w) ∈ R1

or (x2, w) ∈ R2. We call this the “OR” protocol for ((A1, B1), (A2, B2)),
We will describe the protocol assuming the challenges from (A1, B1) and (A2, B2) are of the same

length. This can easily be generalized, as long as the challenge length in the combined protocol is at
least as long as the challenges from either protocol. The protocol consists of (A1, B1) and (A2, B2)
running in parallel, but with the verifier’s challenge c split into c = c1 ⊕ c2, with c1 as the challenge
for (A1, B1), and c2 as the challenge for (A2, B2).

The protocol for Aor is as follows: Without loss of generality, say Aor knows w such that (x1, w) ∈
R1. Let M2 be the simulator for S2. Then Aor runs M2(x2) to generate (m, e, z). It sends the first
message of (A1, B1), along with m as the first message of (A2, B2). On challenge c, it chooses c2 = e,
and c1 = c⊕ c2. It is able to provide the final response in (A1, B1) because it knows w, and the final
response in (A2, B2) is simply z. The final message of Aor includes c1 along with the final responses for
(A1, B1) and (A2, B2). We note that this construction works for Ω-protocols as well as Σ-protocols.

3 Universally Composable Committed Oblivious Transfer

In this section we present the FECOT functionality, an extension of COT where in addition to the
oblivious transfer, the sender can prove to the receiver (Boolean) relations among the committed bits.
We will later use this functionality to implement an efficient Joint Gate Evaluation functionality, which
in turn will enable efficient and universally composable multi-party computation. The functionality
FECOT is shown in Figure 1. Informally, a party Pi commits to a bit b by sending an ecot-commit

message to the ideal functionality FECOT, and Pi can later open this bit by sending an ecot-open

message with appropriate commitment identifier (cid) value. For Pi to obliviously transfer a bit to
Pj , Pi needs to commit two bits b0 and b1 and Pj needs to commit to one bit bt; after sending an
ecot-transfer to FECOT, the bit bbt

is transferred to Pj and automatically committed by FECOT on
behalf of Pj . Meanwhile, Pi does not learn anything, except that a transfer took place. Furthermore,
the functionality also allows a party Pi to prove to Pj that three bits b0, b1, and b2 it committed to
satisfy a particular binary relation by sending an ecot-prove message to FECOT.

As a convention, we use op
(2)
m to denote a function on two bits, where m ∈ {0, 1}4 is the string of

bits of the Boolean function’s truth table (output column). We also often identify m with the integer
whose binary representation is m. (For example, m = 1 represents the AND function, whose truth
table is 0001.)

As a technical note, we note that the Open phase is not strictly necessary since it can be simulated

by the Prove phase. Take op
(2)
0000 and op

(2)
1111, which correspond to the all-zero and all-one functions.

Then, by proving that op
(2)
0000(b0, b1) = b2 for arbitrary bits b0 and b1, one essentially opens bit b2 to

0; similarly, by proving that op
(2)
1111(b0, b1) = b2, one opens b2 to 1. We choose to include the Open

phase in the functionality for clarity and efficiency (the Open phase can be realized more efficiently
than the simulated Prove phase).

Before presenting a protocol that securely realizes FECOT, we first discuss some preliminary con-
structions that will be used as building blocks.
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Functionality FECOT

FECOT proceeds as follows, running with parties P1, ..., Pn and an adversary S.

• Commit phase: When receiving from Pi a message 〈ecot-commit, sid, cid, Pj , b〉,
record 〈cid, Pi, Pj , b〉, send message 〈ECOT-RECEIPT, sid, cid, Pi, Pj〉 to Pi, Pj and S,
and ignore all future messages of the form 〈ecot-commit, sid, cid, Pj , ∗〉 from Pi and
〈ecot-transfer, sid, cid, ∗, ∗, ∗, Pi〉 from Pj .

• Prove phase: When receiving from Pi a message 〈ecot-prove, sid, ssid,
cid0, cid1, cid2, Pj ,m〉, if the following three tuples, 〈cid0, Pi, Pj , b0〉, 〈cid1, Pi, Pj , b1〉,

〈cid2, Pi, Pj , b2〉, are all recorded, and op
(2)
m (b0, b1) = b2, then send message

〈ECOT-PROOF, sid, ssid, cid0, cid1, cid2, Pi,m〉 to Pj and S; otherwise do nothing.

• Transfer phase: When receiving from Pi a message 〈ecot-transfer, sid, cid,
cid0, cid1, tcid, Pj〉, if the following three tuples 〈cid0, Pi, Pj , b0〉, 〈cid1, Pi, Pj , b1〉,
and 〈tcid, Pj , Pi, bt〉, are all recorded, send message 〈ECOT-DATA, sid, cid, Pi, Pj ,
cid0, cid1, tcid, bbt

〉 to Pj , record tuple 〈cid, Pj , Pi, bbt
〉, and send message

〈ECOT-RECEIPT, sid, cid, Pi, Pj , cid0, cid1, tcid〉 to Pi and S, and ignore
all future messages of the form 〈ecot-commit, sid, cid, Pi, ∗〉 from Pi and
〈ecot-transfer, sid, cid, ∗, ∗, ∗, Pj 〉 from Pj . Otherwise, do nothing.

• Open phase: When receiving from Pi a message 〈ecot-open, sid, cid, Pi, Pj〉, if the
tuple 〈cid, Pi, Pj , b〉 is recorded, send message 〈ECOT-DATA, sid, cid, Pi, Pj , b〉 to both S
and Pj ; otherwise, do nothing.

Figure 1: The extended committed oblivious transfer functionality

3.1 Building blocks

In particular, we shall discuss an Ω-protocol DL for discrete log, an Ω-protocol PEREP for partial
equality of representation, and their compositions.

An Ω-protocol for discrete logarithm. In the full version of their paper, Garay et al. [25] pre-
sented an Ω-protocol for the discrete logarithm relation. More concretely, let (p, q, g) be public param-
eters, where q and p are primes satisfying q|(p−1) and g ∈ Z

∗
p with order(g) = q. Let R be the discrete

logarithm relation R = {(y, x) : y ≡ gx mod p}. They constructed an Ω-protocol for the relation R.
We use a slight variant of this protocol for a different relation R′, which differs from R by moving g
from the public parameter to the input. In other words, RDL = {((y, g), x) : y ≡ gx mod p}. We call
our protocol DL(y, g) and present it in Appendix B for completeness.

Lemma 3.1 The protocol DL(y, g) is an Ω-protocol.

An Ω-protocol for partial equality of representation. The protocol DL can be extended to
one for proving partial equality of representation. Let (p, q) be public parameters, where q and p are
primes satisfying q|(p− 1). Let R be the following relation

RPEREP = {((x0, g0, g1, x1, g2, g3), (α0, α1, α2)) | x0 ≡ gα0
0 gα1

1 mod p ∧ x1 ≡ gα0
2 gα2

3 mod p} (1)
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where g0, g1, g2, and g3 all have order q. We construct an Ω-protocol for this relation and we call it
PEREP(x0, g0, g1, x1, g2, g3). Intuitively, this is a proof of knowledge of presentations of x0 over bases
(g0, g1) and x1 over bases (g2, g3) such that the exponent of x0 over g0 equals the exponent of x1 over
g2.

The intuition behind this protocol is very similar to that of DL(y, g). The common reference
string consists a Paillier public key and additional RSA modulus with three generators. The prover
sends over the the encryption of α, β, γ (the representations) using the Paillier encryption key and
then prove that these encryptions are correct. The additional RSA modulus are used to resolve the
different moduli problem. This is a standard technique [6, 8, 23, 31, 25]. We include the protocol in
Appendix B.

Lemma 3.2 The protocol PEREP(x0, g0, g1, x1, g2, g3) is an Ω-protocol.

We omit the proof of this lemma since the techniques are rather standard.

Composition of Ω-protocols and conversion to UCZK protocols. As we discussed in Sec-
tion 2, since Ω-protocols are special Σ-protocols, they admit efficient monotone compositions. In
particular, there exist efficient Ω-protocols for proving any “AND” and “OR” compositions of the
discrete log relations RDL and the partial equality of representation relations RPEREP.

In [25], Garay et al. introduced a technique to transform any Ω-protocol into a universally com-
posable protocol by using a digital signature scheme that is existentially unforgeable against adaptive
chosen-message attacks. Their transformation is efficient, if the digital signature scheme admits an
efficient proof of knowledge protocol. In particular, they proved the following result.

Theorem 3.3 ([25]) Under the strong RSA assumption or the DSA assumption, for every relation
R that admits an Ω-protocol Π, there exists a three-round protocol UC[Π] that securely realizes the
F̂R

ZK ideal functionality in the FCRS-hybrid model against adaptive adversaries, assuming erasing.
Furthermore, the (additive) overhead of UC[Π] to Π is constant number of exponentiations plus the
generation of a signature.

( See Appendix A for discussion on the Strong RSA assumption.)
Therefore, we can plug in the Ω-protocols for proving discrete logarithm, partial equality of repre-

sentation, and their “AND”/“OR” compositions into Theorem 3.3 and obtain efficient UCZK protocols
for these relations. In particular, we shall use UCZK protocols for proving the following relations.

1. “OR” of two discrete logs:

ROR-DL((y0, g0, y1, g1), (x0, x1)) = RDL((y0, g0), x0) ∨ RDL((y1, g1), x1)

2. “OR”/“AND” relation of six discrete logs:

ROR-N-DL((y0, y1, y2, y3, y4, y5, g), (x0, x1, x2, x3, x4, x5)) =

((RDL((y0, g), x0) ∨RDL((y1, g), x1)) ∧RDL((y2, g), x2)) ∨

(RDL((y3, g), x3) ∧RDL((y4, g), x4) ∧RDL((y5, g), x5))

3. Partial equality of representations:

RPEREP((x0, g0, g1, x1, g2, g3), (α0, α1, α2))
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4. “OR” of partial equality of representations:

ROR-PEREP((x0, g0, g1, x1, g2, g3, y0, h0, h1, y1, h2, h3), (α0, α1, α2, β0, β1, β2)) =

RPEREP((x0, g0, g1, x1, g2, g3), (α0, α1, α2)) ∨

RPEREP((y0, h0, h1, y1, h2, h3), (β0, β1, β2))

3.2 The UCECOT protocol

We now present UCECOT, a protocol that securely realizes the FECOT ideal functionality in the
(FCRS, F̂

ROR-DL

ZK , F̂
ROR-N-DL

ZK , F̂RPEREP

ZK , F̂
ROR-PEREP

ZK )-hybrid model, where the CRS consists of (p, q, g, h)
such that q and p are primes satisfying q|(p − 1) and g, h ∈ Z

∗
p are random elements satisfying

order(g) = order(h) = q. p and q will also serve as the public parameters in the relations RDL, RPEREP,
and their compositions.

We first describe the protocol.

Commit phase: On receiving private input 〈ecot-commit, sid, cid, Pj , b〉, assuming that cid is not

used before, party Pi picks a random r
R
← Zq, computes B← gr · hb mod p, sends message

(ucecot-commit, sid, cid,B) to party Pj , message (zk-prover, sid, cid, Pi, Pj , (B, g,B/h, g), (r, r))

to F̂
ROR-DL

ZK , and outputs 〈ECOT-RECEIPT, sid, cid, Pi, Pj〉. After receiving the messages from Pi

and F̂
ROR-DL

ZK respectively, Pj outputs 〈ECOT-RECEIPT, sid, cid, Pi, Pj〉.

Essentially Pi sends a Pedersen commitment [35] of bit b to Pj and uses the F̂
ROR-DL

ZK ideal
functionality to prove that he either knows the discrete log of B (in which case Pi is committing
to bit 0) or the discrete log of B/h base g (in which case Pi is committing to bit 1).

Prove phase: Suppose Pi has committed bits b0, b1, and b2 to Pj using cids cid0, cid1, and cid2,
respectively. Further assume that their corresponding Pedersen commitments are B0 = gr0 ·hb0 ,
B1 = gr1 ·hb1 , and B2 = gr2 ·hb2 . Now, upon receiving private input 〈ecot-prove, sid, ssid, cid0, cid1, cid2, Pj ,m〉,

Pi is to prove to Pj that op
(2)
m (b0, b1) = b2, using sub-session id ssid. We first consider

the situation where m = 1110, in which case op
(2)
m is the NAND operation. In this sit-

uation, Pi sends message (ucecot-prove, sid, ssid, cid0, cid1, cid2,m) to Pj and sends message

(zk-prover, sid, ssid, Pi, Pj , (B0, B1, B2/h,B0/h,B1/h,B2, g), (r0, r1, r2, r0, r1, r2)) to F̂
ROR-N-DL

ZK . Af-

ter receiving the corresponding message from F̂
ROR-N-DL

ZK , Pj outputs 〈ECOT-PROOF, sid, ssid, cid0,
cid1, cid2, Pi,m〉.

Intuitively, Pi is proving that (((b0 = 0)∨ (b1 = 0))∧ (b2 = 1))∨ ((b0 = 1)∧ (b1 = 1)∧ (b2 = 0)).

In the case of any other binary operations op
(2)
m , it can be written as a composition of NANDs

and then proved step by step. Pi will need to commit to all the intermediate bits and prove
each NAND operation is correct. For example, consider the case where m = 0001 is the AND
operation. Notice that x ∧ y = x ∧ y ∧ x ∧ y Therefore, to prove that b2 = b0 ∧ b1, Pi needs to
commit to a new bit b3 = b0 ∧ b1 using the protocol in the Commit phase, and then prove that
both b3 = b0 ∧ b1 and that b2 = b3 ∧ b3.

Transfer phase: Suppose Pi has committed bits b0 and b1, and Pj has committed bit bt, using
identifiers cid0, cid1, and tcid, respectively. Further assume that the corresponding Pedersen
commitments are B0 = gr0 · hb0 , B1 = gr1 · hb1 , and Bt = grt · hbt . Now, upone receiving
private input ecot-transfer, sid, cid, cid0 , cid1, tcid, Pj〉, assuming that cid is not used before, Pi is
to obliviously transfers bit bbt

to Pj , using session id sid and the commitment id cid for the new
bit bbt

. Intuitively, Pi sends two Pedersen commitments, C0 and C1, where C0 is a commitment
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to b0 using base Bt, and C1 is a commitment to b1 using base Bt/h. It also sends A0 and A1

generated using the same randomness as C0 and C1. If bt = 0, then Pj knows the discrete log of
Bt and can check if C0 is a commitment to zero or not, and if bt = 1, then Pj knows the discrete
log of Bt/h and can check if C1 is a commitment to zero or not.

Now we proceed to the details. Pi randomly picks a0, a1
R
← Zq and computes A0← ga0 , A1← ga1 ,

C0←Ba0
t · h

b0 , and C1← (Bt/h)a1 · hb1 . Pi then sends message (ucecot-transfer, sid, cid, cid0,
cid1, tcid,A0, A1, C0, C1) to Pj and sends the following four messages to the ideal functionality

F̂RPEREP

ZK .8

(zk-prover, sid, cid ◦ 00, Pi, Pj , (C0, h,Bt, B0, h, g), (b0, a0, r0))

(zk-prover, sid, cid ◦ 01, Pi, Pj , (C1, h,Bt/h,B1, h, g), (b1, a1, r1))

(zk-prover, sid, cid ◦ 10, Pi, Pj , (A0, g, 1, C0, Bt, h), (a0, 0, b0))

(zk-prover, sid, cid ◦ 11, Pi, Pj , (A1, g, 1, C1, Bt/h, h), (a1 , 0, b1))

After this, Pi erases a0 and a1.

After receiving the message from Pi and four messages from the ideal functionality F̂RPEREP

ZK , Pj

does the following (otherwise Pj aborts).

If bt = 0, then check if Art

0 = C0 mod p, and set b← 0 if yes and b← 1 otherwise; if bt = 1, then
check if Art

1 = C1 mod p, and sets b← 0 if yes and b← 1 otherwise. Now b is the bit Pj receives.

Next, Pj picks a random r
R
← Z

∗
q and sets B← gr·hb mod p, sends message (ecot-commit, sid, cid,B)

to party Pi, sends message (zk-prover, sid, cid, Pj , Pi, (C0, h,A0, B, h, g, C1, h,A1, B, h, g), (b, rt, r,

b, rt, r)) to ideal functionality F̂
ROR-PEREP

ZK , and outputs 〈ECOT-DATA, sid, cid, Pi, Pj , cid0, cid1, tcid,

b〉. Finally, after receiving messages from Pj and F̂
ROR-PEREP

ZK , Pi outputs 〈ECOT-RECEIPT,
sid, cid, Pi, Pj , cid0, cid1, tcid〉.

Open phase: Suppose Pi has committed a bit b to Pj using session id sid, and commitment id cid.
Further assume that the commitment is B = gr · hb mod p. Now upon receiving private input
〈ecot-open, sid, cid, Pi, Pj〉, Pi opens the bit b by sending message (ucecot-open, sid, cid, b, r) to
Pj , who then verifies that B = gr · hb mod p, and outputs (ECOT-DATA, sid, cid, Pi, Pj , b) if the
verification is valid.

This is exactly the opening of a Pedersen commitment.

Theorem 3.4 Under the DDH assumption, protocol UCECOT securely realizes the FECOT ideal func-
tionality in the (FCRS, F̂

ROR-DL

ZK , F̂
ROR-N-DL

ZK , F̂RPEREP

ZK , F̂
ROR-PEREP

ZK )-hybrid model against adaptive, mali-
cious adversaries, assuming erasing.

Proof: Let A be an adversary that operates against protocol UCECOT. We construct an ideal process
adversary S such that no environment Z can distinguish whether it is interacting with A and UCECOT

in the (FCRS, F̂
ROR-DL

ZK , F̂
ROR-N-DL

ZK , F̂RPEREP

ZK , F̂
ROR-PEREP

ZK )-hybrid model, or with S in the ideal process for
FECOT.

For simplicity, we assume that only one copy of FECOT is access by Z, since otherwise we can
easily duplicate the actions for S for each copy of FECOT.

At the beginning of the ideal process, the ideal adversary S simulates the common reference string
FCRS. First, S generate two primes p and q of appropriate size such that q|(p− 1). Next S generates

8We assume that all the id’s are binary strings, and we use “a◦b” to indicate the concatenation of string a with string
b.
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random g ∈ Z
∗
p such that order(g) = q, a random t

R
← Zq, and h← gt. Then S outputs (p, q, g, h) as

the common reference string for FCRS and stores t. Notice that since S knows the discrete log of h
base g, it can equivocate the Pedersen commitment.

During the ideal process, S runs a simulated copy of A. Messages received from Z are forwarded
to the simulated A, and messages sent by the simulated A to its environment are forwarded to Z. S
also see the public header (see [12]) of all the messages from uncorrupted parties to FECOT and may
decide whether or not to forward these messages. In the case of FECOT, all messages to FECOT are
in the public header (meaning that S can see all these messages from uncorrupted parties to FECOT)
except the bit b in the ecot-commit message. We use “−” to denote this private bit. Furthermore,
S also plays the roles of the four UCZK functionalities F̂

ROR-DL

ZK ,F̂
ROR-N-DL

ZK , F̂RPEREP

ZK , and F̂
ROR-PEREP

ZK .
Furthermore, S maintains a record of committed bits erased in FECOT. The record consists of tuples
of the form (cid, Pi, Pj , B, r, b), indicating that the committed bit of id cid is from Pi to Pj , the bit
is b and the Pedersen commitment is B = hb · gr. If Pi is uncorrupted, then the bit b is set to “?,”
indicating that S can equivocate on this one and in this case, B = gr.

Next, we describe the behavior of S in detail. S is “event-driven,” in that its actions are triggered
by the messages. We itemize the behavior of S according to the messages it sees.

1. If S sees a corrupted party Pi send a message (ucecot-commit, sid, cid,B) to party Pj , this
means that Pi (which is controlled by A) is committing a bit to Pj . Then S expects a message

(zk-prover, sid, cid, Pi, Pj , (B, g,B/h, g), (r0 , r1)) from Pi to F̂
ROR-DL

ZK . After receiving this mes-
sage, S checks if B = gr0 and if B/h = gr1 . If neither holds, S ignores this message, since Pi

fails the proof. If both hold, then A manages to find out the discrete log of h (which is r0− r1),
and S in this case aborts and outputs an error message ‘‘DL broken: h = gr0−r1.’’

If B = gr0 but B/h 6= gr1 , then Pi is committing to the bit b = 0; if B 6= gr0 but B/h = gr1 ,
then Pi is committing to the bit b = 1. In either case, S records (cid, Pj , Pi, B, rb, b) and sends
message 〈ecot-commit, sid, cid, Pj , b〉 to on behalf of Pi to FECOT.

2. If S sees a message 〈ecot-commit, sid, cid, Pj ,−〉 from an uncorrupted party Pi to FECOT, this
means that Pi is committing a bit to Pj . Notice that S cannot see the actual bit b in the message,
and the place of b is filled by “−.” S then forwards this message to the FECOT, and obtains
a receipt 〈ECOT-RECEIPT, sid, cid, Pi, Pj〉 in return. Next, S fakes a Pedersen commitment by

picking a random r
R
← Zq, setting B← gr, and sending message (ucecot-commit, sid, cid,B) to

party Pj . and records (cid, Pi, Pj , B, r, ?). S also forges a message (ZK-PROOF, sid, cid, Pi, Pj ,

(B, g,B/h, g)) from F̂
ROR-DL

ZK to Pj. Notice that if Pj is corrupted, then the messages to Pj are
in fact directed to A.

3. If S sees a corrupted party Pi (controlled by A) send a message (ucecot-transfer, sid, cid, cid0,
cid1, tcid,A0, A1, C0, C1) to an uncorrupted party Pj , this means that Pi (controlled by A) is
performing an oblivious transfer to Pj . In this case, S first verifies the it has stored three tuples
(cid0, Pi, Pj , B0, r0, b0), (cid1, Pi, Pj , B1, r1, b1), and (tcid, Pj , Pi, Bt, rt, ?), and does nothing if

not. Next, S plays the ideal functionality F̂RPEREP

ZK to receive four messages from Pi, and verifies
that

C0 = hα00 · Bα01
t ∧ B0 = hα00 · gα02

C1 = hα10 · (Bt/h)α11 ∧ B1 = hα10 · gα12

A0 = gβ00 ∧ C0 = Bβ00
t · hβ01

A1 = gβ10 ∧ C1 = (Bt/h)β10 · hβ11
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If α00 6= b0, S aborts and outputs ‘‘DL broken: h = g(α02−r0)/(b0−α00).’’

If α10 6= b1, S aborts and outputs ‘‘DL broken: h = g(α12−r1)/(b1−α10).’’

If β01 6= b0, S aborts and outputs ‘‘DL broken: h = gr2·(α01−β00)/(β01−b0).’’

If β11 6= b1, S aborts and outputs ‘‘DL broken: h = gr2·(α11−β10)/(α11+β11−β10−b1).’’

Otherwise, we have α00 = β01 = b0, α10 = β11 = b1, α02 = r0, α12 = r1, β00 = α01, and
β10 = α11. Setting a0 = α01 and a1 = α11, we see that (A0, A1, C0, C1) is indeed of the form as
prescribed in protocol UCECOT.

After this, S sends message 〈ecot-transfer, sid, cid, cid0 , cid1, tcid, Pj〉 to FECOT, and waits for
the message 〈ECOT-RECEIPT, sid, cid, Pi, Pj , cid0, cid1, tcid〉 back from it. Next, S fakes a

commitment by setting r
R
← Zq, B← gr, and sending the message (ecot-commit, sid, cid,B) to

Pi, and forges a message (ZK-PROOF, sid, cid, Pj , Pi, (C0, h,A0, B, h, g, C1, h,A1, B, h, g)) from

F̂
ROR-PEREP

ZK to Pi.

4. If S sees a message 〈ecot-transfer, sid, cid, cid0, cid1, tcid, Pj〉 from an uncorrupted party Pi to
FECOT, this means that Pi is transferring a bit to Pj obliviously. If Pj is uncorrupted, then
S can simulate the protocol easily. In particular, it forwards this message to FECOT, obtains
a message 〈ECOT-RECEIPT, sid, cid, Pi, Pj , cid0, cid1, tcid〉 in return from FECOT, forges a mes-
sage (ucecot-transfer, sid, cid, cid0 , cid1, tcid,A0, A1, C0, C1) from Pi to Pj and then a message
(ucecot-commit, sid, cid,B) from Pj to Pi, where A0, A1, C0, C1 are generated as in the protocol

(using b0 = b1 = 0) and B← gr for a random r
R
← Zq. S also simulates the appropriate messages

to and from the UCZK ideal functionalities F̂RPEREP

ZK and F̂
ROR-PEREP

ZK .

Now, consider the case that Pj is corrupted. Assume that S has internally stored tuples
(cid0, Pi, Pj , B0, r0, ?), (cid1, Pi, Pj , B1, r1, ?) and (tcid, Pj , Pi, Bt, rt, bt). If it is not the case,
S does nothing. Otherwise S does the following. Intuitively, S can simulate the protocol cor-
rectly since it knows the bit bt used by the corrupted receiver, and it learns from FECOT the
transferred bit. It sets the data for the opposite case (1− bt) randomly, since the receiver should
not learn anything about the data corresponding to 1− bt. Below is the detailed description.

(a) Forward the message to FECOT and obtains the message 〈ECOT-DATA, sid, cid, Pi, Pj , cid0,
cid1, tcid, b〉 in return.

(b) Set s0, s1, s2
R
← Zq, Abt

← gs0 , Cbt
← (Bt/h

bt)s0 · hb, A1−bt
← gs1 , and C1−bt

← gs2 .

(c) Send message (ucecot-transfer, sid, cid, cid0 , cid1, tcid,A0, A1, C0, C1) to Pj and simulate the

four messages from F̂RPEREP

ZK to Pj .

(d) Receive message (ecot-commit, sid, cid,B) from Pj and message (zk-prover, sid, cid, Pj , Pi,

(C0, h,A0, B, h, g, C1, h,A1, B, h, g), (α0 , α1, α2, β0, β1, β2)) from Pj to F̂
ROR-PEREP

ZK .

(e) Check if C0 = hα0 ·Aα1
0 ∧B = hα0 ·gα2 (we call it “event 0”), or C1 = hβ0 ·Aβ1

1 ∧B = hβ0 ·gβ2

(we call it “event 1”). If none of the events happens, then stop and furthermore, ignore all
ucecot-commit and ucecot-transfer messages from Pj with cid as commitment id.

(f) If event (1 − bt) happens, abort and output certain error messages. In particular, assume

that bt = 0 and event 1 happens, then we have A1 = gs1 , C1 = gs2 , and C1 = hβ0 · Aβ1
1 .

If β0 = 0, then output ‘‘DL broken: C1 = Aβ1
1 ,’’, else output ‘‘DL broken: h =

g(s2−s1·β1)/β0.’’. The situation for b2 = 1 is similar.

(g) Now assume that event bt happens. For simplicity we assume that bt = 0 (the situation
for bt = 1 is similar). In this case check if α0 = b. If not, we have that A0 = gs0 ,
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C0 = Bs0
t · h

b = hb · gr2 , and C0 = hα0 · Aα1
0 = hα0 · gs0·α1 . Then, S aborts and outputs

‘‘DL broken: h = g(s0·α1−rt)/(b−α0).’’

(h) Otherwise, if bt = 0, then store tuple (cid, Pj , Pi, B, α2, b); otherwise store (cid, Pj , Pi, B, β2, b).

5. If S sees a message 〈ecot-prove, sid, cid0, cid1, cid2, Pj ,m〉 from an uncorrupted party Pi to

FECOT, this means that Pi is proving to Pj that op
(2)
m (b0, b1) = b2. S then forwards this mes-

sage to the FECOT. Next, after receiving message 〈ECOT-PROOF, sid, ssid, cid0, cid1, cid2, Pi,m〉

from FECOT, S forges the various messages from the ZK functionality F̂
ROR-N-DL

ZK to Pj . For ex-
ample, if m = 1110 (the NAND function), then S sends message (ZK-PROOF, sid, ssid, Pi, Pj ,
(B0, B1, B2/h,B0/h,B1/h,B2, g) to Pj , assuming that S has recorded tuples (cid0, Pi, Pj , B0, r0, ?),
(cid1, Pi, Pj , B1, r1, ?) and (cid2, Pi, Pj , B2, r2, ?). For other m, multiple messages would be sent
accordingly, in order to simulate the prove phase in protocol UCECOT. Again, if Pj is corrupted,
then the messages to Pj are in fact directed to A.

6. If S sees a corrupted party Pi send a message (ucecot-prove, sid, ssid, , cid0, cid1, cid2,m) to
Pj , this means that Pi (controlled by A) is proving to party Pj about a binary relation for
three bits. In this case, S checks if the tuples (cid0, Pi, Pj , B0, r0, b0), (cid1, Pi, Pj , B1, r1, b1) and
(cid2, Pi, Pj , B2, r2, b2) are all stored, and stops otherwise. Next, S receives further messages from

Pi to the ideal functionality F̂
ROR-N-DL

ZK , verifies them. If all the proofs to F̂
ROR-N-DL

ZK are valid, which

implies that op
(2)
m (b0, b1) = b2, S then sends message 〈ecot-prove, sid, ssid, cid0, cid1, cid2, Pj ,m〉

to FECOT; otherwise do nothing.

7. If S sees a message 〈ecot-open, sid, cid, Pi, Pj〉 from an uncorrupted party Pi to FECOT, this
means that Pi is opening a committed bit to Pj . S checks for the stored tuple (cid, Pi, Pj , B, r, ?)
and does nothing no such tuple is tored. Then S forwards this message to FECOT and wait
to receive the message 〈ECOT-DATA, sid, cid, Pi, Pj , b〉 back from it. Next, S sends message
(ucecot-open, sid, cid, b, r − b · t) to Pj . Here t is the discrete log of h base g. Again, if Pj is
corrupted, this message in fact goes to A.

8. If S sees that a corrupted party Pi send a message (ucecot-open, sid, cid, b, r) to an uncorrupted
party Pj , this means that Pi (controlled by A) is opening a bit to Pj . In this situation, S checks
the stored tuple (cid, Pi, Pj , B, r′, b′). If B 6= hb · gr, then this is an invalid opening and S does
nothing. Otherwise S checks if b = b′. If it is not the case, S aborts and outputs an error message
‘‘DL broken: h = g(r′−r)/(b−b′).’’ If b = b′, S then sends message 〈ecot-open, sid, cid, Pi, Pj〉
to FECOT.

9. If A corrupts a party Pi, S needs to simulate its internal state, which consists solely of the
information to all the unopened commitments. When Pi is corrupted, these committed bits are
given to S. Now, since S knows the discrete log of h, it can open these commitments to any value.
So S simply generates these openings by finding all the tuples of the form (cid, Pi, ∗, B, r, ?),
for each such tuple finding out the corresponding bit b from the corruption information, and
producing r′ = r− b · t as the opening information. S also change the tuple (cid, Pi, ∗, B, r, ?) to
(cid, Pi, ∗, B, r′, b).

This finishes the description of S.
Now, we show that

HYB
FCRS,F̂

R
OR-DL

ZK ,F̂
R

OR-N-DL

ZK ,F̂
RPEREP

ZK ,F̂
R

OR-PEREP

ZK
UCECOT,A,Z

c
≈ IDEALFECOT,S,Z ,
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which implies our theorem. We first sketch the structure of the proof. We constructs a sequence of
“mix” experiments between the experiment HYB and the experiment IDEAL, described in more detail
below, such that the experiments on the two extremes are HYB and IDEAL Then, we prove that every
two adjacent experiments are indistinguishable.

Mix0: All parties run the real protocol, and the ideal functionalities are run as specified. This is

identical to experiment HYB
FCRS,F̂

R
OR-DL

ZK ,F̂
R

OR-N-DL

ZK ,F̂
RPEREP

ZK ,F̂
R

OR-PEREP

ZK
UCECOT,A,Z .

Mix1: This experiment is the same as Mix0, except that when a corrupted sender performs a com-
mitment or opening to an uncorrupted receiver, the tests from S are run. In particular, the
experiment does the following: (1) using the values sent in the ZK proof of the commitment
phase to either extract the committed bit or else abort with a ‘‘DL broken’’ error message, and
(2) to verify that the same bit is used in the open phase, or else aborts with a ‘‘DL broken’’

error message.

Mix2: This experiment is the same as Mix1, except that when a corrupted sender performs a transfer
to an uncorrupted receiver, the tests from S are run. In particular, the experiment does the
following: using the values sent in the ZK proof of the transfer phase to either verify that the bits
transferred correspond to the previously committed bits, or else abort with a ‘‘DL broken’’

error message.

Mix3: This experiment is the same as Mix2, except that when an uncorrupted sender performs a
transfer to a corrupted receiver, it is simulated as in S, where the bit b being transferred is not
taken from FECOT, but instead is computed as bbt

, where bt is the (previously extracted) bit of
the receiver, and b0 and b1 are the bits of the sender. Also, note that in this simulation, using the
values sent in the ZK proof of the receiver’s commitment to b, it either extracts the committed
bit or else aborts with a ‘‘DL broken’’ error message.

Mix4: This experiment is the same as Mix3, except that (1) when an uncorrupted sender performs
a proof to a corrupted receiver, the uncorrupted sender does not provide the verification in-
formation to the ideal ZK functionality, and S is used to forge the ZK-PROOF messages from
the ZK functionality, and (2) when a corrupted sender performs a proof to an uncorrupted re-
ceiver, it verifies that the values submitted correspond to the values previously extracted for the
commitments.

Mix5: This experiment is the same as Mix4, except that (1) FCRS is simulated as in S, so the value
of logg h is known, and (2) when an uncorrupted sender makes a commitment (either in a
commitment phase or as a receiver in the transfer phase) or opening, or is corrupted, it is
simulated as in S (i.e., making commitments to zero, and then equivocating on an opening or
a corruption). One can verify that this is now equivalent to the experiment IDEALFECOT,S,Z , at
least from the view of the adversary A. Notice that only in this final experiment does S needs
to know logg h in order to equivocate the Pedersen commitment.

We prove a sequence of lemmas. We only sketch some of the proofs if they are standard.

Lemma 3.5 Under the discrete log assumption, Mix0
c
≈ Mix1.

Proof: The difference between Mix0 and Mix1 is that in Mix1, S extracts the committed bits. So the
only possibility to distinguish Mix0 from Mix1 is when a corrupted party opens a commitment in two
different ways. In this case Mix1 aborts and outputs the message ‘‘DL broken’’ along with the value
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of logg h. If this does not happens with negligible probability, we can convert this experiment into
an algorithm B that breaks the discrete log assumption. The conversion is standard: the algorithm
B with input (X,Y ) runs the entire experiment, replacing the (g, h) in the common reference string
by (X,Y ). Notice that in experiment Mix1, the knowledge of logg h is not needed. Therefore, B can
carry out the experiment Mix1, and when Mix1 aborts, B breaks the discrete log assumption.

Lemma 3.6 Under the discrete log assumption, Mix1
c
≈ Mix2.

Proof: The difference between Mix1 and Mix2 is that when a corrupted party Pi transfers a bit to
an uncorrupted one Pj , this happens in the real life model in Mix1, while in Mix2 S is run to verify
if the bits transfered correspond t the previous committed ones. Therefore, the only possibility to
distinguish these two experiments is when Mix2 aborts. As in the previous proof, any time S aborts, it
finds out logg h, and thus if Mix2 aborts with non-negligible probability, we can construct an adversary
B that breaks the discrete log assumption by running Mix2. Also as in the previous proof, knowledge
of logg h is not needed by Mix2.

Lemma 3.7 Under the DDH assumption, Mix2
c
≈ Mix3.

Proof: First, with the same reasoning as in the previous proof, we may assume that the probability
that S aborts in Mix3 is negligible, under the discrete log assumption, which is implied by DDH.

Now, assuming that S never aborts, the only difference is that the tuple (A0, C0, A1, C1) is gen-
erated differently in two cases. However, we shall prove that assuming DDH, these two cases are
indistinguishable. From now on, we assume that bt = 0 for simplicity (the case for bt = 1 is similar).
Then we have Bt = grt and b0 = b.

In Mix2, the (A0, C0, A1, C1) are generated as

a0, a1← Zq : A0← ga0 , C0←Ba0
t · h

b0 = (Bt)
a0 · hb, A1← ga1 , C1← (Bt/h)a1 · hb1 = (Bt)

a1 · hb1−a1 ,

In Mix3, they are generated as

s0, s1, s2← Zq : A0← gs0 , C0← (Bt)
s0 · hb, A1← gs1 , C1← gs2 .

It is easy to see that in both cases, (A0, C0) are distributed identically, and are independent from
(A1, C1). So we now focus on (A1, C1). In Mix2, the tuple (g, h,A1, (Bt)

a1 · hb1/C1) = (g, h, ga1 , ha1)
is a random DH-tuple. In Mix3, the tuple (g, h,A1, (Bt)

a1 · hb1/C1) = (g, h, gs1 , g−s2 · (Bt)
a1 · hb1) is a

random 4-tuple.
Thus, if an environment Z can distinguish Mix2 from Mix3, we can use it to build another adver-

sary B that breaks the DDH assumption. This is a rather standard conversion: B receives a tuple
(x0, x1, x2, x3) as input. It generates a random t ∈ Zq, use (x0, x1) in the place of (g, h) in the common
reference string, and carries out the experiment Mix3. In particular, B runs the environment Z and
thus can see all the bits committed to; B also runs S and thus can see all the messages transmitted,
as well as the internal random bits used by S.

Then B picks a random session where an uncorrupted party Pi transfers a bit to a corrupted one Pj.
We use the notations in S, and so the bit committed by Pj is bt with Pedersen commitment Bt. The
B replaces the tuple (A0, A1, C0, C1) sent by the S to Pj by (A0, x2, C0, (Bt)

a1 · hb1/x3). If the tuple
(x0, x1, x2, x3), is a random DH tuple, then the experiment is identical to Mix2; if (x0, x1, x2, x3) is a
random 4-tuple, then the experiment is identical to Mix3. Thus if the environment Z can distinguish
Mix2 from Mix3, B can break the DDH assumption.
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Lemma 3.8 Mix3
c
≈ Mix4.

Proof: This is straightforward. In fact the only difference between Mix3 and Mix4 is that in Mix3, the
FECOT verifies the proofs, while in Mix4, it is the functionalities F̂RPEREP

ZK and F̂
ROR-PEREP

ZK that do the
verification. Thus these two distributions are in fact identical.

Lemma 3.9 Mix4
c
≈ Mix5.

Proof: In Mix4, the commitments by uncorrupted parties are carried by themselves. In Mix5, S
simulates these commitments without the knowledge of the actual bits committed to. In fact, S learns
these bits only later, at the opening or when a party is corrupted. However, since S knows the discrete
log, it can equivocate and open the commitment to arbitrary values. Thus, the lemma follows directly
the fact that the Pedersen commitment is perfect hiding.

Summing everything up, we know that S is a valid ideal process adversary and therefore the
UCECOT protocol securely realizes the FECOT ideal functionality in the (FCRS, F̂

ROR-DL

ZK , F̂
ROR-N-DL

ZK ,

F̂RPEREP

ZK , F̂
ROR-PEREP

ZK )-hybrid model.

4 Joint Gate Evaluation

In this section we show how to securely realize a two-party functionality that we call Joint Gate
Evaluation (FJGE) in the FECOT-hybrid model in the presence of a malicious, adaptive adversary.
Informally, FJGE allows two parties to jointly evaluate any binary operation on two bits, and this will
allow us to construct general two-party computation protocols on top of FJGE. We first present the
functionality, shown in Figure 2.

Functionality FJGE

FJGE proceeds as follows, running with parties P1, ..., Pn, and adversary S.

• Commit phase: When receiving from Pi a message 〈commit, sid, cid, Pj , b〉, record
〈cid, {Pi, Pj}, b〉, send message 〈RECEIPT, sid, cid, Pi, Pj〉 to Pi, Pj and S, and ignore all
further messages of the form 〈commit, sid, cid, x, ∗〉 and 〈eval, sid, cid, ∗, ∗, x, ∗〉 from Pj

or Pj , where x ∈ {Pi, Pj}.

• Evaluate phase: When receiving from Pi a message 〈eval, sid, cid, cid0 , cid1, Pj ,m〉,
if both 〈cid0, {Pi, Pj}, b0〉 and 〈cid1, {Pi, Pj}, b1〉 are recorded, then

compute b = op
(2)
m (b0, b1), record 〈cid, {Pi, Pj}, b〉, send message

〈EVAL-RECEIPT, sid, cid, cid0 , cid1, Pi, Pj ,m〉 to Pi, Pj and S, and ignore all fur-
ther messages of the form 〈commit, sid, cid, x, ∗〉 and 〈eval, sid, cid, ∗, ∗, x, ∗〉 from Pi or
Pj , where x ∈ {Pi, Pj}. Otherwise, do nothing.

• Open phase: When receiving from Pi a message 〈open, sid, cid, Pj〉, if the tuple
〈cid, {Pi, Pj}, b〉 is recorded, then send message 〈DATA, sid, cid, Pi, Pj , b〉 to Pj; otherwise,
do nothing.

Figure 2: The joint gate evaluation functionality.
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At a high level, the approach we will use to realize functionality FJGE is similar to that in [26, 12].
In particular, each bit stored in FJGE will be XOR-shared by Pi and Pj , and each gate evaluation
will be done by a

(

4
1

)

-oblivious transfer. However, our resulting construction is directly secure against
a malicious, adaptive adversary, and therefore we do not need the “compiler” used in [26, 12]. This
“direct” (as opposed to the “two-phase”) approach makes our protocol much more efficient.

In particular, we will realize the FJGE functionality using a further generalization of the FECOT

functionality, which we call F4
ECOT. The Commit and Open phases of F4

ECOT are identical to those of
FECOT, but the Transfer phase performs a

(4
1

)

-transfer (instead of
(2
1

)

), while the Prove phase proves
relations consisting of Boolean functions of three bits (as opposed to two).

We now present F4
ECOT in Figure 3. We use op

(3)
m to express a Boolean function of three bits,

where m ∈ {0, 1}8 denotes the output bits of the Boolean function’s truth table.

Functionality F4
ECOT

F4
ECOT proceeds as follows, running with parties P1, ..., Pn and an adversary S:

• Commit phase: When receiving from Pi a message 〈ecot-commit, sid, cid, Pj , b〉,
record 〈cid, Pi, Pj , b〉, send message 〈ECOT-RECEIPT, sid, cid, Pi, Pj〉 to Pi, Pj and S,
and ignore all future messages of the form 〈ecot-commit, sid, cid, Pj , ∗〉 from Pi and
〈ecot-transfer, sid, cid, ∗, ∗, ∗, ∗, ∗, Pi〉 from Pj .

• Prove phase: When receiving from Pi a message 〈ecot-prove, sid, cid0, cid1, cid2,
cid3, Pj ,m〉, if the following four tuples 〈cid0, Pi, Pj , b0〉, 〈cid1, Pi, Pj , b1〉, 〈cid2, Pi,

Pj , b2〉, and 〈cid3, Pi, Pj , b3〉, are all recorded, and op
(3)
m (b0, b1, b2) = b3, then send mes-

sage 〈ECOT-PROOF, sid, cid0, cid1, cid2, cid3, Pi,m〉 to Pj and S; otherwise do nothing.

• Transfer phase: When receiving from Pi a message 〈ecot-transfer,
sid, cid, cid0, cid1, cid2, cid3, tcid0, tcid1, Pj〉, if the following six tuples
〈cid0, Pi, Pj , b0〉, 〈cid1, Pi, Pj , b1〉, 〈cid2, Pi, Pj , b2〉, 〈cid3, Pi, Pj , b3〉, 〈tcid0, Pj , Pi, b4〉,
〈tcid1, Pj , Pi, b5〉, are all recorded, then record 〈cid, Pj , Pi, bbt

〉, t ∈
{0, 1, 2, 3}, where t’s binary representation equals b4b5, send messages
〈ECOT-DATA, sid, cid, Pi, Pj , cid0, cid1, cid2, cid3, tcid0, tcid1, bbt

〉 to Pj and
〈ECOT-RECEIPT, sid, cid, Pi, Pj , cid0, cid1, cid2, cid3, tcid0, tcid1〉 to Pi and S, and
ignore all future messages of the form 〈ecot-commit, sid, cid, Pi, ∗〉 from Pj and
〈ecot-transfer, sid, cid, ∗, ∗, ∗, ∗, ∗, ∗, Pj 〉 from Pi. Otherwise, do nothing.

• Open phase: When receiving from Pi a message 〈ecot-open, sid, cid, Pi, Pj〉, if the
tuple 〈cid, Pi, Pj , b〉 is recorded, send message 〈ECOT-DATA, sid, cid, Pi, Pj , b〉 to both
Pj and S; otherwise, do nothing.

Figure 3: A further generalization of the extended committed oblivious transfer functionality

Here we sketch how the F4
ECOT functionality can be implemented in the FECOT-hybrid model.

Implementation of the Commit and Open phases is straightforward. The Prove phase is based on the
following construction of a three-bit Boolean gate g using five two-bit Boolean gates.9 Let x, y, z be
the inputs to g, and let gx=b denote the two-bit Boolean gate corresponding to g when x is set to b.

9Note that we use a gate that takes two inputs a, b and computes ā ∧ b.
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Then
g(x, y, z) = (x̄ ∧ gx=0(y, z)) ∨ (x ∧ gx=1(y, z)).

Using this construction, one can implement the Prove phase of F4
ECOT with five FECOT invocations of

Prove and four of Commit (to commit to the intermediate bits). The Transfer phase of F4
ECOT can be

realized using
(2
1

)

-transfers together with auxiliary commitments. Assume the sender wants to perform

the
(

4
1

)

-transfer of bits bi, i ∈ {0, 1, 2, 3}. The sender commits to auxiliary bits ci, i ∈ {0, 1, 2, 3}, and
d0, d1, and proves to the receiver that

b0 = c0 ⊕ d0,

b1 = c1 ⊕ d0,

b2 = c2 ⊕ d1,

b3 = c3 ⊕ d1.

The
(4
1

)

-transfer of (b0, b1, b2, b3) can now be realized by three
(2
1

)

-transfers of the pairs (d0, d1), (c0, c1)
and (c2, c3). Leaving further details for the interested reader, we simply state the following lemma.

Lemma 4.1 There exists an efficient protocol that securely realizes the F4
ECOT functionality in the

FECOT-hybrid model against malicious, adaptive adversaries.

We now turn our attention to the realization of the FJGE functionality in the F4
ECOT-hybrid model.

As we mentioned above, each bit b (associated with an identifier cid) stored in FJGE is shared between
Pi and Pj . More precisely, Pi has a bit b1 and Pj has a bit b2 such that b = b1⊕ b2. Furthermore, each
of b1 and b2 is a random bit by itself. Both Pi and Pj will commit to their bits to each other using
identifier cid. To open this bit to Pi, Pj opens its share, b2, to Pi, who then computes b = b1 ⊕ b2.

In order to evaluate c = op
(2)
m (a, b), suppose Pi holds a1 and b1 (shares of a and b, respectively), and

Pj holds a2 and b2. Then, Pi generates a random bit c1
R
←{0, 1} and computes four bits o00, o01, o10, o11,

which are the “candidate bits” for c2, Pj ’s share of bit c. Which bit is c2 depends on Pj ’s shares a2

and b2. The actual bits are computed as in the table below.

(a2, b2) Pj ’s output c2

(0, 0) o00 = c1 ⊕ op
(2)
m (a1, b1)

(0, 1) o01 = c1 ⊕ op
(2)
m (a1, (b1 ⊕ 1))

(1, 0) o10 = c1 ⊕ op
(2)
m ((a1 ⊕ 1), b1)

(1, 1) o11 = c1 ⊕ op
(2)
m ((a1 ⊕ 1), (b1 ⊕ 1))

Pi then commits to the bits c1, o00, o01, o10, o11 and proves to Pj the relations in the table using the
F4

ECOT Prove phase. We use m0,m1,m2,m3 to denote the encodings of the functions associated with
these relations. Next, Pi and Pj engage in a

(4
1

)

-oblivious transfer so that Pj receives bit oa2b2 , which
is Pj ’s share of bit c.

The full protocol UCJGE for securely realizing FJGE in the F4
ECOT-hybrid model is shown in

Figure 4, with the checks for reused cid’s omitted.

Theorem 4.2 Protocol UCJGE securely realizes the FJGE functionality in the F4
ECOT-hybrid model

against malicious, adaptive adversaries.

Proof: Let A be an adaptive adversary that operates against protocol UCJGE in the F4
ECOT-hybrid

model. We construct an ideal adversary S such that no environment Z can tell with non-negligible
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Protocol UCJGE

• Commit phase:

1. On input 〈commit, sid, cid, Pj , b〉, Pi chooses b1
R
←{0, 1}, sets b2 = b1 ⊕ b, and sends

messages 〈ecot-commit, sid, cid, Pj , b1〉 to F4
ECOT, and (jge-share, sid, cid, b2) to Pj .

2. Upon receiving (jge-share, sid, cid, b2) from Pi and 〈ECOT-RECEIPT, sid, cid, Pi, Pj〉
from F4

ECOT, Pj sends 〈ecot-commit, sid, cid, Pi, b2〉 and 〈open, sid, cid, Pj , Pi〉 to
F4

ECOT, and upon receiving 〈ECOT-RECEIPT, sid, cid, Pj , Pi〉 from F4
ECOT, Pj out-

puts 〈RECEIPT, sid, cid, Pj , Pi〉

3. Upon receiving 〈ECOT-RECEIPT, sid, cid, Pi, Pj〉, 〈ECOT-RECEIPT, sid, cid, Pj , Pi〉
and 〈ECOT-DATA, sid, cid, Pj , Pi, b〉 from F4

ECOT, where b = b2, Pi outputs
〈RECEIPT, sid, cid, Pi, Pj〉.

• Evaluate phase:

1. On input 〈eval, sid, cid, cid0 , cid1, Pj ,m〉, Pi chooses c1
R
←{0, 1}, sets

o00 = c1 ⊕ op
(2)
m (a1, b1), o01 = c1 ⊕ op

(2)
m (a1, (b1 ⊕ 1)),

o10 = c1 ⊕ op
(2)
m ((a1 ⊕ 1), b1), o11 = c1 ⊕ op

(2)
m ((a1 ⊕ 1), (b1 ⊕ 1)),

where a1, b1 are Pi’s shares of bits of identifiers cid0 and cid1, respectively, and sends
the following messages to F4

ECOT: 〈ecot-commit, sid, cid, Pj , c1〉

〈ecot-commit, sid, cid ◦ 00, Pj , o00〉, 〈ecot-commit, sid, cid ◦ 01, Pj , o01〉
〈ecot-commit, sid, cid ◦ 10, Pj , o10〉, 〈ecot-commit, sid, cid ◦ 11, Pj , o11〉

and (jge-eval, sid, cid, cid0 , cid1,m) to Pj .

2. Pi sends the following messages to F4
ECOT:

〈ecot-prove, sid, cid0, cid1, cid, cid ◦ 00, Pj ,m0〉,
〈ecot-prove, sid, cid0, cid1, cid, cid ◦ 01, Pj ,m1〉,
〈ecot-prove, sid, cid0, cid1, cid, cid ◦ 10, Pj ,m2〉, and
〈ecot-prove, sid, cid0, cid1, cid, cid ◦ 11, Pj ,m3〉.

3. Pi sends 〈ecot-transfer, sid, cid, cid ◦ 00, cid ◦ 01, cid ◦ 10, cid ◦ 11, cid0, cid1, Pj〉 to
F4

ECOT, and upon receiving 〈ECOT-RECEIPT, sid, cid, Pi, Pjcid◦00, cid◦01, cid◦10,
cid ◦ 11, cid0, cid1〉, outputs 〈EVAL-RECEIPT, sid, cid, cid0, cid1, Pi, Pj ,m〉.

4. Upon receiving receipts for all the commitments and proof verification messages for
all the proofs, along with 〈ECOT-DATA, sid, cid, Pi, Pj , cid◦00, cid◦01, cid◦10, cid◦
11, cid0, cid1, oa2b2〉 from F

4
ECOT, where a2, b2 are Pj ’s shares of bits of identifiers cid0

and cid1, respectively, Pj outputs 〈EVAL-RECEIPT, sid, cid, cid0, cid1, Pi, Pj ,m〉.

• Open phase:

1. On input 〈open, sid, cid, Pj〉, Pi sends 〈open, sid, cid, Pi, Pj〉 to F4
ECOT.

2. Upon receiving 〈ECOT-DATA, sid, cid, Pi, Pj , b1〉 from F4
ECOT, Pj computes b = b1⊕

b2 and outputs 〈DATA, sid, cid, Pi, Pj , b〉. Here b2 is Pj ’s share of the bit of identifier
cid.

Figure 4: Protocol UCJGE
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advantage whether it is interacting with A and parties running protocol UCJGE in the F4
ECOT-hybrid

model, or with S in the ideal process with FJGE.
S runs a copy of A, simulating uncorrupted parties and F4

ECOT for A. Messages received from
Z are forwarded to the simulated A, and messages sent by the simulated A to its environment are
forwarded to Z. S also sees the public header of all the messages from the uncorrupted parties to
FJGE, and may decide when, if ever, to forward these messages. Further, S maintains a record of the
shares of committed bits to FJGE held by corrupted parties. For each share of a bit of identifier cid,
the record contains a tuples of the form (cid, Pi, Pj , b). This indicates that b is Pi’s share of bit b,
which is shared with Pj .
S proceeds by reacting to the messages it sees.

Simulating the Commit phase: In this phase F4
ECOT is simulated as normal. We break this phase

into cases:

1. Say S sees message 〈commit, sid, cid, Pj ,−〉 on the outgoing communication tape of Pi des-

tined for FJGE. Then S chooses a bit b2
R
←{0, 1} and sends messages (jge-share, sid, cid, b2)

from (simulated) Pi to Pj and 〈ecot-commit, sid, cid, Pj , 0〉 from Pi to F4
ECOT. If Pj is

corrupted S stores (cid, Pj , Pi, b2) and forwards the commit message to FJGE. (If Pj is
uncorrupted, S will store the tuple and forward the message in the simulation of Pj .)

Upon Pi receiving 〈ECOT-RECEIPT, sid, cid, Pi, Pj〉, 〈ECOT-RECEIPT, sid, cid, Pj , Pi〉
and 〈ECOT-DATA, sid, cid, Pj , Pi, b〉 from F

4
ECOT, where b = b2, S forwards 〈RECEIPT, sid, cid, Pi, Pj〉

from FJGE to Pj . (Note that if Pj is uncorrupted, the commit message will have been for-
warded to FJGE and (cid, Pj , Pi, b2) will have been stored by S.)

2. Say S sees an uncorrupted Pj receive messages 〈ECOT-RECEIPT, sid, cid, Pi, Pj , 〉 from
F4

ECOT and (jge-share, sid, cid, b2) from party Pi. If a corrupted Pi sent the message
〈ecot-commit, sid, cid, Pj , b1〉 to F4

ECOT, S sends 〈commit, sid, cid, Pj , b〉 from Pi to FJGE,
where b = b1 ⊕ b2, and stores tuple (cid, Pi, Pj , b1). If not, S forwards the commit message
from the uncorrupted Pi to FJGE (see above). In either case it stores tuple (cid, Pj , Pi, b2).
Then S sends 〈ecot-commit, sid, cid, Pj , Pi, b2〉 and 〈open, sid, cid, Pj , Pi〉 to F4

ECOT.
Upon Pj receiving 〈ECOT-RECEIPT, sid, cid, Pj , Pi〉 from F4

ECOT, S forwards the mess-
sage 〈RECEIPT, sid, cid, Pj , Pi〉 from FJGE to Pj .

Simulating the Evaluate phase: Again in this phase F4
ECOT is simulated as normal, except that

when it receives ecot-prove messages from uncorrupted parties the ECOT-PROOF messages get
sent without verifying the relation, and a transfer causes a zero bit to be committed for the
receiver, without actually performing any transfer.

We break this phase into cases:

1. Say S sees Pj receive five 〈ECOT-RECEIPT, · · ·〉 messages from F4
ECOT, committing, say,

to bits c1, o00, o01, o10, o11 from Pi, a message (jge-eval, sid, cid, cid0 , cid1,m) from Pi, four
〈ECOT-PROOF, · · ·Pi,m`〉 messages from F4

ECOT (with each m` corresponding to m as in
the protocol) and a message 〈ECOT-DATA, sid, cid, Pi, Pjcid ◦ 00, cid ◦ 01, cid ◦ 10, cid ◦ 11,
cid0, cid1, c2〉 from F4

ECOT. (Assume the cid’s are consistent in all these messages.) If Pi is
corrupted, S stores the tuple (cid, Pi, Pj , c1). If the message 〈eval, sid, cid, cid0 , cid1, Pj〉 has
not been sent to FJGE, S sends this message (or simply forwards it if Pi is uncorrupted).
The message 〈EVAL-RECEIPT, sid, cid, cid0 , cid1Pi, Pj ,m〉 is then forwarded from FJGE to
Pj .

2. Say S sees message 〈eval, sid, cid, cid0, cid1, Pj ,m〉 from an uncorrupted party Pi to FJGE.
S sends five 〈ecot-commit, · · ·〉 messages to F4

ECOT with values equal to zero, and the ap-
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propriate cid’s (corresponding to the commitments to c1, o00, o01, o10, o11), sends the four
〈ecot-prove, · · ·〉 messages to F4

ECOT (which are not checked by the simulated F4
ECOT), and

sends the message 〈ecot-transfer, sid, cid, · · · , Pj〉 to F
4
ECOT. When Pi receives all the receipt

messages, S forwards the original message to FJGE (if it has not been forwarded already, see
above) and forwards the message 〈EVAL-RECEIPT, sid, cid, cid0, cid1Pi, Pj ,m〉 from FJGE

to Pi.

Simulating the Open phase: We break this into cases:

1. Say S sees an uncorrupted Pj receive message 〈ECOT-DATA, sid, cid, Pi, Pj ,−〉 from F
4
ECOT.

If there is not already a message 〈DATA, sid, cid, Pi, Pj ,−〉 on the outgoing communication
tape of FJGE, then Pi must be corrupted, so S sends 〈open, sid, cid, Pj〉 from Pi to FJGE.
In either case, S then forwards the message 〈DATA, sid, cid, Pi, Pj ,−〉 from FJGE to Pj .

2. Say S sees message 〈open, sid, cid, Pj 〉 on the outgoing communication tape of an uncor-
rupted Pi destined for FJGE. Then S sends a message 〈ecot-open, sid, cid, Pi, Pj〉 from
(simulated) Pi to F4

ECOT. Once that message is forwarded to F4
ECOT, S forwards the mes-

sage 〈open, sid, cid, Pj〉 to FJGE. Now say a message 〈DATA, sid, cid, Pi, Pj ,−〉 appears on
the outgoing communication tape of FJGE. If Pj is corrupted, S will see the bit b in this
message, and will have stored a tuple (cid, Pj , Pi, b2). Then it can compute b1 (and store
(cid, Pi, Pj , b1)) if it is not already stored, and send the message 〈ECOT-DATA, sid, cid, Pi,
Pj , b1〉 from F

4
ECOT to Pj . If Pj is uncorrupted, S simply sends the message 〈ECOT-DATA, sid,

cid, Pi, Pj , 0〉 from F4
ECOT to Pj .

Simulating corruptions: If A corrupts a (simulated) party Pi, S corrupts Pi and needs to simulate
its internal state, which consists of the shares of all unopened committed and evaluated bits.
For every bit b of identifier cid shared by Pi and Pj , S does the following.

• If (cid, Pi, Pj , b1) is stored, S uses the share b1.

• If (cid, Pj , Pi, b2) is stored, and S learns b upon corruption (because this bit was committed
by Pi or opened by Pj , or because Pj is also corrupted, and thus S can compute all bits
shared by Pi and Pj), S computes b1 = b⊕ b2, stores (cid, Pi, Pj , b1) and uses the share b1.

• If neither tuple is stored (because this is an unopened bit from an evaluation and Pj is

uncorrupted), S generates b1
R
←{0, 1}, stores (cid, Pi, Pj , b1), and uses the share b1.

This concludes the description of S. It is straightforward to see that the simulation is perfect, i.e.,

HYB
F4

ECOT
UCJGE,A,Z and IDEALFJGE,S,Z are identically distributed.

5 Efficient and Universally Composable Two-Party Computation

In this section we show how to securely realize any adaptively well-formed two-party functionality in
the presence of malicious adaptive adversaries in the FJGE-hybrid model. Our construction is similar
to the constructions in [27, 26, 12] for semi-honest adversaries. However, since our FJGE functionality
is secure in the presence of malicious adversaries, we are able to obtain a two-party protocol secure
against malicious adversaries directly.

We first review some of the assumptions about two-party functionalities we use in our paper,
which are also used in [12]. We let F be an ideal two-party functionality, and we let P1 and P2 be the
participating parties. We assume that F may be represented via a family CF of Boolean circuits, the
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kth circuit representing an activation of F with security parameter k. Without loss of generality, we
assume the circuits are composed entirely of NAND gates.10

For simplicity, we assume that in each activation, (1) at most one party has an input to F with
at most k bits, (2) each party may receive at most k bits as output from F , (3) F is a deterministic
function, and (4) the local state of F after each activation can be described by at most k bits. The
initial state of F is described by k zero bits. We assume that messages sent from A to F are ignored,
and there are no messages from F to A.

We note that the “deterministic function” assumption about F is without loss of generality, since
we can always realize a probabilistic functionality F using a deterministic one F ′ as follows. Assuming
that F needs k random bits, then F ′ receives a k-bit string as auxiliary input from each participating
party upon the first activation, and then runs F using the XOR of these strings as the random bit
string. It is easy to see that the simple protocol where each party sends a random k-bit string as the
auxiliary input to F ′ securely realizes the ideal functionality F in the F ′-hybrid model.11

The following protocol ΠF realizes an activation of F when P1 sends a message to F . (The case
for P2 is analogous.) We assume that both P1 and P2 hold an sid as auxiliary input. When P1 is
activated with input (sid, v), it initiate a protocol with P2 to perform a joint gate-by-gate evaluation
of the appropriate circuit in CF .

Formally, they carry out the following protocol.

Initialization: When P1 receives (sid, v), it checks if this is the first activation of F , and if so it sets
up the internal state. Then it commits to its private input.

Setting up the internal state: For i = 1, 2, ..., k, P1 sends messages 〈commit, sid, cidi, P2, 0〉
and then 〈open, sid, cidi, P2〉 to FJGE. P1 waits to receive the appropriate receipts. P2

aborts if any of the bits are not zero. Effectively, P1 commits to the initial internal state
of F (which is all zeros), and by opening them immediately, it proves to P2 that these bits
are indeed all-zero.12

Committing to the private input: For i = 1, 2, ..., k, P1 sends messages 〈commit, sid, cidi, P1, vi〉
to FJGE and waits to receive the appropriate receipts. Here we assume that v = v1v2 · · · vk.

13

P2 simply records the receipts received from FJGE.

Gate-by-gate evaluation: For each NAND gate in the circuit, P1 determines the commitment iden-
tifiers associated with the inputs to that NAND gate, say cid0 and cid1, creates a new unique
commitment identifier cid, sends message 〈eval, sid, cid, cid0 , cid1, P2, 1110〉 to FJGE, and waits
for the appropriate receipt. Here m = 1110 is the encoding of the NAND operation. P2 simply
records the receipts received from FJGE.

Output: P2 verifies from all its receipts that P1 had FJGE perform the correct computation on the
appropriate bits. Then for each output bit of F , it is either an internal state bit, or a bit
addressed to either P1 or P2 (we have assumed that F does not communicate with A). In the
former case, P1 and P2 do not need to do anything. They simply store the identifier of this bit,

10This is entirely for simplicity. Note that the FJGE functionality can be used to evaluate any gate of fan-in two.
11Note that if adaptive corruptions are allowed, then this is actually only true for adaptively well-formed functionalities.

See [12] for a discussion on this point, and the modifications necessary for an ideal adversary in the case of probabilistic
functions.

12Note that the cid’s used here and elsewhere in the protocol must all be unique bit strings that indicate the bit’s use
in the circuit. For instance, the cidi here could be the bit encoding of 〈state, i〉.

13To indicate the use of each of these bits in the circuit, one could, for instance, set cidi to be the bit encoding of
〈input, P1, a, i〉, where a is the activation number.
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so that they can use it in the next activation. In the latter case, assuming that this bit, with
identifier cid, is addressed to P2, P1 sends a message 〈open, sid, cid, P2〉 to FJGE and P2 extracts
the bit b from the message 〈DATA, sid, cid, {P1, P2}, b〉 received from FJGE. The protocol for the
case for a bit addressed to P1 is the same, but with P1 and P2 switched.

Messages that are out of order are dealt with using tagging, as in [12].

Theorem 5.1 Let F be a two-party adaptively well-formed functionality. Then ΠF securely realizes
F in the FJGE-hybrid model, in the presence of malicious adaptive adversaries.

Proof: The proof follows the proof of Claim 4.4 in [12].
Let A be a malicious, adaptive adversary that interacts with parties running ΠF in the FJGE-

hybrid model. We will construct an adversary S in the ideal process for F such that no environment
Z can distinguish whether it is interacting with A and ΠF in the FJGE-hybrid model, or with S and
F in the ideal process. S runs A (simulating the uncorrupted parties and FJGE for it), and proceeds
as follows.

Simulating the communication with Z: S directly forwards any messages between Z and A.

Simulating the input stage: In this stage, FJGE is simulated normally. Say P1 is uncorrupted.
Then when P1 receives an input from Z, S sees a message on the outgoing communication tape
of P1 for F , but can only view the header. S does not forward this message directly, since A
may corrupt P1 at any time. S simulates P1 for A by placing k messages 〈commit, sid, cidi, P2, 0〉
on its (simulated) outgoing communication tape for FJGE. If A forwards all these messages to
FJGE before corrupting P1, S forwards the original message from P1 to F . S also waits until P1

receives the appropriate receipts.

If P1 is corrupted, S simply waits for A to deliver the messages 〈commit, sid, cidi, P2, vi〉, for
i = 1, 2, ..., k, from P1 to FJGE, and then delivers a message (sid, v) from P1 to F , where
v = v1v2 · · · vk.

If P2 is uncorrupted, S simply records the receipts the simulated P2 received from from FJGE.

If this is the first activation, the internal state for F must also be set up. If P1 is uncorrupted,
S runs the actual protocol for the simulated P1. If P1 is corrupted, S waits for A to deliver
the commit messages from P1 to FJGE. If P2 is uncorrupted, S runs the actual protocol for the
simulated P2.

Simulating the circuit evaluation stage: In this stage, FJGE is simulated normally. Each NAND
gate is computed by P1 sending an eval message to FJGE.

If P1 is uncorrupted, S sends the eval message specified in the protocol from the simulated P1

to FJGE, and waits for the appropriate receipt. If P1 is corrupted, S waits for A to deliver a
message 〈eval, sid, cid, cid0 , cid1, P1,m〉 from P1 to FJGE.

If P2 is uncorrupted, S simply records the receipts the simulated P2 received from from FJGE.

Simulating the output stage: At this point, F should have sent DATA messages to P1 and P2, but
S has not delivered any DATA message to an uncorrupted party yet.

If P2 is uncorrupted and has not received the appropriate receipts in the preveious stages, S
simulates P2 aborting.

Now we break the simulation into cases.
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1. P1 and P2 are uncorrupted: S sends the appropriate open messages from the simulated P1

and P2 to FJGE, and once an open message is received by (the simulated) FJGE, S sends the
appropriate DATA message from FJGE, but with a data value of zero. (Note that the values
in these messages are not seen by A and may be set arbitrarily.) Once all DATA messages
have been received by (the simulated) P1 (resp., P2), S forwards the DATA message from
F to P1 (resp., P2).

2. P1 is corrupted, but P2 is uncorrupted: S sends the appropriate open messages from the
simulated P2. Since P1 is corrupted, S has received the DATA message from F to P1, and
thus knows the output bits for P1. So S sends a message 〈DATA, sid, cid, {P1, P2}, b〉 to
P1 for each output bit. Also for each open message deliver to FJGE from P1, S sends the
appropriate DATA message from FJGE to P2 but with a data value of zero. (Again note
that the values in these messages are not seen by A and may be set arbitrarily.) Once all
DATA messages have been received by (the simulated) P2 S forwards the DATA message
from F to P2.

3. P1 is uncorrupted, but P2 is corrupted: Analogous to the previous case.

4. Both P1 and P2 are corrupted: S simulates FJGE normally.

Simulation of corruptions: If a (simulated) party P1 is corrupted by A, S corrupts P1 and needs
to simulate the internal state of (the simulated) P1 for A to match the messages sent to and
received from F , and in particular, the input and output bits of the computation for P1. But
this is straightforward, since upon corrupting P1, S obtains the messages sent to and received
from F , and can patch the state of P1 appropriately. The same is true for P2.

It is straightforward to see that the simulation is perfect, i.e., that even a computationally un-
bounded environment cannot distinguish the ideal process with ideal functionality F from the FJGE-
hybrid model with the protocol ΠF .

6 Efficient and Universally Composable Multi-Party Computation

In this section we show how to extend the results from previous sections to securely realize any
well-formed multi-party functionality in the presence of malicious adaptive adversaries corrupting an
arbitrary number of parties. Our construction is similar to that in [12] for semi-honest adversaries.
But, again as in the two-party case, we are able to construct building blocks that can withstand
malicious adversaries, and therefore our construction is secure against malicious, adaptive adversaries
directly.

In particular, we assume that there are n parties participating in the computation, which are
denoted by P1, P2, ..., Pn. We assume that the functionality F is represented by a family CF of
Boolean circuits, the kth circuit representing an activation of F with security parameter k. Without
loss of generality, we assume the circuits are composed entirely of AND and XOR gates. As before,
we assume that in each activation, (1) at most one party has an input to F with at most k bits, (2)
each party may receive at most k bits as output from F , (3) F is a deterministic function, and (4)
the local state of F after each activation can be described by at most k bits. The initial state of F is
described by k zero bits. We assume that messages sent from the A to F are ignored, and there are
no messages from F to A.

In order to securely realize F , we basically follow the same approach as in the two-party case.
However, we first need to extend some of our constructions from previous sections to suit the multiple-
party case.
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6.1 Broadcast and the one-to-many ZK functionalities

We assume an authenticated broadcast channel available to all participating parties. The channel is
modeled by the broadcast functionality FBC in Figure 5. The functionality guarantees the authenticity
of a message, i.e., that no party Pi can fake a message from Pj . This is also the assumption used
in [12], and we refer the readers to [12, 29] for more in-depth discussions.

Functionality FBC

FBC proceeds as follow, running with parties P1, ..., Pn and an adversary S.

• Upon receiving a message (broadcast, sid,P, x) from Pi, where P is a set of parties, send
(BCAST-MSG, sid, Pi,P, x) to all parties in P and S, and halt.

Figure 5: The FBC broadcast functionality

We also need an extension of the ZK functionality, namely the one-to-many ZK functionality,
denoted by FmZK. Intuitively, this functionality allows a single prover to prove a theorem to multiple
verifiers simultaneously. See Figure 6 for a formal definition.

Functionality FR
mZK

FR
mZK proceeds as follow, running with parties P1, ..., Pn and an adversary S, and parametrized

with a relation R:

• Upon receiving a message (zk-prover, sid,P, x, w) from Pi, where P is a set of parties,
if R(x,w) = 1, then send (ZK-PROOF, sid, Pi,P, x) to all parties in P and S and halt;
otherwise halt.

Figure 6: The FR
mZK broadcast functionality

We observe that the UCZK construction by Garay et al. [25] can be naturally extended to a
one-to-many UCZK protocol with the additional broadcast functionality. Roughly speaking, Pi (the
prover) runs an independent copy of the two-party UCZK protocol with every party Pj ∈ P using
a unique sid, and all messages are broadcast. Each Pj accepts if and only if all the conversations
are accepting. It is straightforward to construct an ideal adversary S. If the prover is uncorrupted,
S simply runs a multi-party UCZK simulator for every copy of the UCZK protocol. If the prover is
corrupted and there is at least one uncorrupted verifier, S can extract the witness. If all parties are
corrupted, the simulation is straightforward. The conversion remains efficient. Therefore we have the
following theorem.

Theorem 6.1 Under the strong RSA assumption or the DSA assumption, for every relation R that
admits an Ω-protocol Π, there exists a three-round protocol UC[Π] that securely realizes the FR

mZK

ideal functionality in the (FCRS,FBC)-hybrid model against adaptive adversaries, assuming erasing.
Furthermore, the computation complexity of UC[Π] is that of Π plus constant number of exponentiations
and the generation of a signature, times the number of receiving parties.
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6.2 Multi-party ECOT

We also extend the FECOT functionality to the multi-party case, where the proof phase is replaced by
a one-to-many proof and the receipts are sent to all participating parties.The functionality is denoted
by FmECOT and is given in Figure 7.

Functionality FmECOT

FmECOT proceeds as follows, running with parties P1, ..., Pn and an adversary S.

• Commit phase: When receiving from Pi a message 〈ecot-commit, sid, cid,P, b〉, record
〈cid, Pi,P, b〉, send message 〈ECOT-RECEIPT, sid, cid, Pi,P〉 to all parties in P and S,
and ignore all future messages of the form 〈ecot-commit, sid, cid,P, ∗〉 from Pi and all
furture messages of the form 〈ecot-transfer, sid, cid, ∗, ∗, ∗, Pi ,P〉 from any party in P.

• Prove phase: When receiving from Pi a message 〈ecot-prove, sid, ssid, cid0,
cid1, cid2,P,m〉, if the following three tuples, 〈cid0, Pi,P, b0〉, 〈cid1, Pi,P, b1〉, and

〈cid2, Pi,P, b2〉 are all recorded, and op
(2)
m (b0, b1) = b2, then send message

〈ECOT-PROOF, sid, ssid, cid0, cid1, cid2, Pi,P,m〉 to all parties in P and S; otherwise
do nothing.

• Transfer phase: When receiving from Pi a message 〈ecot-transfer, sid, cid,
cid0, cid1, tcid, Pj ,P〉, if the following three tuples, 〈cid0, Pi,P, b0〉, 〈cid1, Pi,P, b1〉,
and 〈tcid, Pj ,P, bt〉 are all recorded, send message 〈ECOT-DATA, sid, cid, Pi, Pj ,
cid0, cid1, tcid, bbt

〉 to Pj , record tuple 〈cid, Pj ,P, bbt
〉, and send message

〈ECOT-RECEIPT, sid, cid, Pi, Pj , cid0, cid1, tcid,P〉 to all parties in P, Pi, and S;
and ignore all future messages of the form 〈ecot-commit, sid, cid,P, ∗〉 from Pj and all
future messages of the form 〈ecot-transfer, sid, cid, ∗, ∗, ∗, Pj ,P〉 from any party in P.
Otherwise, do nothing.

• Open phase: When receiving from Pi a message 〈ecot-open, sid, cid, Pi,P〉, if the
tuple 〈cid, Pi,P, b〉 is recorded, send message 〈ECOT-DATA, sid, cid, Pi,P, b〉 to S and all
parties in P; otherwise, do nothing.

Figure 7: The multiparty extended committed oblivious transfer functionality

It is straightforward to extend the UCECOT protocol to the multiple-party case. One simply
replaces the FZK functionalities by the FmZK functionalities and replaces the point-to-point messages
by broadcast messages. We denote the extended protocol by UCmECOT, and we have the following
theorem.

Theorem 6.2 Under the DDH assumption, protocol UCmECOT securely realizes the FmECOT ideal
functionality in the (FCRS,FBC, F̂

ROR-DL

mZK , F̂
ROR-N-DL

mZK , F̂RPEREP

mZK , F̂
ROR-PEREP

mZK )-hybrid model against adaptive
adversaries, assuming erasing.

6.3 Multi-party joint gate evaluation

We extend the joint gate evaluation functionality to the multi-party case. Functionality FmJGE is
shown in Figure 8. The only changes with respect to the two-party case are that the receipts are sent
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to all participating parties, and that all parties have to agree for the opening to take place.

Functionality FmJGE

FJGE proceeds as follows, running with parties P1, ..., Pn, and adversary S.

• Commit phase: When receiving from Pi a message 〈commit, sid, cid,P, b〉, if Pi ∈ P,
then record 〈cid,P, b〉, send message 〈RECEIPT, sid, cid〉 to all parties in P and S, and
ignore all further messages of the form 〈commit, sid, cid,P, ∗〉 and 〈eval, sid, cid, ∗, ∗,P, ∗〉
from any party in P.

• Evaluate phase: When receiving from Pi a message 〈eval, sid, cid, cid0 , cid1,P,m〉,
if Pi ∈ P and both 〈cid0,P, b0〉 and 〈cid1,P, b1〉 are recorded, then compute

b = op
(2)
m (b0, b1), record 〈cid,P, b〉, send message 〈EVAL-RECEIPT, sid, cid, cid0 , cid1,

Pi,P,m〉 to all parties in P and S, and ignore all further messages of the form
〈commit, sid, cid,P, ∗〉 and 〈eval, sid, cid, ∗, ∗,P, ∗〉 from any party in P; otherwise, do
nothing.

• Open phase: When receiving from Pi a message 〈open, sid, cid, Pj 〉, if Pi ∈ P,
Pj ∈ P, and the tuple 〈cid,P, b〉 is recorded, then record tuple 〈openreq, sid, cid, Pj〉.
When a tuple 〈openreq, sid, cid, Pi, Pj〉 is recorded for every Pj ∈ P, then send message
〈DATA, sid, cid, b〉 to Pi.

Figure 8: The multi-party joint gate evaluation functionality

In fact, we only need a “weakened” version of the FmJGE functionality for general multi-party
computation. The weakened version, denoted by FwmJGE, has the additional constraint that only XOR
and AND operations are allowed in the evaluation phase. It is obvious that since {XOR,AND} is a
complete set of Boolean operations, FwmJGE is powerful enough to realize any multi-party functionality.

As in the two-party case, we also need an extension of the FmECOT functionality, denoted by
F4

mECOT, that performs
(4
1

)

-oblivious transfer and proves relations among four bits. We only state the
following theorem and omit the details.

Theorem 6.3 There exists an efficient protocol that securely realizes the F4
mECOT functionality in the

FmECOT-hybrid model against malicious, adaptive adversaries.

Next, we briefly sketch a protocol UCmJGE that securely realizes FwmJGE in the F4
mECOT-hybrid

model. This protocol is essentially a multi-party extension to the UCJGE protocol. In UCmJGE, a bit
b is now shared among all participating parties: party Pi has bit bi such that

∑n
i=1 bi = b mod 2. In

the following description, we omit some details in the protocol such as the format of the messages and
the identifiers of the bits. These details should be clear from the context.

Commit phase: For party Pi to commit to a bit b, it generates random bits b1, b2, ..., bn−1
R
←{0, 1}

and bn← b⊕ b1⊕ · · · ⊕ bn−1. Then Pi commits to bi through F4
mECOT, sends bits bj to party Pj

for all j 6= i. Then each Pj commits to bj through the F4
mECOT and opens it to Pi immediately.

Evaluate phase: Assume the two bits to be computed are a and b, and Pi holds bits ai, bi as their
shares. Naturally we have a =

∑

ai mod 2 and b =
∑

bi mod 2. We assume the result bit is c
and each party should hold a share ci at the end of this phase. We consider two cases according
to the operation performed.
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XOR: To compute the XOR of bit a and b, each party simply computes ci = ai ⊕ bi. No
messages are needed.

AND: To compute the AND of bit a and b, we follow the approach in [26, 12]. Observe that
AND is the multiplication modulo 2, and we have the following equality.

(

n
∑

i=1

ai

)

·

(

n
∑

i=1

bi

)

= n ·

n
∑

i=1

ai · bi +
∑

1≤i<j≤n

(ai + aj) · (bi + bj) mod 2

(see [26] for the justification of this equality). Therefore, each party Pi can compute n ·ai ·bi

by itself, and each pair Pi and Pj can jointly compute (ai +aj) · (bi + bj) as in the two-party
case, by invoking multiple transfer phases of the F4

mECOT functionality.

Open phase: To open a bit b, shared as b =
∑n

i=1 bi, to party Pi, every Pj opens its share bj through
F4

mECOT. Then Pi sums up all the shares to obtain b.

Abort: In case any party aborts and/or deviates from the protocol, all parties abort the protocol.

Theorem 6.4 Protocol UCmJGE securely realizes functionality FmJGE in the F4
mECOT-hybrid model

against malicious, adaptive adversaries.

The proof is very similar to that of Theorem 4.2. Next, for any multi-party functionality F , we
construct a protocol ΠF that securely realizes F in the FmJGE-hybrid model. The construction is
almost identical to the two-party case, except that since we assume the circuit computing F consists
of AND and XOR gates, instead of NAND gates, the gate-by-gate evaluation will invoke the FmJGE

functionality with different encodings of functions.

Theorem 6.5 Let F be a multi-party adaptively well-formed functionality. Then ΠF securely realizes
F in the FmJGE-hybrid model, in the presence of malicious adaptive adversaries.
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A Number-Theoretic Assumptions

We review some of the number-theoretic assumptions used in this paper.
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The Strong RSA assumption. The Strong RSA assumption is a generalization of the standard
RSA assumption which (informally) states that given an RSA modulus N and an exponent e, it is
computationally infeasible to find the e-th root of a random x. Informally, the strong-RSA assumption
states that it is infeasible to find an arbitrary non-trivial root of a random x.

More formally, we say that p is a safe prime if both p and (p−1)/2 are prime. Then let RSA-Gen(1k)
be a probabilistic polynomial-time algorithm that generates two random k/2-bit safe primes p and q,
and outputs N ← pq.

Assumption A.1 (Strong-RSA) For any non-uniform probabilistic polynomial-size circuit A, the
following probability is negligible in k:

Pr[N ← RSA-Gen(1k);x← Z
∗
N ; (y, e)←A(1k, x,N) : ye ≡ x mod N ∧ e ≥ 2]

The Strong RSA assumption we introduced by Barić and Pfitzmann [1], and has been used in
several applications (see [23, 17]). It is a stronger assumption than the “standard” RSA assumption,
yet no method is known for breaking it other than factoring N .

The Paillier cryptosystem and the Decision Composite Residuosity assumption. The
Paillier encryption scheme [34] is defined as follows, where λ(N) is the Carmichael function of N ,
and L is a function that takes input elements from the set {u < N2|u ≡ 1 mod N} and returns
L(u) = u−1

N . This definition differs from that in [34] only in that we define the message space for
public key pk = 〈N, g〉 as [−(N − 1)/2, (N − 1)/2] (versus ZN in [34]), and we restrict h to be 1 + N .
The security of this cryptosystem relies on the Decision Composite Residuosity Assumption, DCRA.

For key generation, choose random k/2-bit primes p, q, set N = pq, and set h← 1+N . The public
key is 〈N,h〉 and the private key is 〈N,h, λ(N)〉. To encrypt a message m with public key 〈N,h〉,
select a random α ∈ Z

∗
N and compute c← gmαN mod N2. To decrypt a ciphertext c with secret key

〈N,h, λ(N)〉, compute m = L(cλ(N) mod N2)

L(gλ(N) mod N2)
mod N , and the decryption is m if m ≤ (N − 1)/2, and

otherwise the decryption is m − N . Paillier [34] shows that both cλ(N) mod N2 and gλ(N) mod N2

are elements of the form (1 + N)d ≡N2 1 + dN , and thus the L function can be easily computed for
decryption.

B Constructing Ω-protocols

We present the detailed constructions of some Ω-protocols in this paper. We first describe the detailed
construction of the Ω-protocol for proving knowledge of discrete logarithm by Garay et al. [25]. We
present an efficient Ω-protocol for R in Figure 9. The common reference string consists of two parts:
(1) a Paillier public key pk = 〈N,h〉 where N is an RSA modulus and h ∈ Z

∗
N2 with N |order(h),

and (2) another RSA modulus with 2 generators 〈Ñ , h1, h2〉. The prover and the verifier share a
common input y, while the prover also knows x, such that gx = y. In the first message, the prover
sends an encryption of x using the Paillier encryption key pk. Then a Σ-protocol is used to prove
that the plain-text in the Paillier encryption is indeed the discrete log of y. A technical difficulty is
that the discrete logarithm and the Paillier encryption work in different moduli. To overcome this, a
known technique of adding a commitment to x using two generators (h1, h2) over a third modulus Ñ
of unknown factorization [6, 8, 23, 31, 25] was used.

Since the techniques used in the protocol is rather standard, we omit the proof of security for
simplicity.

Next, we present an Ω-protocol for proving knowledge of partial equality of representation, PEREP(x0,
g0, g1, x1, g2, g3). See Figure 10.
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prover verifier

α, β
R
← Z

∗
N

r
R
← Zq3

a
R
← ZqÑ

b
R
← Zq3Ñ

y′← gr mod p
e← hxαN mod N2

e′← hrβN mod N2

s← (h1)
x(h2)

a mod Ñ

s′← (h1)
r(h2)

b mod Ñ
y′, e, e′, s, s′

-

c
R
← Zq

�

c

z1← cx + r
z2← αcβ mod N

z3← ca + b
z1, z2, z3

-

z1
?
∈ Zq3

ycy′
?
≡ gz1 mod p

ece′
?
≡ hz1(z2)

N mod N2

scs′
?
≡ (h1)

z1hz2
2 mod Ñ

Figure 9: Ω-protocol for the discrete log relation RDL = {((y, g), x) : y ≡ gx mod p}. Com-
mon reference string is a Paillier public key and a Strong RSA modulus along with two generators
((N,h), (Ñ , h1, h2)).
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prover verifier

v0, v1, v2, v
′
0, v

′
1v

′
2 ← Z∗

N

β0, β1, β2← Zq3

r← ZqÑ

r′← Zq3Ñ

w0 := gα0 · vN
0 mod N2

w1 := gα1 · vN
1 mod N2

w2 := gα2 · vN
2 mod N2

w′
0 := gβ0 · (v′0)

N mod N2

w′
1 := gβ1 · (v′1)

N mod N2

w′
2 := gβ2 · (v′2)

N mod N2

y0 := gβ0
0 · g

β1
1 mod p

y1 := gβ0
2 · g

β2
3 mod p

z := hα0
0 · h

α1
1 · h

α2
2 · h

r
3 mod Ñ

z′ := hβ0
0 · h

β1
1 · h

β2
2 · h

r′
3 mod Ñ

w0, w1, w2, w
′
0, w

′
1, w

′
2, y0, y1, z, z′

-

c← Zq

�

c

s0 := c · α0 + β0

s1 := c · α1 + β1

s2 := c · α2 + β2

s3 := c · r + r′

t0 := vc
0 · v

′
0 mod N2

t1 := vc
1 · v

′
1 mod N2

t2 := vc
2 · v

′
2 mod N2

s0, s1, s2, t0, t1, t2
-

s0
?
∈ Zq3

s1
?
∈ Zq3

s2
?
∈ Zq3

s3
?
∈ Zq3Ñ

gs0 · tN0
?
≡ wc

0 · w
′
0 mod N2

gs1 · tN1
?
≡ wc

1 · w
′
1 mod N2

gs2 · tN2
?
≡ wc

2 · w
′
2 mod N2

gs0
0 · g

s1
1

?
≡ xc

0 · y0 mod p

gs0
2 · g

s2
3

?
≡ xc

1 · y1 mod p

hs0
0 · h

s1
1 · h

s2
2 · h

s3
3

?
≡ zc · z′ mod Ñ

Figure 10: Ω-protocol for the partial equality of representation relation RPEREP =
{((x0, g0, g1, x1, g2, g3), (α0, α1, α2)) | x0 ≡ gα0

0 · g
α1
1 mod p ∧ x1 ≡ gα0

2 · g
α2
3 mod p}. Common

reference string is a Paillier public key and a Strong RSA modulus along with four generators
((N, g), (Ñ , h0, h1, h2, h3)).
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