
On the Crossing Spanning Tree Problem

Vittorio Bil ò1, Vineet Goyal2 �, R Ravi2 �, and Mohit Singh2 �

1 Dipartimento di Informatica Universit`a di L’Aquila. Via Vetoio, Coppito 67100 L’Aquila.
Italy. bilo@di.univaq.it

2 Tepper School of Business, Carnegie Mellon University, Pittsburgh PA 15213
{vgoyal,ravi,mohit}@andrew.cmu.edu

Abstract. Given an undirectedn-node graph and a setC of m cuts, theminimum
crossing tree is a spanning tree which minimizes the maximum crossing of any
cut in C, where the crossing of a cut is the number of edges in the intersection
of this cut and the tree. This problem finds applications in fields as diverse as
Computational Biology and IP Routing Table Minimization.
We show that a greedy algorithm gives anO(r log n) approximation for the prob-
lem where any edge occurs in at mostr cuts. We then demonstrate that the prob-
lem remains NP-hard even whenG is complete. For the latter case, we design
a randomized algorithm that gives a treeT with crossingO((log m + log n) ·
(OPT+ log n)) w.h.p., where OPT is the minimum crossing of any tree.
Our greedy analysis extends the traditional one used for set cover. The random-
ized algorithm rounds a LP relaxation of a corresponding subproblem in stages.

1 Introduction

Given a graphG = (V, E) with n nodes and a family of cutsC = {C1, . . . , Cm}, the
minimum crossing tree is a spanning treeT , which minimizes the maximum crossing of
any cut, where the crossing of a cutCi is defined as|E(T)∩Ci|. If the family of cuts isC
= {(v, V \v) : v ∈ V }, then the MCST problem reduces to finding the minimum degree
spanning tree problem which has been widely studied [8]. Hence, NP-completeness of
the minimum degree spanning tree problem [7] shows that MCST problem is NP-hard.

In this paper, we show approximation guarantees for the greedy algorithm for the
MCST problem.

Theorem 1. Given a graph G = (V, E) and a family of m cuts C={C1, . . . , Cm}, a
greedy algorithm for MCST problem gives a spanning tree T which crosses any cut in
C O(r · log n) times the maximum crossing of an optimal tree.

Although the minimum degree spanning tree problem is trivial on complete graphs,
surprisingly, the MCST problem remains difficult even for this special case. We show
that the decision version of even this version of the MCST problem is NP-complete.

Theorem 2. Given a complete graph G, set of cuts C and a positive integer k, the
problem of determining whether there exists a spanning tree of G which crosses any cut
in C at most k times is NP-complete.

� Supported in part by NSF grant CCR-0105548 and ITR grant CCR-0122581 (The ALADDIN
project).

A proof of the above theorem appears in the Appendix. The particular case of com-
plete graphs finds application in fields as varied as IP routing and computational bi-
ology. We give improved algorithm for the MCST problem on complete graph which
gives better performance guarantees.

Theorem 3. There is a randomized LP rounding based algorithm, which given a com-
plete graph G and a family of cuts C={C1, . . . , Cm} gives a spanning tree T such that
crossing for any cut Ci ∈ C is O((log m + log n) · (OPT + log n)), where OPT is the
maximum crossing of an optimal tree.

1.1 Motivation: Chimerism in Physical Mapping

The MCST problem finds important applications in computational biology. Thephysi-
cal mapping problem of the human genome project is to reconstruct the relative position
of fragments of DNA along the genome from information on their pairwise overlap. One
has a collection of clones and a set of short genomic inserts (calledprobes). A probe
defines a single location where a given subset of clones coincide. For each probe/clone
pair, it can be determined whether the clone contains the probe as a subsequence using
biological techniques. The problem is to construct the order in which the probes would
occur along the original chromosome that is consistent with the given the probe/clone
incidence matrix. This can be done efficiently if there is nochimerism. Chimerism is the
result of concatenating two or more clone from different parts of the genome, produc-
ing a chimeric clone -one that is no longer a simple substring of the chromosome. More
formally, the problem is as follows: Given a probe-clone incidence matrixA, with rows
indexed by probes and columns by clones, and the entrya ij is 1 iff probe i occurs in
clonej. If there is no chimerism, then the problem is reduced to finding a permutation
of rows so that ones in each column are consecutive (called as 1-C1P) and this can be
solved efficiently in polynomial time [1]. However, in the presence of chimerism, the
problem is more difficult. Then, we need to find a permutationπ of rows, such that
each column has at mostk blocks of consecutive ones (called as k-consecutive ones
property or k-C1P), if the chimeric clones are a concatenation of at most k clones. The
decision version of this problem i.e”Does a given 0-1 matrix have the k-consecutive
ones property?” has been proved to be NP-complete in [5].

1.2 k-C1P and Vector TSPs

A classical way to solve the k-C1P problem is to reduce it to a particular multidimen-
sional TSP problem called the Vector TSP (vTSP). This problem is defined on a com-
plete graphG = (V, E), where each edgee ∈ E is assigned anm-dimensional cost
c : E → {0, 1}m. The cost of a tourT in G is the m-dimensional vectorc(T) =∑

e∈E(T) c(e) and the objective is to minimize‖c(T)‖∞.
The reduction fromk-C1P to vTSP is straightforward. Each row ofA becomes a

node inG and the cost assigned to edgee = (i, j) is set to the XOR-vector between the
two rowsai andaj . Now, letπ be the permutation induced by a solutionT of vTSP, and
let b(Aπ) be the maximum number of blocks of consecutive ones inA π. Then, we have
that b(Aπ) = ‖c(T)‖∞

2 . Solving the vTSP problem is NP-hard by this reduction from

the2-C1P problem. However, since the hamming distance obeys the triangle inequality,
it is possible to use the standard Euler Tour shortcutting technique in order to compute
a 2r-approximate solution once given anr-approximation to the related Vector MST
problem (vMST).

The vMST can be formulated as theminimum crossing spanning tree problem on a
complete graphG. Any columnj of A can be seen as a cutC j = (Vj , V \Vj) defined on
G by settingVj = {vi ∈ V |aij = 0}. The cost of edgee = (i, j) is as before the XOR-
vector betweenai andaj i.e. c(e) is a 0-1 vector, where thelth entry corresponding to
a cutCl is 1 iff the edge(i, j) crossesCl. Here, the terminology that an edgee crosses
a cutC is used interchangeably withe ∈ C. For any treeT , let c(T) =

∑
e∈E(T) c(e).

The ith entry of the vectorc(T) is exactly the number of edges ofT crossing the cut
Ci. Thus, theminimum crossing spanning tree minimizes‖c(T)‖∞.

1.3 Motivation: IP Routing

Another useful application of the MCST problem can be found in [2] where it is shown
that the an efficient solution for the min-k-C1P can be used to obtain an good approx-
imation for the Interval Routing problem: given a set of IP routing tables sharing the
same host space, the problem is to reassign the IP addresses to the hosts in order to
minimize the maximum size of any IP routing table.

This IP routing table minimization problem,MIN -IP for short, can be formalized as
follows. We are given a setR = {r1, . . . , rn} of n routers and a setH = {h1, . . . , hm}
of m destination hosts. Each routerrj ∈ R has a degreeδj , that isδj outedges, and a
routing table specifying which of the outedges to take for every host. The problem is
to choose the IP addresses of them hosts and construct then IP routing tables so as to
minimize the maximum size of a table, that is the maximum number of used entries in
a table.

In [2] it is shown that, given anyr-approximation algorithm for the problem of
determining a row permutation that minimizes the maximum number of blocks (of ones)
in a boolean matrixA, an efficient2r log m-approximation algorithm exists forMIN -IP,
which exploits a matrix representation of the instances of the problem.

Similar applications can be found also in designing interval routing schemes as
proposed in [3, 4].

1.4 Related Work

As observed earlier, the minimum degree spanning tree problem is a special case of the
MCST problem. The best result for the minimum degree spanning tree problem are due
to Furer and Raghavachari [8]. They construct a spanning tree with maximum degree
at most∆∗ + 1 where∆∗ is the maximum degree of the optimal tree. ThevMST
problem has been considered by Greenberg and Istrail [6]. They give solution of cost
O(s(A) · OPT + log n). Heres(A) = max1≤i≤n

∑n
j=1 aij . Note thatr in Theorem

1 is different froms(A) in [6]: r is the maximum number of cuts a given edgee can
cross, where the cuts are defined by columns ofA; s(A) is the sparsity ofA i.e. the
maximum number of 1’s in any row inA. Observe thatr ≤ 2 · s(A), buts(A) can be as

bad asm. Hence, our algorithm gives comparable or better performance guarantee than
the algorithm in [6].

The paper is organized as follows. In Section 2, we describe a greedy algorithm for
the MCST problem and prove Theorem 1. In Section 3, we give a randomized algorithm
for the special case and prove the guarantees of Theorem 3. In the Appendix, we show
that the MCST problem is NP-hard even for complete graphs.

2 Greedy Algorithm for the General Case

In this section, we show that the greedy algorithm gives anO(r · log n) approxima-
tion for the MCST problem wherer is defined asmaxe∈G |{C ∈ C: e ∈ C}|. Given
any subgraphH , the maximum number of timesH crosses any cut inC is denoted by
Cross(H, C).

Greedy Algorithm:
F ← φ
while F is not a tree
do

Let e′ be an edge which minimizesCross(F ∪ e, C)
over all edgese ∈ G which join two components ofF .

F ← F ∪ e′

od

Let the solution returned by the greedy algorithm beT g and letl = Cross(Tg, C).
We can divide the running of the greedy algorithm inl phases. Thei th phase of the
algorithm is the period whenCross(F, C) = i. Letki denote the number of components
in F when theith phase ends. LetMi be the cuts which are crossed byi edges at the
end ofith phase andmi = |Mi|. We now give a lower bound for the MCST problem.

Lemma 1. Given any S ⊂ C, let k be the number of components formed after removing
the edges from G of all cuts in S. Then

opt ≥ k − 1
|S|

Proof. Any spanning tree ofG must choose at leastk−1 edges to join thek components
formed after removing the edges of cuts inS. Each of thesek− 1 edges crosses at least
one of the cuts inS. Hence, the average crossing of such a cut inS is at leastk−1

|S| .

Now, we prove Theorem 1.
The proof of Theorem 1 Consider the running of the algorithm in thei th phase. Cross-
ing number of at leastmi cuts increases by 1 in theith phase. Each edge can increase
the crossing number of at mostr cuts. Hence, in thei th phase we must include at least

mi

r � edges inF . Every edge, when included inF , reduces the number of components
in F by exactly one. Therefore, we have the following inequality

ki ≤ ki−1 − mi

r
(1)

When theith phase ends, every edge joining two components ofF must cross at least
one of the cuts inMi, else the greedy algorithm would choose such an edge in thei th

phase. Applying Lemma 2, we get the for eachi,

opt ≥ ki − 1
mi

(2)

Using (1) and (2), we have that for eachi,

ki−1 − ki ≥ ki − 1
r ∗ opt

(3)

Usingki ≥ 2 for eachi ≤ l − 1 andkl−1 > kl, we have for eachi,

ki−1 − ki ≥ ki

2r∗opt

⇒ ki−1 ≥ ki(1 + 1
2r∗opt)

⇒ k0 ≥ kl(1 + 1
2r∗opt)

l

As, k0 = n andkl = 1, we get that

n ≥ (1 + 1
2r∗opt)

l

⇒ log n ≥ l log(1 + 1
2r∗opt)

Using,log(1 + x) ≥ x− x2

2 andr ∗ opt ≥ 1 we get

log n ≥ l(1
2r∗opt(1 − 1

4r∗opt)) ≥ l 1
4r∗opt

⇒ l ≤ 4r log n ∗ opt

Hence, the greedy algorithm is aO(r log n) approximation. ��

3 A Randomized Algorithm for the Case of Complete Graphs

In this section, we describe a randomized algorithm for MCST for complete graphs and
prove that it gives a tree with maximum crossingO((log m + log n) · (OPT+ log n))
with high probability, wheren is the number of vertices inG andm is the number of
cuts inC.

The idea is the following : Start with each vertex as a different component and merge
components in phases until a connected subgraph is obtained. In a phase, each compo-
nent is represented by an arbitrarily chosen vertex of the component. We carefully se-
lect some edges between the representative vertices by solving a multicommodity flow
problem in each phase, so that the cuts inC are not crossed “too much”. We ensure that
at least one edge is chosen out of each representative in every phase. Hence, the num-
ber of components reduces by at least a factor of two and thus a connected subgraph is
obtained in at mostlog2 n phases.

In phasep, we solve the following multicommodity flow problem on a graphG ′

constructed from a complete graphGp (on the representative vertices in this phase) as
follows. LetV (Gp) = {v1, v2, . . . , vnp}.

– For each undirected edgee = (u, v), add two directed edgese f = (u, v) and
er = (v, u) in G′,

– For each vertexvi ∈ V (Gp) introduce a new vertexsvi in V (G′) and
– ∀vj ∈ V (Gp), j �= i, add the directed edge(vj , svi) in G′.

Now, the flow problem onG′ is the following. Each vertexvi ∈ V (G) is required
to send a unit flow of commodityi to svi . Let f1, f2, . . . , fn be the flows associated
with each of then commodities. Letfi(v) denote the net flow ofith commodity into
the vertexv. The following integer program accomplishes our goal.

min z
s.t. z ≥∑

e∈E(G)∩C Xe ∀C ∈ C
∀i = 1, . . . , np

fi(v) = 0 ∀v ∈ V (G′) \ {vi, svi}
fi(vi) = −1
fi(svi) = 1
fi(e) ∈ {0, 1} ∀e ∈ E(G′)

We now describe the algorithm for the MCST problem. We will construct a con-
nected subgraphH with a lowmaximum crossing.

1. InitializeV (H)← V (G), E(H)← φ, G0 ← G, R0 ← V (G), p← 0.
2. WhileH is not connected

(a) ConstructG′ from Gp. Solve the LP-relaxation of the corresponding integer
program for phasep and obtain an integral solution̂X by randomized rounding
of the optimum LP solution [10].

(b) LetE ′ = {e ∈ Gp : X̂e > 0}. E(H)← E(H) ∪ E′.
(c) p ← p + 1. Let Rp be the set of representative vertices(chosen arbitrarily one

for each connected component ofH), Gp is the complete graph on the vertices
of Rp.

LetT ∗ be a optimal tree for the MCST problem and let OPT be the maximum cross-
ing of any cut inT ∗.

Proposition 1. Let z∗
p be the optimum to the LP-relaxation in phase p. Then z ∗

p ≤
2OPT.

Proof. We can construct a feasible solution of the LP from the optimum treeT ∗ of
value at most2OPT. LetRi = {v1, . . . , vnp} be the set of representatives in phasei.
From the Tree Pairing Lemma [9], there exists a matchingM between vertices ofR i

such that the paths inT ∗ between the matched pairs of vertices are edge disjoint. We
can use this matching to construct a feasible solution to the LP. Send a unit flow of
commodityi on the directed pathPvi,vj ∪ (vj , svi) and of commodityj on the path
Pvj ,vi ∪ (vi, svj), whereP (u, v) is the unique path in treeT ∗ between matched pairsu
andv. The above flow is a feasible flow as it satisfies all the flow constraints of the LP.
Every edge ofT ∗ carries at most two units of flow. Hence, the objective valuez for this
feasible flow, is at most2OPT. Therefore,z∗

p ≤ 2OPT.

Proposition 2. If an edge e = (u, v) crosses a cut C, then any other path between u
and v also crosses the cut C at least once.

Proof. If we remove all the edges inC from G, thenu andv would be disconnected.
Thus, every path fromu to v contains an edge ofC.

We will use Observation 2, to obtain a special kind of optimum solution such that
each flow path uses only two edges. Consider the flow decomposition for commod-
ity i in the optimum solution of the LP-relaxation and consider a flow pathP =<
vi, vi1 , vi2 , . . . , vik

, svi >. We can replaceP by the pathP ′ =< vi, vik
, svi > without

increasing the maximum crossing. From Observation 2, we know that any cut that the
edge(vi, vik

) crosses will be crossed at least once by the pathP . Therefore,P ′ only
reduces the number of crossings for the cuts inC and so we can replaceP by P ′. Thus,
we can obtain a fractional optimum solutionS ∗ such that each flow path uses only two
edges.

3.1 Rounding S∗ to an integral solution

Let us describe the rounding of the fractional multicommodity flow obtained by solving
the LP relaxation corresponding to phasep. The flow corresponding to each commodity
is rounded independently of others. For each commodityi = 1, . . . , n p, choose an edge
e = (vi, vj) with probabilityfi(vi, vj). The corresponding flow is routed through the
path< vi, vj , svi > and the edge(vi, vj) is included in the subgraphH . This is repeated
for every commodity independently.

In phasep, let the fractional optimum flow bef ∗ and the optimum LP solution be
z∗. Let z(C) denote the number of edges crossing a cutC ∈ C. ConsiderY j , a 0-1
variable associated with thej th commodity, where

Yj =
{

1 if the integral flow crosses C
0 otherwise

Therefore,
Pr(Yj = 1) =

∑
e∈E(Gp)∩C

f̃j(e)

z(C) =
ni∑

j=1

Yj

E[z(C)] =
∑ni

j=1

∑
e∈E(Gi)∩C f̃j(e)

=
∑

e∈E(Gi)∩C

∑ni

j=1 f̃j(e)
=

∑
e∈E(Gi)∩C Xe

≤ z̃ ≤ 2 ·OPT

z(C) is the sum of independent Bernoulli trials. Thus, we can use Chernoff bounds
to bound the tail probability

Pr(|z(C)− E[z(C)]| > kβ) ≤ exp(− k2β2

2E[z(C)]
)

Let β = E[z(C)] + log n andk = logn m + 23. Therefore,

Pr(|z(C) − E[z(C)]| > kβ) ≤ exp(−k2(E[z(C)]+log n
2)

< exp(− (2 logn m+4) log n
2)

= 1
mn2

SinceE[z(C)] ≤ 2OPT, we have thatPr(z(C) > (2(k+1)OPT+k log n)) < 1
mn2

or Pr(z(C) > O((logn m + 3) · OPT + (logn m + 2) · log n)) < 1
mn2 for any

cut C ∈ C in any phasep. We say that a “bad” event occurs in a phasep if some
cut C ∈ C has a high crossing in that phase. Thus, from the union bound we have
Pr(bad event occurs in phase p) < 1

n2 . The algorithm has at mostlog2 n phases. Thus,

Pr(”bad” event occurs in any phase) <
log n

n2
(4)

Thus, we have shown that in every phase the crossing of every cut isO((log n m +
3)OPT+ (logn m + 2) · log n) with high probability. Hence, we obtain a solution of
maximum crossingO((log2 m + log2 n) · (OPT+ log2 n)) with probability at least
(1− log n

n2). ��

4 Future Work

We believe that better performance ratios can be obtained particulary for the MCST
problem on complete graphs. Furthermore, more sophisticated methods than a simple
greedy approach should be able to remove the factor ofr in the general case.

References

1. K. Booth and G. Luker. Testing for the consecutive ones property, interval graphs and
graph planarity using pq-tree algorithms.Journal of Computer and System Sciences 13:335-
379,1976.

2. Vittorio Bilo and Michele Flammini. On the IP routing tables minimization with addresses
reassignments.In Proc. of the 18th International Parallel and Distributed Processing Sym-
posium(IPDPS). IEEE Press, 2004. To appear.

3. Michele Flammini, Giorgio Gambosi and Stefano Salomone. Interval Routing schemes.Al-
gorithmica 16(6):549-568,1996.

4. Michele Flammini, Alberto Marchetti-Spaccamela and Jan van Leeuwen. The Complexity
of Interval Routing on Random Graphs.The Computer Journal 41(1):16-25, 1998.

5. Paul W. Goldberg, C. Golumbic, Martin, Haim Kaplan, and Ron Shamir. Four Strikes against
Physical Mapping.Journal of Computational Biology, 2(1):139-152, 1995.

6. David S. Greenberg and Sorin Istrail.Physical mapping by STS Hybridization: Algo-
rithmic strategies and the challenges of software evaluation.Journal of Computational
Biology,2(2):219-273,1995.

3 For m ≥ n, settingk =
√

(lognm + 2) gives a slightly better solution with maximum
crossingO(

√
log m log n(OPT + log n))

7. Michael R. Garey and David S. JohnsonComputers and Intractibility: A guide to the Theory
of NP-completeness. W. H. Freeman and Company, New York, 1979.

8. M. Furer and B. Raghavachari. Approximating the minimum degree spanning tree to within
one from the optimal degree.In Proceedings of the Third Annual ACM–SIAM Symposium
on Discrete Algorithms (SODA‘92), pages 317–324, 1992.

9. Ajit Agrawal, Philip Klein, R. Ravi. When trees collide: An approximation algorithm for
the generalized Steiner problem on networks.Proceedings of the Twenty-third Annual ACM
Symposium on Theory of Computing, pp. 134–144, 1991.

10. P. Raghavan and C. Thompson. Randomized Rounding.In Combinatorica, volume 7, pages
365-374, 1987.

Appendix: MCST for Complete Graphs is NP-Hard

In this section, we consider the MCST problem for complete graphs. We show that the
problem is NP-hard even for this special case. In fact, we show that the decision version
of the problem is NP-complete.

Clearly, the decision problem is in NP. We reduce the 2-consecutive ones problem,
2-C1P, to MCST. Given an×m matrixA, 2-C1P is the problem of determining whether
there exists a permutation of rows such that in each column all ones occur in at most 2
consecutive blocks. This problem has been shown to be NP-complete in [6].
Given any arbitraryn×m matrixA, make a complete graphG overn+1 vertices, with
one vertex corresponding to each row and a new dummy vertexs. For each column inA,
include a cut inC naturally defined by the column: vertices with rows with1 form one
side of the cut. The dummy vertexs is always on the0-side of each cut. Also include in
C singleton cuts,Cv = ({v}, V \ {v}) for every vertex inG. For each pair of vertices
u andv, include inC the cutCuv = ({u, v}, V \ {u, v}). Finally, letk = 4.

We first show that if there exists a permutation of rows,π, such that it has2-C1
property, then there exists a spanning tree which crosses each cut inC at most four
times. Consider the Hamiltonian pathH which starts ats and then traverses the vertices
in the order corresponding to permutationπ. Each cut corresponding to a column is
crossed by the Hamiltonian pathH exactly when the row permutationπ switches from
a row with0 with a row with1 or vice versa. As all the ones are in 2 consecutive blocks,
each cut can be crossed at most four times. Introducing the dummy node corresponds
to introducing a row with all zeros as the first row which clearly does not change2-C1
property. Also, a Hamiltonian path crosses each singleton cut at most two times and
cutCuv at most two times for anyu, v ∈ V . Hence, there exists a spanning tree which
crosses every cut inC at most four times.

Now, for the other direction we show that if there exists a spanning treeT which
cuts every cut inC at most4 times then there exists that a permutationπ which has
the2-C1P property. We claim that any such tree must be a Hamiltonian path. As each
singleton vertex is a cut inC, hence degree of each vertex is at most four. Suppose there
exists a vertexu with degree four. Forn > 5, there exists a vertexv which is not a
neighbor ofu. But, then the cutCuv is crossed at least five times. Hence, all vertices
have degree at most three. Suppose, for the sake of contradiction there exists a vertex
u such thatdegT (u) = 3. Consider any vertexv which is not a neighbor ofu. As T
crossesCuv at most four times, sodegT (v) = 1. This implies that the total sum of

degrees of nodes in T is at most3 ∗ 4+ (n− 3). Hence,2n− 2 ≤ n+9 or equivalently,
n ≤ 11 which is a contradiction assuming largern. Hence, every vertex must have
degree at most two inT showing thatT is a Hamiltonian path.

Let the hamiltonian path be(v1, . . . , vk, s, vk+1, vn). Consider the following per-
mutation of rows(rk+1, . . . , rn, r1, . . . , rk) wherevi corresponds to rowri in the trans-
formation. We claim that in each column, there cannot be more than two blocks of ones.
Suppose for the sake of contradiction, there exists a columnc i which has three blocks
of ones. Thus, the cut corresponding to the Hamiltonian cycle formed by joiningv n

andv1 must cross the cut corresponding to columnc i at least five times. But any cycle
crosses any cut even number of times. Hence, it must cross the cut at least six times, but
then the hamiltonian path must cross the cut at least five times, a contradiction. Hence,
there exists a permutation which satisfies the2-C1 property. This reduction shows that
decision version of MCST problem for complete graphs is NP-complete. ��

