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Abstract. Given an undirected-node graph and a sétof m cuts, theminimum
crossing tree is a spanning tree which minimizes the maximum crossing of any
cut in C, where the crossing of a cut is the number of edges in the intersection
of this cut and the tree. This problem finds applications in fields as diverse as
Computational Biology and IP Routing Table Minimization.

We show that a greedy algorithm gives@(r log n) approximation for the prob-

lem where any edge occurs in at megstuts. We then demonstrate that the prob-
lem remains NP-hard even whénis complete. For the latter case, we design

a randomized algorithm that gives a tr€ewith crossingO((log m + logn) -
(OPT+ logn)) w.h.p., where OPT is the minimum crossing of any tree.

Our greedy analysis extends the traditional one used for set cover. The random-
ized algorithm rounds a LP relaxation of a corresponding subproblem in stages.

1 Introduction

Given a grapliG = (V, E) with n nodes and a family of cuts = {C4,...,C,,}, the
minimumcrossing tree is a spanning tre#’, which minimizes the maximum crossing of
any cut, where the crossing of a ciifis defined a$E (T)NC; . If the family of cuts isC
={(v,V\v) : v € V}, then the MCST problem reduces to finding the minimum degree
spanning tree problem which has been widely studied [8]. Hence, NP-completeness of
the minimum degree spanning tree problem [7] shows that MCST problem is NP-hard.
In this paper, we show approximation guarantees for the greedy algorithm for the
MCST problem.

Theorem 1. Given agraph G = (V, E) and a family of m cutsC={C4,...,Cp,}, a
greedy algorithm for MCST problem gives a spanning tree 7' which crosses any cut in
C O(r - logn) times the maximum crossing of an optimal tree.

Although the minimum degree spanning tree problem is trivial on complete graphs,
surprisingly, the MCST problem remains difficult even for this special case. We show
that the decision version of even this version of the MCST problem is NP-complete.

Theorem 2. Given a complete graph G, set of cuts C and a positive integer %, the
problem of determining whether there exists a spanning tree of G which crosses any cut
inC at most & timesis NP-compl ete.
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A proof of the above theorem appears in the Appendix. The particular case of com-
plete graphs finds application in fields as varied as IP routing and computational bi-
ology. We give improved algorithm for the MCST problem on complete graph which
gives better performance guarantees.

Theorem 3. Thereisa randomized LP rounding based algorithm, which given a com-
plete graph G and a family of cutsC={C1, ..., C,,} givesa spanning tree T" such that
crossing for any cut C; € C is O((logm + logn) - (OPT + log n)), where OPT is the
maximum crossing of an optimal tree.

1.1 Motivation: Chimerism in Physical Mapping

The MCST problem finds important applications in computational biology.physi-

cal mapping problem of the human genome project is to reconstruct the relative position
of fragments of DNA along the genome from information on their pairwise overlap. One
has a collection of clones and a set of short genomic inserts (qaibbds). A probe
defines a single location where a given subset of clones coincide. For each probe/clone
pair, it can be determined whether the clone contains the probe as a subsequence using
biological techniques. The problem is to construct the order in which the probes would
occur along the original chromosome that is consistent with the given the probe/clone
incidence matrix. This can be done efficiently if there ihionerism. Chimerismis the

result of concatenating two or more clone from different parts of the genome, produc-
ing a chimeric clone -one that is no longer a simple substring of the chromosome. More
formally, the problem is as follows: Given a probe-clone incidence matrixith rows
indexed by probes and columns by clones, and the entrys 1 iff probe ¢ occurs in
clonej. If there is no chimerism, then the problem is reduced to finding a permutation
of rows so that ones in each column are consecutive (called as 1-C1P) and this can be
solved efficiently in polynomial time [1]. However, in the presence of chimerism, the
problem is more difficult. Then, we need to find a permutatioof rows, such that

each column has at moatblocks of consecutive ones (called as k-consecutive ones
property or k-C1P), if the chimeric clones are a concatenation of at most k clones. The
decision version of this problem i’eDoes a given 0-1 matrix have the k-consecutive

ones property?” has been proved to be NP-complete in [5].

1.2 k-C1P and Vector TSPs

A classical way to solve the k-C1P problem is to reduce it to a particular multidimen-
sional TSP problem called the Vector TSP (vTSP). This problem is defined on a com-
plete graphZ = (V, E), where each edge € F is assigned am-dimensional cost

¢ : E — {0,1}™. The cost of a toufl” in G is the m-dimensional vecta(7’) =

> cen(r) ¢(e) and the objective is to minimize:(T')|| .

The reduction fromk-C1P to VTSP is straightforward. Each row 4fbecomes a
node inGG and the cost assigned to edge: (i, j) is set to the XOR-vector between the
two rowsa; anda ;. Now, letw be the permutation induced by a solutiBrof vTSP, and
letb(A™) be the maximum number of blocks of consecutive one$in Then, we have

thatb(A™) = % Solving the vTSP problem is NP-hard by this reduction from



the2-C1P problem. However, since the hamming distance obeys the triangle inequality,
it is possible to use the standard Euler Tour shortcutting technique in order to compute
a 2r-approximate solution once given amapproximation to the related Vector MST
problem (VMST).

The vMST can be formulated as th@&nimum crossing spanning tree problem on a
complete grapld. Any columnj of A can be seen as a alit, = (V;, V'\V;) defined on
G by settingV; = {v; € Vl]a;; = 0}. The cost of edge = (i, j) is as before the XOR-
vector betweem,; anda; i.e. c(e) is a 0-1 vector, where thé" entry corresponding to
a cutC; is 1 iff the edge(i, j) crosse<”;. Here, the terminology that an edgerosses
acutC is used interchangeably withe C. For any tre€l’, letc(T') = -, pr) c(e).

The i*" entry of the vector(T') is exactly the number of edges ®fcrossing the cut
C;. Thus, theminimum crossing spanning tree minimizes||c(T") || .-

1.3 Motivation: | P Routing

Another useful application of the MCST problem can be found in [2] where it is shown
that the an efficient solution for the min-C1P can be used to obtain an good approx-
imation for the Interval Routing problem: given a set of IP routing tables sharing the
same host space, the problem is to reassign the IP addresses to the hosts in order to
minimize the maximum size of any IP routing table.

This IP routing table minimization problemiin -1P for short, can be formalized as
follows. We are givenasdt = {ry,...,r,} of nroutersandaséf = {hi1,...,hn}
of m destination hosts. Each routey € R has a degreé;, that isd; outedges, and a
routing table specifying which of the outedges to take for every host. The problem is
to choose the IP addresses of théhosts and construct thelP routing tables so as to
minimize the maximum size of a table, that is the maximum number of used entries in
atable.

In [2] it is shown that, given any-approximation algorithm for the problem of
determining a row permutation that minimizes the maximum number of blocks (of ones)
in a boolean matrixi, an efficienr log m-approximation algorithm exists fofiN -1P,
which exploits a matrix representation of the instances of the problem.

Similar applications can be found also in designing interval routing schemes as
proposed in [3, 4].

1.4 Related Work

As observed earlier, the minimum degree spanning tree problem is a special case of the
MCST problem. The best result for the minimum degree spanning tree problem are due
to Furer and Raghavachari [8]. They construct a spanning tree with maximum degree
at mostA* + 1 where A* is the maximum degree of the optimal tree. The/ ST
problem has been considered by Greenberg and Istrail [6]. They give solution of cost
O(s(A) - OPT + logn). Heres(A) = maxi1<i<n Y., a;;. Note that- in Theorem

1 is different froms(A) in [6]: = is the maximum number of cuts a given edgean

cross, where the cuts are defined by columnsip§(A) is the sparsity ofd i.e. the
maximum number of 1's in any row id. Observe that < 2-s(A), buts(A) can be as



bad asn. Hence, our algorithm gives comparable or better performance guarantee than
the algorithm in [6].

The paper is organized as follows. In Section 2, we describe a greedy algorithm for
the MCST problem and prove Theorem 1. In Section 3, we give a randomized algorithm
for the special case and prove the guarantees of Theorem 3. In the Appendix, we show
that the MCST problem is NP-hard even for complete graphs.

2 Greedy Algorithm for the General Case

In this section, we show that the greedy algorithm givesDdn - logn) approxima-
tion for the MCST problem where is defined asnax.c¢ |{C € C: e € C'}|. Given
any subgraplf, the maximum number of time crosses any cut i@ is denoted by
Cross(H,C).

Greedy Algorithm:
F—¢
while F'is not a tree
do
Let e’ be an edge which minimize&Sross(F Ue, C)
over all edgeg € G which join two components of'.

F—FuU¢e

od

Let the solution returned by the greedy algorithmieand letl = Cross(Ty,C).
We can divide the running of the greedy algorithm/iphases. The!” phase of the
algorithm is the period whefiross(F,C) = i. Letk; denote the number of components
in F when thei*” phase ends. LeY/; be the cuts which are crossed bgdges at the
end ofi*" phase andn; = |M;|. We now give a lower bound for the MCST problem.

Lemmal. GivenanyS C C,let k bethenumber of componentsformed after removing
the edgesfrom G of all cutsin S. Then
opt > k-1
~ 1S
Proof. Any spanning tree off must choose at leakt-1 edges to join thé components
formed after removing the edges of cutsSinEach of thesé — 1 edges crosses at least

one of the cuts irb. Hence, the average crossing of such a cu is at Ieast%.

Now, we prove Theorem 1.

The proof of Theorem 1 Consider the running of the algorithm in thé phase. Cross-
ing number of at least,; cuts increases by 1 in th&" phase. Each edge can increase
the crossing number of at mastuts. Hence, in thé!” phase we must include at least
[7] edges inF'. Every edge, when included i, reduces the number of components
in F' by exactly one. Therefore, we have the following inequality

hy < kg — 2 (1)
r



When thei'” phase ends, every edge joining two component® afust cross at least
one of the cuts inV/;, else the greedy algorithm would choose such an edge iitthe
phase. Applying Lemma 2, we get the for edch

ki —1

m;

opt >

()

Using (1) and (2), we have that for eagh

ki —1
T * opt

ki—y —k; >

3)
Usingk; > 2 foreachi <[ — 1 andk;_1 > k;, we have for each

kioqg — ki > 52

. i
= 2rxopt

= ki1 > ki(1+ 2T+0pt)l
= ko > k(1 + 5507)

As, kg = n andk; = 1, we get that

n Z (1 + 2r*10pt)l

= logn > llog(1 + 527)

Using,log(1 4+ z) > = — 3”2—2 andr x opt > 1 we get

logn > I(52—(1 L)y >t

2rxopt = 4rxopt — "drxopt
= [ <d4rlognxopt
Hence, the greedy algorithm is¥r log n) approximation. O

3 A Randomized Algorithm for the Case of Complete Graphs

In this section, we describe a randomized algorithm for MCST for complete graphs and
prove that it gives a tree with maximum crossifg(log m + logn) - (OPT+ logn))

with high probability, where: is the number of vertices i& andm is the number of

cuts inC.

The idea s the following : Start with each vertex as a different component and merge
components in phases until a connected subgraph is obtained. In a phase, each compo-
nent is represented by an arbitrarily chosen vertex of the component. We carefully se-
lect some edges between the representative vertices by solving a multicommodity flow
problem in each phase, so that the cut§ are not crossed “too much”. We ensure that
at least one edge is chosen out of each representative in every phase. Hence, the num-
ber of components reduces by at least a factor of two and thus a connected subgraph is
obtained in at modbg, n phases.

In phasep, we solve the following multicommodity flow problem on a gragh
constructed from a complete gragh, (on the representative vertices in this phase) as
follows. LetV(G)) = {v1,v2,...,vn, }.



— For each undirected edge= (u,v), add two directed edges; = (u,v) and
er = (v,u)in G,

— For each vertex; € V(G,) introduce a new vertex,, in V(G’) and

- Yv; € V(Gp),j # i, add the directed edde;, s,,) in G'.

Now, the flow problem orz’ is the following. Each vertex; € V(G) is required
to send a unit flow of commodityto s,,. Let f1, f2,..., f. be the flows associated
with each of then commodities. Letf;(v) denote the net flow oft” commodity into
the vertexv. The following integer program accomplishes our goal.

min =z
s.t. 2 > ZeeE(G)ﬂC X, vC el
Vi=1,...,ny
fi(v) =0 Yo € V(G")\ {vs, sv, }
filvi)  =-1
figs L) =1

§ €{0,1} Vee E(G)

We now describe the algorithm for the MCST problem. We will construct a con-
nected subgrapH with a low maximum crossing.

1. InitializeV(H) «— V(G), E(H) «— ¢, Gy «— G, Ry — V(G),p < 0.
2. While H is not connected
(a) Constructy’ from G,,. Solve the LP-relaxation of the corresponding integer
program for phasg and obtain an integral solutioR by randomized rounding
of the optimum LP solution [10].
(b) LetE' = {ec G, : X. >0}. E(H) — E(H)UE'.
(c) p — p+ 1. Let R, be the set of representative vertices(chosen arbitrarily one
for each connected component/dj, G, is the complete graph on the vertices
of R,.

LetT* be a optimal tree for the MCST problem and let OPT be the maximum cross-
ing of any cut inT'*.

Proposition 1. Let 2, be the optimum to the LP-relaxation in phase p. Then z; <
20PT.

Proof. We can construct a feasible solution of the LP from the optimum Tréeof
value at mosROPT. LetR; = {v1,...,v,,} be the set of representatives in phase
From the Tree Pairing Lemma [9], there exists a matchifidpetween vertices oR ;

such that the paths ifi* between the matched pairs of vertices are edge disjoint. We
can use this matching to construct a feasible solution to the LP. Send a unit flow of
commodity: on the directed patt®,, ,, U (vj, s,,) and of commodityj on the path
Py, v, U (vi,50;), WhereP(u,v) is the unique path in tréE* between matched paits
andv. The above flow is a feasible flow as it satisfies all the flow constraints of the LP.
Every edge of"* carries at most two units of flow. Hence, the objective valfier this
feasible flow, is at mostOPT. Therefore; ; < 20PT.



Proposition 2. If an edge e = (u, v) crosses a cut C', then any other path between u
and v also crosses the cut C' at least once.

Proof. If we remove all the edges i@ from G, thenu andv would be disconnected.
Thus, every path from to v contains an edge af.

We will use Observation 2, to obtain a special kind of optimum solution such that
each flow path uses only two edges. Consider the flow decomposition for commod-
ity 4 in the optimum solution of the LP-relaxation and consider a flow gath-<
Viy Uiy Vigs « - -, Uiy, So; > We can replac® by the pathP’ =< v;, v;, , s, > without
increasing the maximum crossing. From Observation 2, we know that any cut that the
edge(v;, v;, ) crosses will be crossed at least once by the gatfiherefore,P’ only
reduces the number of crossings for the cuts and so we can replad@ by P’. Thus,
we can obtain a fractional optimum solutiért such that each flow path uses only two
edges.

3.1 Rounding S* toan integral solution

Let us describe the rounding of the fractional multicommodity flow obtained by solving
the LP relaxation corresponding to phasé&he flow corresponding to each commaodity
is rounded independently of others. For each commadityl, . . ., n,, choose an edge
e = (v;,v;) with probability f;(v;, v;). The corresponding flow is routed through the
path< v;,v;, s, > andthe edgév;, v;) is included in the subgraph. This is repeated
for every commodity independently.

In phasep, let the fractional optimum flow bg* and the optimum LP solution be
z*. Let z(C') denote the number of edges crossing aCut C. ConsiderY;, a 0-1
variable associated with thé" commodity, where

1 if the integral flow crosses C
Y; = :
0 otherwise

Therefore,

ecE(Gp)NC
(0 =3y
j=1

E[Z(C)] = 2311 ZeEE(Gi)ﬂC fj(e)
= ZeeE(Gi)ﬁC Zj;l fi(e)
= Z2uecE(G)NC Xe

<z < 2-0PT

z(C) is the sum of independent Bernoulli trials. Thus, we can use Chernoff bounds
to bound the tail probability

k262

Pr((C) = BE(ON > k8) - < eap(—5p o

)



Let 8 = E[2(C)] + logn andk = log,, m + 23. Therefore,

Pr(|z(C) = E[z(C)]| > kB) < ea:p(—W)

2
(2log,, m+4)logn
<erp(— )

T mn?

SinceE[z(C)] < 20PT, we have thabr(z(C) > (2(k+1)OPT+klogn)) < —L;
or Pr(z(C) > O((log,, m + 3) - OPT + (log, m + 2) - logn)) < — for any

cut C' € C in any phasep. We say that a “bad” event occurs in a phasé some
cut C' € C has a high crossing in that phase. Thus, from the union bound we have
Pr(bad event occurs in phasg g -%;. The algorithm has at moBtg,, n phases. Thus,

n

. 1 _
Pr("bad” event occurs in any phase c;;an @

Thus, we have shown that in every phase the crossing of every O(tlisg ,, m +
3)OPT+ (log,, m + 2) - logn) with high probability. Hence, we obtain a solution of
maximum crossing)((log, m + log, n) - (OPT + log, n)) with probability at least
(1—-2n), O

n

4 Future Work

We believe that better performance ratios can be obtained particulary for the MCST
problem on complete graphs. Furthermore, more sophisticated methods than a simple
greedy approach should be able to remove the factoimthe general case.
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Appendix: MCST for Complete Graphsis NP-Hard

In this section, we consider the MCST problem for complete graphs. We show that the
problem is NP-hard even for this special case. In fact, we show that the decision version
of the problem is NP-complete.

Clearly, the decision problem is in NP. We reduce the 2-consecutive ones problem,
2-C1P, to MCST. Given a x m matrix A, 2-C1P is the problem of determining whether
there exists a permutation of rows such that in each column all ones occur in at most 2
consecutive blocks. This problem has been shown to be NP-complete in [6].

Given any arbitrary: x m matrix A, make a complete graggh overn + 1 vertices, with
one vertex corresponding to each row and a new dummy verfer each column int,
include a cut irC naturally defined by the column: vertices with rows witform one
side of the cut. The dummy vertexs always on thé@-side of each cut. Also include in
C singleton cuts(, = ({v}, V' \ {v}) for every vertex inG. For each pair of vertices
u andv, include inC the cutC',, = ({u,v},V \ {u,v}). Finally, letk = 4.

We first show that if there exists a permutation of rowssuch that it hag-C1
property, then there exists a spanning tree which crosses each €uttimost four
times. Consider the Hamiltonian pathwhich starts at and then traverses the vertices
in the order corresponding to permutatipnEach cut corresponding to a column is
crossed by the Hamiltonian path exactly when the row permutationswitches from
a row with0 with a row with1 or vice versa. As all the ones are in 2 consecutive blocks,
each cut can be crossed at most four times. Introducing the dummy node corresponds
to introducing a row with all zeros as the first row which clearly does not ch2«@k
property. Also, a Hamiltonian path crosses each singleton cut at most two times and
cutC,, at most two times for any, v € V. Hence, there exists a spanning tree which
crosses every cut ifi at most four times.

Now, for the other direction we show that if there exists a spanningZredich
cuts every cut irC at most4 times then there exists that a permutatiowhich has
the2-C1P property. We claim that any such tree must be a Hamiltonian path. As each
singleton vertex is a cut il, hence degree of each vertex is at most four. Suppose there
exists a vertexu with degree four. Fon > 5, there exists a vertex which is not a
neighbor ofu. But, then the cut’,,, is crossed at least five times. Hence, all vertices
have degree at most three. Suppose, for the sake of contradiction there exists a vertex
u such thatdegr(u) = 3. Consider any vertex which is not a neighbor of.. As T’
crosseg’,, at most four times, sdegr(v) = 1. This implies that the total sum of



degrees of nodesin T is at m@st4 + (n — 3). Hence2n — 2 < n+ 9 or equivalently,
n < 11 which is a contradiction assuming larger Hence, every vertex must have
degree at most two it showing thatl" is a Hamiltonian path.

Let the hamiltonian path bey, ..., v, s, vg+1, v,). Consider the following per-
mutation of rowsrg41,...,7n,r1,. .., ) Wherev; corresponds to row; in the trans-
formation. We claim that in each column, there cannot be more than two blocks of ones.
Suppose for the sake of contradiction, there exists a columvhich has three blocks
of ones. Thus, the cut corresponding to the Hamiltonian cycle formed by joining
andv; must cross the cut corresponding to colummat least five times. But any cycle
crosses any cut even number of times. Hence, it must cross the cut at least six times, but
then the hamiltonian path must cross the cut at least five times, a contradiction. Hence,
there exists a permutation which satisfies2h@1 property. This reduction shows that
decision version of MCST problem for complete graphs is NP-complete. O



