
Dynamizing Static Algorithms, with Applications to Dynamic Trees and
History Independence ∗

Umut A. Acar Guy E. Blelloch Robert Harper Jorge L. Vittes Shan Leung Maverick Woo

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213
{umut,blelloch,rwh,jvittes,maverick}@cs.cmu.edu

Abstract

We describe a machine model for automatically dy-
namizing static algorithms and apply it to history-
independent data structures. Static programs expressed
in this model are dynamized automatically by keeping
track of dependences between code and data in the form
of a dynamic dependence graph. To study the perfor-
mance of such automatically dynamized algorithms we
present an analysis technique based on trace stability.
As an example of the use of the model, we dynamize
the Parallel Tree Contraction Algorithm of Miller and
Reif to obtain a history-independent data structure for
the dynamic trees problem of Sleator and Tarjan.

1 Introduction

We describe techniques for automatically generating dy-
namic algorithms from static ones, and the applica-
tion of these techniques to history-independent data
structures [15, 19, 12]. Our approach is based on hav-
ing a system track dependences as the algorithm exe-
cutes. When the input is changed, the system prop-
agates changes through the dependence graph rerun-
ning code where necessary. Since the dependences can
change during propagation, the dependence graph is it-
self dynamic.

To allow the system to track both control and data
dependences, the static algorithm must be written for
a variant of a standard RAM model. This model is an
extension of a model we have previously considered that
was based on purely functional programs [1]. To analyze
the performance of automatically dynamized algorithm,
we use a notion of trace stability based on traces and
a distance between traces. We define a trace AT (I) for
an algorithm A on input I and a distance metric δ(·, ·)
between traces. The trace captures, in a particular
way, the operations executed by the algorithm. We

∗This work was supported in part by the National Science
Foundation under the grant CCR-9706572 and also through the
Aladdin Center (www.aladdin.cs.cmu.edu) under grants CCR-
0085982 and CCR-0122581.

say that an algorithm is O(f(n))-stable for a class of
input changes (e.g., insertions of edges in a forest of size
n) if max(I,I′)∈∆n

δ(AT (I), AT (I ′)) ∈ O(f(n)), where
∆n is the relation mapping inputs to changed inputs
for instances of size n. We then prove that if an
algorithm is O(f(n))-stable, then the input changes
can be automatically propagated in O(f(n) log f(n))
time. In a certain special case we show how this can
be improved to O(f(n)) time.

We apply our approach to the problem of maintain-
ing dynamic trees [24]. We show that a simple variant
of the random-mate parallel tree contraction algorithm
of Miller and Reif [16] is expected O(log n)-stable for
edge insertions and deletions. Since the algorithm falls
into the special case mentioned above, it can be au-
tomatically dynamized to support updates in expected
O(log n) time. The algorithm uses O(log2 n) random
bits, and the expectation is over the choices of these
bits. The basic algorithms uses O(n log n) space, but
we describe a variant which uses O(n) space. The al-
gorithm is significantly simpler than current O(log n)
worst-case algorithms [24, 11, 14]. In related work [2],
we implemented the data structure, which we call RC-
Trees (Rake-and-Compress Trees), and applied it to a
broad set of applications.

Our automatic dynamization technique builds a
dynamic dependence graph to represent an execution
and and uses a change propagation algorithm to update
the output and the dependences whenever the input
changes [1]. A dynamic dependence graph maintains
the relationship between code and data in a way that
makes it easy for the change-propagation algorithm
to identify code, called a reader, that depends on a
changed value. Readers are stored as closures, i.e.,
functions with environments. This enables re-execution
of a reader in the same state as before—modulo of
course the changed values. The change-propagation
algorithm maintains a queue of readers affected by
changes and re-executes them in sequential execution
order. When a reader is re-executed, the dependences

that it created in the previous execution are deleted
and dependences created during re-execution are added
to the dependence graph. It is in this way that the
dependence graphs are dynamic. Re-executing a reader
may change other data values, whose readers are then
inserted into the queue. Change propagation terminates
when the reader queue becomes empty.

The dynamic dependence graphs maintained by our
approach depend only on the current input and not on
the modifications that lead to the current input. Dy-
namic dependence graphs are therefore history indepen-
dent [15, 19, 12]. For change propagation, however, we
maintain a topological sort of the dynamic dependence
graph by using the Dietz-Sleator order maintenance
data structure [8], which is not history independent. For
a class of algorithms we show that the topological sort
as well as the dynamic dependence graphs can be main-
tained so that we obtain strongly history-independent
dynamic algorithms [19, 12]. The tree-contraction algo-
rithm falls in this class and therefore yields an efficient
dynamic, strongly history-independent data structure
for dynamic trees. The data structure is randomized.
Generating a history-independent version of existing de-
terministic dynamic tree algorithms [24, 25, 11, 14] re-
mains an open problem.

This paper extends our previous dynamization tech-
nique [1] by relaxing one-write per read restriction. The
more important contribution, however, is trace stability,
its application to the dynamic-trees problem, and his-
tory independence.

2 Related Work

Many researchers have previously considered generat-
ing dynamic solutions to problems based on their static
solutions. This approach is often called dynamization.
Bentley and Saxe [4] dynamized a class of search prob-
lems by decomposing them into parts so that an update
is applied to one part (statically), and a search is ap-
plied to all parts. The approach trades off search-time
for update-time. Overmars [20, 21] dynamized a class
of C(n)-order decomposable problems by maintaining
partial static solutions in a tree such that an update
only propagates along a path of the tree. He used this
approach, for example, to generate a O(log2 n)-time dy-
namic algorithm for convex hulls.

Mulmuley and independently Schwarzkopf pro-
posed a dynamic shuffling approach that maintains a
history of operations and dependences among them [18,
23]. The approach allows insertions/deletions in arbi-
trary positions back in “history”. The effects of the
update are then propagated forward in time. History,
the dependences, and propagation are implemented and
analyzed on a per-problem basis. Basch, Guibas, and

Herschberger [3] use a similar approach to implement
Kinetic Data Structures. They maintain certificates
that correspond to certain predicates. As kinetic values
change, these predicates can also change value, requir-
ing the changes to be propagated through future code
that depend on them. Again, predicates, dependences,
and the propagation of changes are implemented on a
per-problem basis. None of these approaches address
how in general changes can be propagated.

Several researchers have tried techniques that can
be applied automatically to a reasonably broad set of
problems. Demers, Reps, and Teitelbaum [6] introduced
the idea of maintaining a dependence graph of a com-
putation, so that any change in the input can be propa-
gated through the graph. Their approach, however, can
only be applied if the dependence graph is static (obliv-
ious to the input). Pugh and Teitelbaum [22], showed
how to use memoization to dynamize static algorithms
for a class of divide-and-conquer algorithms. The ap-
proach is similar to the C(n)-decomposable framework
of Overmars [20], but works automatically. They also
develop an analysis technique based on stable decompo-
sitions. The notion of stability we define in this paper is
motivated by their idea. The class of problems that can
be handled by memoization, however, is very different
from what can be handled by our approach.

Dynamic Trees. Dynamic-tree data structures
have found applications in many areas and have been
studied extensively [24, 25, 11, 26, 13, 14]. Sleator
and Tarjan first considered the dynamic-trees problem
and presented a data structures that supports edge in-
sertions and deletions (aka, the link and cut opera-
tions), re-rooting, and path queries in both amortized
and worst-case O(log n) time, for a forest with n ver-
tices [24, 25]. Cohen and Tamassia extended their tech-
nique to maintain dynamic expression trees [5]. Freder-
ickson developed Topology Trees and applied it to vari-
ous problems [10, 11]. Topology trees provide worst-case
O(log n) update times for various dynamic tree opera-
tions in bounded degree trees. Holm and Lichtenberg
modified Frederickson’s data structure to support un-
bounded degree trees [14]. Henzinger and King [13] and
independently Tarjan [26] developed simpler dynamic-
tree data structure based on Euler-tours for a more lim-
ited interface supporting subtree queries.

History Independence. History-independent
data structures preserve privacy by making it difficult
or impossible to infer information about the past
states of a data structure based on its current state.
History-independent data structures were first studied
by Micciancio, who showed that the shape of a variant
of 2-3 trees is independent of the history of opera-

tions [15]. Naor and Teague [19] extended Micciancio’s
model to encompass the memory and defined weak
and strong history independence. Strong history
independence ensures privacy even under unlimited
number of encroachments. Hartline et al [12], simplified
Naor and Teague’s definitions and showed that strong
history independence requires canonical representation.

3 Input Changes and Trace Stability

We formalize the notions input changes, and trace
stability. The stability definition is parameterized over
the choice of a trace and the distance metric for traces.
In Section 4, we define the particular trace and distance
metric for the model we use in this paper.

Define a trace generator for an algorithm A, written
AT , as a version of the algorithm that outputs a trace
and let δ(·, ·) be a distance metric on traces. For
example, the trace can be chosen as the function-call
tree of the execution, and the trace distance can be
defined as the sum of the costs of function calls that
are different in two traces.

We study the similarity of traces generated by
an algorithm under various classes of input changes.
Formally, we define a class of input changes as a relation
∆, whose domain and codomain are both the input
space. If (I, I ′) ∈ ∆, then the modification of I to I ′

is a valid input change for ∆. To facilitate analysis, we
partition ∆ by an integer parameter n, and denote the
ith partition as ∆i. Typically the parameter represents
the size of the input I. For output-sensitive algorithms,
∆ can be partitioned according to the output change.

Definition 3.1 (Worst-Case Stability) LetAT be a
trace generator for an algorithm A and let ∆n be a class
of input changes parameterized by n. Define

d(n) = max
(I,I′)∈∆n

δ(AT (I), AT (I ′)).

Then AT is S-stable for ∆n if d(n) ∈ S.

Note that O(f(n))-stable, Ω(f(n))-stable, and {f(n)}-
stable are all valid uses of the stability notation.

For randomized algorithms, it is important that
we use the same random bits on different inputs—
because otherwise, traces will certainly not be stable.
We therefore separate the random bits used by the
algorithm from the input and denote the trace as
AT (I,R), where R is the sequence of random bits.
When analyzing stability we assume the same random
bits are used on different inputs, and the expectation is
taken over all possible choices of the random bits.

Definition 3.2 (Expected-Case Stability) Let AT
be a trace generator for a randomized algorithm A, let

∆n be an class of input changes parameterized by n and
let φ(·) be a probability-density function on random bit
strings {0, 1}∗. Define

d(n) = max
(I,I′)∈∆n

∑
R∈{0,1}∗

δ(AT (I,R), AT (I ′, R)) · φ(R).

Then AT is expected S-stable for ∆n and φ if d(n) ∈ S.

4 Machine Model and Traces

We describe a general-purpose machine model for au-
tomatically dynamizing static algorithms. The model
is Turing-complete and any static program expressed in
this model can be dynamized automatically, but the per-
formance of the dynamized version depends on the trace
stability of the program. The main results are Theorems
4.1 and 4.2, which bound the time for dynamic-updates
in terms of trace stability and show the relationship to
strongly history-independent data structures.

The machine model is a variant of the RAM model
that places certain restriction on reading from and
writing to memory. These restrictions are motivated
by the need to (1) determine data dependences, (2)
determine the scope of the code that needs to be re-
executed when a data value changes, i.e., the control
dependences, and (3) re-execute code in the same state
as it was previously executed. Note that when code
is re-executed it can take, because of conditionals, a
different path than it previously did.

Machine Model. As in the RAM model the ma-
chine consists of a random-access memory and a finite
set of registers R, where R = r0, . . . rk. The memory
consists of words, which are large enough to hold a
pointer. In addition to the registers, a stack pointer
and a program counter are also maintained in registers
that are invisible to the user.

A program is a set of function definitions contain-
ing a main function where the execution starts. Func-
tions take no explicit parameters—all values are passed
through registers. The body of a function consists of
a sequence of instructions, which include the usual in-
structions for arithmetic (add, mul, etc), branches, a
write instruction for writing to memory, and a calln
instruction for reading from memory and making func-
tion calls. Branches are restricted to jump to a location
within the function body where they appear.

The instruction write ri, rj stores the value of rj
at memory location specified by ri. Memory can be
read only during a function call, calln, which takes
the number of locations to be read and a function.
Execution of calln n, f saves the registers and the
return address onto the stack, dereferences the first n
registers (i.e., ri ← Mem[ri] for 0 ≤ i ≤ n − 1), and

b
c

d
h

3
4 e

7
8

7
8

g 5

a 1

9
i

j
0

f

b
c

d

3
4 e

7

g 7
4

a 1

k f 1

i 8
9

Figure 1: The traces of a program on two inputs.

jumps to the first instruction of the function. Return
from the function restores the registers by popping the
stack and passes the control back to return point.

The motivation for using functions for reading is
to identify the code that depends on the value being
read. We note that since the registers are restored when
returning from a function call, the only way to return
results is through memory. This ensures that all data
dependences are tracked.

In this paper, we consider valid only those programs
that write to each memory location at most once (aka,
single-assignment) and read no memory location before
it is written—all purely-functional programs satisfy
these restrictions. This restriction is motivated by the
need to re-execute code in the same context as originally
executed. An alternative is to use a persistent data-
structure to represent the memory [9, 7].

Traces. The trace of a program on some input is an
ordered, rooted tree corresponding to the function-call
tree of the execution of the program on that input. Each
vertex represents a function call (calln), with the root
representing the main function. Edges represent the
caller-callee relationship—there is an edge from u to v
if u calls v. Outgoing edges of a vertex are ordered with
respect to the execution order. Each vertex is annotated
with a weight equal to the running time of the function
call and a list of the values read, called read-values, by
that call. The weight of a trace T , written w(T), is the
weight of its root vertex. The read-values of a trace T ,
written rval(T), is the read-values of its root.

Figure 1 shows two traces of some program. Each
vertex is labeled with a letter and its read-value. The
weight of a vertex v is the number of vertices in the
subtree rooted at v—for example, the weight of b is five
on the left and six on the right.

Given a trace T , we call the path from the parent
of a vertex v to the root of T as the call path of v; the
call path of the root is empty. When comparing two
traces of some program, we will deem certain vertices
equivalent—throughout this paper, we only compare
traces belonging to the same program. Given traces
T and T ′, we say that vertices v of T and v′ of T ′

are cognates if they have the same call path relative to
the root of their traces, including the read-values. For
example, in Figure 1 the vertex a on the left and a on
the right are cognates, and so are the b, c, d, e, g ’s. Since
programs in our model are deterministic, two cognates

whose read-values are the same have the same number
of children. We say that a vertex v is a guard if the
read-value of its cognate v′ is different than the read-
values of v. In Figure 1 vertices e and g are guards. For
our model, we define the distance between two traces as
the sum of the weights of all guards in both traces. For
example, the distance between the traces in Figure 1 is
(2 + 3) + (4 + 2) = 11. Trace distance can be defined
recursively as follows.

Definition 4.1 (Trace Distance) The distance be-
tween traces T and T ′, δ(T, T ′), of a program is

δ(T, T ′) =
{
w(T) + w(T ′) if rval(T) 6= rval(T ′)∑k
i=1 δ(Ti, T

′
i) otherwise,

where Ti and T ′i are the ith subtree of T and T ′.

Stability and Automatic Dynamization. We
present our main results for this section. The theorems
rely on results from Section 6. Theorem 4.1 only applies
in the worst case, whereas Theorem 4.2 applies in both
expected and the worst case.

Theorem 4.1 (Stability & Dynamization) Let AT
be the trace-generator for an algorithm A. If AT is
O(f(n))-stable for a class of input changes ∆, then the
output of A can be updated in O(f(n) log f(n)) time for
any change from ∆.
Proof. Follows directly from Theorem 6.1 by using a
logarithmic-time priority queue. �

For r-round parallel computations, we improve on
this bound and also achieve strong history independence
as defined by Hartline et al. [12]. We say that an algo-
rithm is r-round parallel if it operates in r rounds where
a calln in round i only reads memory locations written
in the body of a calln from a round j < i. We say that
a dynamic algorithm is strongly history independent if
after any number of input changes and output updates
the memory layout of the implementation depends only
on the current input I.

Theorem 4.2 (R-Round-Parallel) Let AT be the
trace-generator for an r-round parallel algorithm A. If
AT is (expected) O(f(n))-stable for some class of in-
put changes ∆, then the output of A can be updated in
(expected) O(f(n) + r) time for any change from ∆.
Furthermore, if each location is read by at most a con-
stant times, then there is a strongly history independent
implementation of the resulting dynamic algorithm.
Proof. History independence follows directly from The-
orem 6.2. The worst case time bound follows directly
from Corollary 6.1. The expected bound follows from
Corollary 6.1 by simple algebra. �

tree contract MR (F) {
while (#edges(F) > 0)
for each v ∈ vertices(F)

contract(v) }
contract(v) {
if (v.degree = 1) // rake
u = neighbor(v)
if (u.degree > 1 or u > v)
delete v

else if (v.degree = 2) // compress
(u1, u2) = neighbors(v)
if (u1.degree > 1 and u2.degree > 1 and

flips(u1, v, u2)=(T,H, T))
connect u1 and u2
delete v }

tree contract {
for i = 1 to k log n do
for j = 1 to n do
// r0 ← &A[i, j].live; r1 ← &A[i, j].degree
// r2 ← &A[i, j].ngh[0] . . . rt+2 ← &A[i, j].ngh[t]
calln (t+ 3), contract }

contract {
if (not live)
write &A[i+ 1, j].live,false

else if (degree = 1)
rake ...

else if (degree = 2)
compress ...

else
find degree & singleton status, copy ... }

Figure 2: Randomized Tree Contraction (left) and Tree Contraction in our model (right)

5 Tree Contraction and Dynamic Trees

We dynamize the parallel tree-contraction algorithm
of Miller and Reif [16] to obtain a data structure for
dynamic-trees [24, 25, 11, 14], which we call RC (Rake-
and-Compress) Trees. We first describe parallel tree
contraction, and then show that it is expected O(log n)-
stable with respect to edge insertions and deletions.
Theorem 4.2 implies an expected O(log n) time, history-
independent data structure for dynamic trees.

5.1 Parallel Tree Contraction Given a t-ary for-
est, the parallel tree-contraction algorithm operates in
rounds. In each round, each tree is contracted by apply-
ing the rake and compress operations. The rake opera-
tions delete all leaves of the tree (if the tree is a single
edge, then only one leaf is deleted). The compress oper-
ations delete an independent set of degree-two vertices.
All rake and compress operations within a round are lo-
cal and are applied “in parallel” (i.e., all decisions are
based on the state when the round starts). The algo-
rithm terminates when no edges remain.

Various versions of tree contraction have been pro-
posed depending on how they select the independent set
of degree-two vertices to compress. There are two basic
approaches, one deterministic and the other random-
ized. We use a randomized version—each vertex flips
a coin in each round and a degree-two vertex is com-
pressed if it flips a head, its two neighbors both flip tails,
and neither neighbor is a leaf. This compress rule is a
slight generalization of the original rule by Miller and
Reif [16], which only applies to rooted trees. Figure 2
shows pseudo-code for randomized tree contraction. It
is not hard to show that the algorithm takes logarithmic

number of rounds in the expected case.
Using tree contraction the programmer can perform

various computations on trees by associating data with
edges and vertices and defining how data is accumulated
during rake and compress [16, 17]. In a related paper [2],
we describe how various properties of trees can be
maintained dynamically using RC-Trees. We consider a
broad set of applications including path queries, subtree
queries, centers/medians/diameters of trees, shortest
distance to a set of marked nodes, and least common
ancestor queries [2]. We also describe how to separate
handling of application-specific data and queries from
structural changes (edge insertions and deletions). We
therefore consider only structural changes in this paper.

Implementation. Figure 2 shows the pseudo code
for an implementation of tree contraction in our model.
Since the model requires that a location be written at
most once, we copy the forest in each round. For a t-ary
forest with n vertices, we keep the vertices in an array A
with n×(k log n+1) cells (k is a constant to be specified
in Theorem 5.2). The input forest is stored in the
first row, and tree contraction is performed for k log n
rounds—the ith round reads the ith row and writes
to (i + 1)st row. Each cell of the array represents an
instance of a vertex and consists of a live flag, a degree
field, a singleton-status flag, and neighbor pointers. The
singleton status of a vertex is a binary value indicating
if that vertex is a leaf or not.

Each round calls the function contract on all ver-
tices. The call to contract reads the liveness flag, the de-
gree, and the neighbor pointers for that vertex into reg-
isters. Rake and compress operations are implemented

as with the original algorithm except that we make an-
other calln in order to read the singleton status of each
neighbor. If a vertex is live and is not deleted in this
round, we compute its degree based on the singleton sta-
tus of its neighbors, compute its singleton-status, and
copy it to the next round.

The trace for tree-contraction is a tree with height
three. The root has nk log n children, each of which
corresponds to a call to contract and is either a leaf
or has one child. Each depth-three vertex corresponds
to a call for reading the singleton status of neighbors.
Each vertex except for the root has a constant weight.

To generate random coin flips, we use a family H
of 3-wise independent hash functions mapping {1 . . . n}
to {0,1}. We randomly select k log n members of
H, one per round. Since there are families H with
|H| polynomial in n [27], we need O(log2 n) random
bits. As discussed in Section 3 we analyze trace
stability assuming fixed selection of random bits and
take expectations over all selections of bits. For fixed
random bits, vertex i will generate the same coin flip
on round j for any input. This ensures that the trace
remains stable in different executions.

After k log n rounds, it is possible, though with
small probability, that not all edges are deleted. When
that happens, we can use any linear-time tree evaluation
algorithm to compute the result.

This implementation is k log n-round parallel as
defined in Section 4, and every location is read at most
(t+ 1) times, therefore Theorem 4.2 applies.

The implementation as described requires
O(n log n) memory. Since with high probability
only O(n) locations will contain live vertices [16] we
can use a hash table of size O(n) to implement the
memory in our model. Furthermore we don’t need
to store the dependences between non-live locations
since they all go from A[i, j] to A[i + 1, j]. Therefore
the algorithm can be implemented in O(n) space—it
is not clear, however, if this implementation would be
strongly history independent.

5.2 Trace Stability of Parallel Tree Contraction
We analyze the trace stability of tree contraction under
a single edge deletion or insertion. Data changes and
queries can be handled separately with support trees [2].

Definitions. Consider a forest F = (V,E) with
n vertices and execute tree-contraction on F . Order
vertices in the order that they are processed in each
round V = (v1, . . . , vn). In what follows, the term
“at round i” means, “at the beginning of round i”. We
denote the contracted forest at round i as F i = (V i, Ei).
A vertex v is live at round i, if v ∈ V i—it has not been
deleted (compressed or raked) in some previous round.

We define the configuration of a vertex v at round i ≥ 1

κ iF (v) =
{
{(u, σ(u)) | (v, u) ∈ Ei} v ∈ V i
deleted v 6∈ V i

Here σ(u) is the singleton status of vertex u (whether
u has degree one or not). Configuration of a vertex
represents the values read by the call to contract.

We define a contraction XF of F to be
XF = κ 1

F (v1) . . . κ 1
F (vn)κ 2

F (v1) . . . κ k logn
F (vn). A con-

traction serves as an abstraction of the trace.
Consider some forest G = (V,E \ {(u, v)})

obtained from F by deleting the edge (u, v) and
let XG be its contraction. Let TF and TG be
traces for the contractions XF and XG. The dis-
tance between TF and TG is within a factor of
two of the difference between XF and XG, that
is δ(TF , TG) = O

(∑k logn
i=1

∑n
j=1 neq(κ iF (vj), κ iG(vj))

)
,

where neq(·, ·) is one if the configurations are not equal
and zero otherwise. Thus to bound the trace distance
it suffices to count the places where two configurations
do not match in XF and XG.

We say that a vertex v becomes affected in round i,
if i is the earliest round for which κ i+1

F (v) 6= κ i+1
G (v).

Once a vertex becomes affected, it remains affected in
any subsequent round. Only input changes will make a
vertex affected at round one. We say that a vertex v
is a frontier at round i, if v is affected and is adjacent
to a unaffected vertex at round i. We denote the set of
affected vertices at round i as Ai—note that Ai includes
all affected vertices live or deleted. For any A ⊆ Ai, we
denote the forests induced by A on F i and Gi as F iA and
GiA respectively. Since all deleted vertices have the same

configuration δ(TF , TG) = O
(∑k logn

i=1 |F iAi |+ |G
i
Ai |
)

.

An affected component at round i, ACi is defined as
a maximal set satisfying (1) ACi ⊆ Ai, and (2) F iACi
and GiACi are trees.

Analysis. To prove that tree contraction is ex-
pected O(log n) stable we will show that the expected
size of F iAi and GiAi is constant at any round i. The
first lemma establishes two useful properties that we
use throughout the analysis.

Lemma 5.1 (1) A frontier is live and is adjacent to the
same set of unaffected vertices at any round i in both XF
and XG. (2) If a vertex becomes affected in any round i,
then it is either adjacent to a frontier or it has neighbor
that is adjacent to a frontier at that round.

Proof. The first property follows from the facts that
(A) a frontier is adjacent to a unaffected vertex at
that round, and (B) unaffected vertices have the same
configuration in both XF and XG. For the second

property, consider some vertex v that is unaffected at
round i. If v’s neighbors are all unaffected, then v’s
neighbors at round i + 1 will be the same in both XF
and XG. Thus, if v becomes affected in some round,
then either it is adjacent to an affected vertex u, or
v has neighbor u whose singleton status differs in XF
and XG in round (i+ 1), which can happen only if u is
adjacent to an affected vertex. �

We now partition Ai into two affected components
ACiu andACiv, Ai = ACiu∪AC

i
v, such thatGiAi = GiACiu

∪
GiACiv

and F iAi = F iACiu∪ACiv
. Affected components

correspond to the end-points of the deleted edge (u, v).
Note GiACiu and GiACiv

are disconnected.

Lemma 5.2 At round one, each of AC1
u and AC1

v

contain at most two vertices and at most one frontier.

Proof. Deletion of (u, v) makes u and v affected. If
u does not become a leaf, then its neighbors remain
unaffected. If u becomes a leaf, then its neighbor u′

(if it exists) becomes affected. Since u and v are not
connected in G, the set {u} or if u′ is also affected
{u, u′} is an affected component, this set will be AC1

u.
Either u or if u′ exists, then u′ may be a frontier. The
set AC1

v is built by a similar argument. �

Lemma 5.3 Assume that ACiu and ACiv are the only
affected components in round i. There are exactly two
affected components in round i+ 1, ACi+1

u and ACi+1
v .

Proof. By Lemma 5.1, we consider vertices that become
affected due to each frontier. Let U and V be the set of
vertices that become affected due to a frontier in ACiu
and ACiv respectively and define ACi+1

u = ACiu ∪ U
and ACi+1

v = ACiv ∪ V . This accounts for all affected
vertices Ai+1 = Ai ∪ U ∪ V . By Lemma 5.1 the
vertices of U and V are connected to some frontier by
a path. Since tree-contraction preserves connectivity,
F i+1

ACi+1
u
, F i+1

ACi+1
v

and Gi+1

ACi+1
u
, Gi+1

ACi+1
v

are trees, and

Gi+1

ACi+1
u
, Gi+1

ACi+1
v

remain disconnected. �

By induction on i, using Lemmas 5.2 and 5.3, the
number of affected components is exactly two. We now
show that each affected component has at most two
frontiers. The argument applies to both components,
thus we consider some affected component AC.

Lemma 5.4 Suppose there is exactly one frontier in
ACi. At most two vertices become affected in round i
due to contraction of vertices in ACi and there are at
most two frontiers in ACi+1.

Proof. Let x be the sole frontier at round i. Since
x is adjacent to a unaffected vertex, it has degree at

least one. Furthermore x cannot have degree one,
because otherwise its leaf status would be different in
two contraction making its neighbor affected. Thus x
has degree two or greater.

Suppose that x is compressed in round i in XF or
XG. Then x has at most two unaffected neighbors y and
z, which may become affected. Since x is compressed,
y will have degree at least one after the compress, and
thus no (unaffected) neighbor of y will become affected.
Same argument holds for z. Now suppose that x is
not deleted in either XF or XG. If x does not become
a leaf, then no vertices become affected. If x becomes
a leaf, then it has at most one unaffected neighbor,
which may become affected. Thus, at most two vertices
become affected or frontier. �

Lemma 5.5 Suppose there are exactly two frontiers in
ACi. At most two vertices become affected in round i
due to the contraction of vertices in ACi and there are
at most two frontiers in ACi+1.
Proof. Let x and y be two frontiers. Since x and y are
in the same affected component, they are connected
by a path of affected vertices and each is also adjacent
to a unaffected vertex. Thus each has degree at least
two in both contractions at round i. Assume that x
is compressed in either contraction. Then x has at
most one unaffected neighbor w, which may become
affected. Since w has degree at least one after the
compress, no (unaffected) neighbor of w will become
affected. If x is not deleted in either contraction, then
no vertices will become affected, because x cannot
become a leaf—a path to y remains, because y cannot
be raked. Therefore, at most one vertex will become
affected and will possibly become a frontier. The same
argument applies to y. �

Lemma 5.6 The total number of affected vertices in F i

and Gi is O(1) in the expected case.
Proof. Consider applying tree contraction on F i and
note that F iAi will contract by a constant factor when
we disregard the frontier vertices, by an argument
similar to that of Miller and Reif [16]—based on in-
dependence of randomness between different rounds.
The number of affected components is exactly two
and each component has at most two frontiers and
cause two vertices become affected (by Lemmas 5.2,
5.4, and 5.5). Thus, there are at most four fron-
tiers and four new vertices may become affected in
round i. Thus, we have E[|F i+1

Ai+1 |] ≤ (1− c)|F iAi |+ 8
and E[|F i+1

Ai+1 |] ≤ (1− c)E[|F iAi |] + 8.
Since the number of affected vertices in the first

round is at most 4, E[|F iA|] = O(1), for any i. A similar
argument holds for Gi. �

Theorem 5.1 Tree contraction is expected O(log n)
stable for a single edge insertion or deletion.

Proof. By Lemma 5.6, the expected number of live
affected vertices is constant in every round. Since
tree-contraction takes k log n rounds, the result follows
by the linearity of sums of expectations. �

Theorem 5.2 Tree contraction algorithm yields a
strongly history-independent, expected O(log n)-time
data structure for the dynamic trees problem for inser-
tions and deletions of edges.

Proof. The tree contraction algorithm is k log n-round-
parallel as defined in Section 4. Since each location is
read at most a constant number of times, the algorithm
is strongly history independent and takes expected
O(log n) time by Theorems 4.2 and 5.1.

Since a constant fraction of all vertices are deleted
in each round with a nonzero constant probability,
the probability that the contraction is not complete
(the forest contains an edge) after k log n rounds
is at most 1/n for some constant k [16]. There-
fore running a linear time tree evaluation algorithm to
finish off the contraction takes O(1) expected time. �

6 Automatic Dynamization

This section presents a constructive proof of Theorems
4.1 and 4.2 by using dynamic dependence graphs and
change propagation.

Dynamic Dependence Graphs. A dynamic de-
pendence graph is built by the execution of a program
in order to represent the data and control dependences
in that execution. It contains two kinds of edges, trace
edges, which correspond to control dependences, and
data-dependence edges. Each vertex of a dynamic de-
pendence graph is also tagged with a time stamp that
corresponds to the execution time of that vertex and
also other information to facilitate change propagation.

Formally, a dynamic dependence graph DDG =
((V,L), (E,D)) consists of vertices partitioned into
trace vertices V and locations L, and a set of edges par-
titioned into trace edges E ⊆ V × V and dependences
D ⊆ L× V . The graph (V,E), which we call a trace, is
a function call tree and is structurally equivalent to the
trace defined in Section 4—unlike the original definition,
however, we do not require that the tree be ordered.
The dependences D corresponds to data dependences
between locations and function calls. The function V
maps each vertex in V to a quadruple consisting of (1)
a time-stamp, (2) the function being called, (3) the val-
ues of registers immediately before the function call,
and (4) the number of reads. The function M , called
the memory maps each location to a value. A dynamic

dependence graph along with memory M and labels V
constitutes all the state needed by change propagation.

Time stamps maintain a topological ordering of the
trace (V,E). During change propagation, functions af-
fected by the changes are re-executed in this topologi-
cal order. Since both control and data dependences go
from earlier to later function calls, propagating changes
in topological order is critical for correctness. Since dy-
namic dependence graphs change during change propa-
gation, order of time-stamps must be maintained dy-
namically. For this, we use the Dietz-Sleator order-
maintenance algorithm [8], which supports constant
time insertion, deletion, and comparison operations.

Building a Dynamic Dependence Graph. A
dynamic dependence graph is built by execution and
kept up to date by change propagation. In addition to
the set of location L and the memory M , we keep track
of the set of changed locations LC ; LC will be used by
the change propagation algorithm. We assume that a
set of memory locations are given as inputs I. Initially
L = I and M maps each input location to a value. Each
write l, v instruction sets M(l) to v. If l 6∈ L, then L
is extended with l (L = L ∪ {l}); otherwise, l is added
to the set of changed locations (LC = LC ∪ {l}). Since
programs in our model are single-assignment, a location
will never be added to LC in the initial execution.

The executed calln instructions build the trace
and the dependence edges. Initially V , E, D are all
set to the empty set and the current time-stamp is
initialized to the “beginning of time”. Execution of
a calln n, f instruction (1) extends V with a new
vertex v (V = V ∪ {v}), (2) inserts a trace edge from
the caller u to v (E = E ∪ {(u, v)}), (3) inserts a
dependence edge from locations being read LR to v
(D = D ∪ {(l, v) | l ∈ LR}) (4) advances the time by
creating a new time-stamp t after the current time and
setting the current time to t, (5) extends V by mapping
v to the current time, the value of the registers, the
function being called, and the number of locations read,
(6) dereferences the registers and makes the call.

Change Propagation. The pseudo-code for
change propagation is shown in Figure 3. The algo-
rithm takes as input a set of input changes C, the
memory M , and a dynamic dependence graph DDG.
The input changes C maps a set of locations to new
values. The algorithm updates the values of changed
locations in M (line 2), and builds a priority queue of
affected vertices reading the changed locations (line 3).
A vertex is called affected if the value of a location that
it reads has changed since the last execution.

Each iteration of the while loop re-executes a guard
vertex v. First the subtree T− for the previous execu-

propagate (M,C,DDG as ((V,L), (E,D)))
1 T = (V,E)
2 M = (M \ {(l,M(l)) | l ∈ C}) ∪ C
3 Q = {v | (l, v′) ∈ C, (l, v) ∈ D}
4 while Q 6= ∅
5 v = deleteMin(Q)
6 T− = subtree rooted at v
7 (n, fun, time,R) = V(v)
8 ((V +, E+), D+, LC) = callnn, fun at time

with regs R and Memory M
9 T+ = (V +, E+)
10 T ′ = replace T− with T+ in T
11 D− = {(l, u) | u ∈ vertices(T−) ∧ (l, u) ∈ D}
12 D = D ∪D+ \D−
13 A = {u | l ∈ LC ∧ (l, u) ∈ D}
14 Q = Q ∪A \ vertices(T−)
15 ∀u ∈ vertices(T−), delete time-stamp(u)

Figure 3: The change-propagation algorithm.

tion of the call is determined. Then the function of v
is re-executed starting at the same time and with the
same registers as it was previously executed (line 8).
Let T+ = (V +, E+) denote the trace and D+ denote
the data-dependences for re-execution, and LC be the
set of locations changed during re-execution. The trace
is updated by replacing the subtree T− rooted at v with
T+ (line 10) and dependences are updated by adding
D+ to and deleting D− from D (line 12)—D− is the
dependences pertaining to T−. The queue is updated
by removing the vertices of T− and inserting the newly
affected vertices A (line 14). Finally the time-stamps of
the vertices of T− are deleted.

Re-executing function calls in topologically sorted
order according to their time stamps serves two pur-
poses. First, it ensures that function calls that are not
relevant to the computation are not taken. For exam-
ple, in Figure 1, change propagation that starts with
the trace on the left and yields the trace on the right
should not re-execute the call h; indeed h is removed
from the queue when g is re-executed (line 14). Second,
it ensures that a value read by a calln is up-to-date,
because such a value may depend on a previous call.

Although the sequential execution order gives a
topological sort of a dynamic dependence graph, other
forms of topological ordering can be more efficient. For
example, in an r-round-parallel computation, all edges
are from earlier to later rounds. Thus we can use round
numbers as time stamps and use array-based, constant-
time priority queues.

Implementation and Performance. We imple-
ment dynamic dependence graphs by using a standard

tree representation and by maintaining for each mem-
ory location a list of pointers to vertices reading that
location and back. For change propagation, we obtain
different bounds depending on the priority queue we em-
ploy. Our main lemma is therefore parameterized over
the time for priority queue operations.

Theorem 6.1 Consider the traces T (I) and T (I ′) of a
program on inputs I and I ′ and let d = δ(T (I), T (I ′)).
Change propagation takes time O(d + d · p(d)) with a
priority queue that supports insertion, deletion, and
delete-minimum operations in O(p(·)) time.

Proof. Consider an iteration of the change propagation
loop and let v be the vertex removed from the queue.
It is a property of the algorithm v is a guard with
cognate v′. Let w and w′ denote weights of v and
v′ respectively. Determining T− takes constant time
(line 6). Re-executing the function call takes time
w′ (line 8). Updating the trace takes constant time
(line 10). Since each function call performs a constant
number of reads, computing D− takes O(w) time. Since
D+ has O(w′) dependences, updating the dependences
takes in O(w + w′) time (line 12). Deleting the time-
stamps for vertices of T− takes time O(w). Thus, an
iteration of the loop takes time O(w+w′) time plus time
for finding the affected vertices (line 13) and priority
queue operations (lines 5 and 14).

Since re-execution of a vertex removes its descen-
dants from the queue (line 14), only guards are re-
executed. Since the trace-distance is the total weights of
the guards, the total time is O(d) plus time for finding
the affected vertices and priority queue operations.

Let m be the total number of affected vertices.
Finding all affected vertices (line 13) takes time O(m).
Since each vertex is added to and removed from the
priority queue once, the time for all priority queue
operations is O(m · p(m)). Since the weight of a vertex
is no less than the number of its descendants, m ≤ d.
Therefore the total time is O(d+ dp(d)). �

For r-round parallel computations we use round
numbers as time stamps and implement priority queues
with r buckets supporting all operations in O(1) time.

Corollary 6.1 Let T (I) and T (I ′) be the traces of
an r-round parallel program on inputs I and I ′ and
d = δ(T (I), T (I ′)). Change propagation takes O(d + r)
time.

Theorem 6.2 Consider an r-round-parallel algorithm
and suppose the algorithm reads each memory location
some constant number of times on all inputs. The
algorithm can then be dynamized to yield a strongly
history-independent dynamic algorithm.

Proof. Hartline et al [12] show that a data structure
is strongly history independent if and only if it has
a canonical memory representation—every input has
a unique layout in memory. Thus, to show that an
automatically dynamized algorithm is strongly history
independent, we show that dynamic dependence graphs
have a canonical representation.

The structure of the dynamic dependence graph is
clearly canonical, but the actual memory layout might
not be. Since the number of reads of each location
is constant, we can store the information associated
with any vertex v (calln) in memory associated with
the first location that it reads (we inline calls with no
reads so that they don’t have a vertices in the trace).
To maintain the children of v, we will have a list that
runs through the children themselves. Since a location
is read constant times, the dependence edges and the
vertices can be stored in sorted order based on, for
example, the bit representation. Finally, the structure
of the order maintenance algorithm we rely on [8] is not
canonical. For r-round parallel computations, however,
we can use the round numbers as time stamps. �

Acknowledgments

We thank Bob Tarjan and Renato Werneck for many
discussions and feedback.

References

[1] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive
functional programming. In Proceedings of the 29th
Annual ACM Symposium on Principles of Program-
ming Languages, pages 247–259, 2002.

[2] U. A. Acar, G. E. Blelloch, and J. L. Vittes. Separating
structure from data in dynamic trees. Technical Report
CMU-CS-03-189, Department of Computer Science,
Carnegie Mellon University, 2003.

[3] J. Basch, L. J. Guibas, and J. Hershberger. Data
structures for mobile data. Journal of Algorithms,
31(1):1–28, 1999.

[4] J. L. Bentley and J. B. Saxe. Decomposable searching
problems I: Static-to-dynamic transformation. Journal
of Algorithms, 1(4):301–358, 1980.

[5] R. F. Cohen and R. Tamassia. Dynamic expression
trees and their applications. In Proceedings of the
2nd Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 52–61, 1991.

[6] A. Demers, T. Reps, and T. Teitelbaum. Incremental
evaluation of attribute grammars with application to
syntax directed editors. In Proceedings of the 8th An-
nual ACM Symposium on Principles of Programming
Languages, pages 105–116, 1981.

[7] P. F. Dietz. Fully persistent arrays. In Workshop on
Algorithms and Data Structures, volume 382 of Lecture
Notes in Computer Science, pages 67–74. Springer-
Verlag, August 1989.

[8] P. F. Dietz and D. D. Sleator. Two algorithms for
maintaining order in a list. In Proceedings of the 19th
ACM Symposium on Theory of Computing, pages 365–
372, 1987.

[9] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E.
Tarjan. Making data structures persistent. Journal
of Computer and System Sciences, 38(1):86–124, Feb.
1989.

[10] G. N. Frederickson. Data structures for on-line up-
dating of minimum spanning trees, with applications.
SIAM Journal on Computing, 14:781–798, 1985.

[11] G. N. Frederickson. A data structure for dynami-
cally maintaining rooted trees. Journal of Algorithms,
24(1):37–65, 1997.

[12] J. D. Hartline, E. S. Hong, A. E. Modht, W. R. Pent-
ney, and E. C. Rocke. Characterizing history inde-
pendent data structures. In Proceedings of Thirteenth
International Symposium on Algorithms and Computa-
tion (ISAAC), volume 2518 of Lecture Notes in Com-
puter Science. Springer, 2002.

[13] M. R. Henzinger and V. King. Randomized fully
dynamic graph algorithms with polylogarithmic time
per operation. Journal of the ACM, 46(4):502–516,
1999.

[14] J. Holm and K. de Lichtenberg. Top-trees and dynamic
graph algorithms. Technical Report DIKU-TR-98/17,
Department of Computer Science, University of Copen-
hagen, Aug. 1998.

[15] D. Micciancio. Oblivious data structures: applications
to cryptography. In Proceedings of the 29th Annual
ACM Symposium on Theory of Computing, pages 456–
464, 1997.

[16] G. L. Miller and J. H. Reif. Parallel tree contraction
and its application. In Proceedings of the 26th An-
nual IEEE Symposium on Foundations of Computer
Science, pages 487–489, 1985.

[17] G. L. Miller and J. H. Reif. Parallel tree contraction,
part 2: Further applications. SIAM Journal on Com-
puting, 20(6):1128–1147, 1991.

[18] K. Mulmuley. Randomized multidimensional search
trees: Lazy balancing and dynamic shuffling (ex-
tended abstract). In Proceedings of the 32nd Annual
IEEE Symposium on Foundations of Computer Sci-
ence, pages 180–196, 1991.

[19] M. Naor and V. Teague. Anti-presistence: history in-
dependent data structures. In Proceedings of the thirty-
third annual ACM symposium on Theory of computing,
pages 492–501. ACM Press, 2001.

[20] M. H. Overmars. Dynamization of order decomposable
set problems. Journal of Algorithms, 2:245–260, 1981.

[21] M. H. Overmars. The Design of Dynamic Data Struc-
tures. Springer, 1983.

[22] W. Pugh and T. Teitelbaum. Incremental computation
via function caching. In Proceedings of the 16th Annual
ACM Symposium on Principles of Programming Lan-
guages, pages 315–328, 1989.

[23] O. Schwarzkopf. Dynamic maintenance of geometric
structures made easy. In Proceedings of the 32nd
Annual IEEE Symposium on Foundations of Computer
Science, pages 197–206, 1991.

[24] D. D. Sleator and R. E. Tarjan. A data structure
for dynamic trees. Journal of Computer and System
Sciences, 26(3):362–391, 1983.

[25] D. D. Sleator and R. E. Tarjan. Self-adjusting binary
search trees. Journal of the ACM, 32(3):652–686, 1985.

[26] R. E. Tarjan. Dynamic trees as search trees via
euler tours, applied to the network simplex algorithm.
Mathematical Programming, 78:167–177, 1997.

[27] M. N. Wegman and L. Carter. New classes and
applications of hash functions. In Proceedings of
the 20th Annual IEEE Symposium on Foundations of
Computer Science, pages 175–182, 1979.

