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ABSTRACT
We compare the number of cache misses M1 for running a
computation on a single processor with cache size C1 to the
total number of misses Mp for the same computation when
using p processors or threads and a shared cache of size Cp.
We show that for any computation, and with an appropriate
(greedy) parallel schedule, if Cp ≥ C1 + pd then Mp ≤ M1.
The depth d of the computation is the length of the criti-
cal path of dependences. This gives the perhaps surprising
result that for sufficiently parallel computations the shared
cache need only be an additive size larger than the single-
processor cache, and gives some theoretical justification for
designing machines with shared caches.

We model a computation as a dag and the sequential ex-
ecution as a depth first schedule of the dag. The parallel
schedule we study is a parallel depth-first schedule (pdf-
schedule) based on the sequential one. The schedule is
greedy and therefore work-efficient. Our main results as-
sume the Ideal Cache model, but we also present results for
other more realistic cache models.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Miscellaneous; C.1.2 [Processor Architecture]: Mul-
tiple Data Stream Architectures (Multiprocessors)

General Terms
Algorithms,Theory

Keywords
Scheduling algorithms, shared cache, multithreaded archi-
tectures, chip multiprocessors
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1. INTRODUCTION
In a shared-cache machine, multiple processors or concur-

rent threads share a single cache. Such machines include
those that support simultaneous multithreading (SMT) [31]
or that contain single chip multi-processors (CMP) with a
shared cache [15, 14, 4]. Many current processors are ei-
ther SMT or CMP [30, 19, 18, 27]. When a shared physical
memory is used as a cache for disk memory, as is supported
by virtual memory, standard shared-memory multiproces-
sors can also be treated as shared-cache machines.

Previous research has studied the performance of shared
caches for independent processes. Much of the research is
motivated by the need to analyze cache performance for
time-shared processes [28, 2, 29, 25]. In this scenario pro-
cesses are interleaved on a single processor and must share
the processor’s cache—a process, for example, can evict the
contents of a cache line previously loaded and later needed
by another process. Other work considered multiple inde-
pendent processors sharing a cache [23, 11, 5, 26]. All of
this work, however, assumes the processes are independent.

In this paper we are interested in analyzing cache perfor-
mance when running a single shared-memory computation
on a shared-cache machine. In this context, we can take ad-
vantage of the potential overlap in memory references among
the threads. We compare the number of cache misses for
running a computation on a single processor to the total
number of cache misses for running the same computation
in parallel on p processors or threads that share a single,
possibly larger, cache. We show that by using an appro-
priate schedule, the shared cache need only be an additive
amount p · d larger than the sequential cache in order to
guarantee no additional misses for any computation. Here
d is the depth of the computation, i.e., the longest critical
path of dependences. This result assumes the Ideal Cache
model [6], which is fully associative and has the optimal re-
placement policy. We also consider various more realistic
cache models.

To better understand how large p · d is, we note that in
practice p is small (e.g. 2-4 on current architectures, and
up to 256 on research prototypes [20]). Likewise, often the
depth is small. Many problems can be solved in polyloga-
rithmic depth. This includes all problems in the complex-
ity class NC, many of which can be solved work efficiently.
Moreover, if a computation includes synchronization barri-
ers, the effective depth d is just the maximum length of a
critical path of dependences between consecutive barriers.
In contrast, shared cache sizes are currently on the order of
MBs, and growing.



Cache Model Shared Cache Size Miss Bound Parallel Steps Bound

Shared Ideal Cache C1 +
(p−1)dp

δ+1
MI

WI+MIδ
p

+ dp

Shared LRU Cache 2
�
C1 +

(p−1)dp

δ+1 � 2MI
WI+MI(m+2δ)

p
+ dp

Shared LRU Cache C1 +
(α+1)(p−1)dp

δ+1
WL/α + ML

(1+(m+δ)/α)WL+MLδ
p

+ dp

Shared Seq-LRU Cache C1 +
(p−1)dp

δ+1
ML

WL+MLδ
p

+ dp

Table 1: Summary of results (notation in Table 2).

G computation dag

w weight function on actions of G
p number of processors
m latency for a cache miss
C1 sequential cache size
Cp shared cache size
S1 sequential schedule
S ′

1 prefix of S1

Sp parallel schedule for p processors or threads
S` linearized parallel schedule
S ′

` prefix of S`

M1 number of misses with a sequential schedule
MI number of misses with Sequential Ideal Cache
ML number of misses with Sequential LRU Cache
W1 work with a sequential schedule
WI work with Sequential Ideal Cache
WL work with Sequential LRU Cache
Wp work with a parallel schedule
dp depth with a parallel schedule
δ (≥ 0) number of dummy nodes before a miss
α (≥ 0) cache size parameter for LRU bounds

Table 2: Notation used in this paper.

As in previous work [10, 7], we analyze computations in
terms of their dependence graphs. The dependence graph
might unfold dynamically so we do not assume the struc-
ture is known ahead of time, but rather just use it as an
analysis technique. A standard sequential execution of the
computation corresponds to a particular depth-first sched-
ule (1df-schedule) of the dependence graph. We assume the
programmer is free to choose the particular 1df-schedule to
optimize cache performance (e.g., if there is a parallel loop
or fork-and-join, the programmer can order the subcalls to
minimize cache misses). Our bounds are relative to such a
programmer-optimized sequential ordering.

We consider parallel schedules that are prioritized based
on a given sequential schedule—i.e., if there are multiple
tasks ready to execute at a given time step, the schedule will
preferentially pick the tasks that are earliest in the sequen-
tial schedule. A parallel schedule based on a 1df-schedule is
called a pdf-schedule [7]. In previous work we described how
to maintain a pdf-schedule online for various types of com-
putations [7, 8]. In the case of computations with parallel
loops and fork-and-join constructs (ones that lead to series-
parallel dependence graphs), maintaining such a schedule is
particularly simple [7]. For computations with synchroniza-
tion variables, it is somewhat more difficult [8].

In this paper, we define various models for shared caching
which differ primarily in their replacement policies. Table 1
summarizes the main results in this paper. These results
(described in detail in the remainder of the paper) show

for k = 0 to (n/b)-1
for i = 0 to (n/b)-1

for j = 0 to (n/b)-1
for ii = i*b to (i+1)*b - 1
for jj = j*b to (j+1)*b - 1

for kk = k*b to (k+1)*b - 1
C[ii,jj] += A[ii,kk] * B[kk,jj]

Figure 1: A block matrix multiply for multiplying
two n × n matrices A and B into a result matrix C.

that over a variety of shared caching models, only a mod-
estly larger shared cache suffices to have a low miss, work-
efficient schedule. We also present an asymptotically tight
lower bound on the shared cache size needed to incur no ex-
tra misses, as well as trade-offs between misses and shared
cache size and between work and shared cache size.

1.1 Example: Block Matrix-Multiply
As an example, consider the block matrix-multiply pseudo-

code shown in Figure 1 for n×n matrices using a block size
of b× b. All of the six loops in the code can be parallelized.
The i, j, ii, and jj loops can be parallelized by forking the
iterations to run in parallel using a tree of depth O(log n).
In addition to forking, the k and kk loops require a summa-
tion, which can also be done on a tree of depth O(log n). To
reduce overheads, the block size b is selected so that three
blocks can reside in the (sequential) cache simultaneously,
i.e., C1 ≈ 3b2. This ensures that the working set defined
by any instance of the three inner loops of the code fits in
the cache. However, a p processor schedule that executes
any of the three outer-most loops in parallel has a work-
ing set of 2p blocks (2pb2 locations). Therefore, in order to
avoid significant thrashing, the shared cache must be of size
at least 2

3
p · C1, i.e., Ω(p) times larger than the sequential

cache size.1 A standard work-stealing scheduler, for exam-
ple, would tend to schedule the outer loop in parallel.

We note, however, that our bounds (based on a pdf-
schedule) are much better. Consider using p processors.
If we parallelize all the loops, the depth is O(log n) and
the shared cache need only be of size C1 + O(p log n), as
compared to the size 2

3
pC1 needed above. Alternatively, a

more coarse-grained parallelization might not parallelize the
k and kk loops, in order to avoid the fine-grained parallel
summations. Here, the effective depth of the computation
is O(b + log n) because there is a synchronization barrier
after each outer k iteration and the inner k iteration has
depth O(b). Thus the shared cache need only be of size
C1+O(p(b+log n)). Intuitively, these improved bounds arise

1Note that techniques to improve shared cache performance
by modifying the program, e.g., reducing the block size, are
beyond the scope of this paper. We are interested in proving
general results valid for any program.



because the pdf-schedule tends to schedule the iterations of
the innermost loops concurrently, so that the working set is
only a few blocks.

1.2 Related Work
As mentioned earlier there has been various work on mod-

eling or experimenting with independent concurrent threads
running on a shared cache [28, 2, 29, 23, 11, 5, 25, 26].

Blumofe et al. [9] studied a distributed shared-memory
model, showing that, for the important class of “fully strict”
multithreaded computations, if each processor has its own
cache of C1 pages then the number of cache misses (page
faults) is only O(C1pd) larger than a sequential execution
with C1 pages. The total cache size is pC1. Later re-
sults showed that the bounds hold for shared-memory mod-
els with standard cache policies and that the bounds are
tight [1]. None of this work considered shared caches.

There is a large body of literature on the competitive anal-
ysis of caching/paging algorithms (see [16] for a recent sur-
vey). This work compares online to offline algorithms, dif-
ferent replacement policies, and different cache sizes. Most
of this work is not for a shared cache setting. Some of this
work (e.g., [5]) studied online algorithms for multiple pro-
cesses sharing a fixed-sized page cache, but only considered
the case where each process executes an independent pro-
gram.

In earlier work we showed that if a computation with
depth d uses M1 total memory on a single processor it can
run with M1 + O(pd) memory using p processors, by us-
ing a parallel schedule Sp prioritized based on the sequen-
tial schedule [7]. This work has been extended in various
ways [8, 22, 21, 12]. These results leverage a key lemma
from [7] that bounds the number of tasks that can be exe-
cuting “prematurely” during any step of Sp, when compared
to the ordering of tasks in the sequential schedule. We note,
however, that these results on bounding total memory do
not immediately carry over to the context of shared caches.
In particular the results rely on the fact that the maximum
number of premature tasks at any point during the compu-
tation is less than pd, and therefore the maximum additional
memory needed is O(pd) (under certain assumptions).

In the context of shared caches, however, any premature
task can cause a cache miss that was not present in the
sequential computation, even when the shared cache has
O(pd) extra space. Therefore the number of additional cache
misses could potentially be proportional to the total num-
ber of tasks that are scheduled prematurely across the entire
computation, which has no bound with respect to pd. Fur-
thermore even if a premature task does not result in a miss,
its early execution may change the replacement priority of
its accessed block resulting in some later task to miss. Our
results for the Ideal Cache model rely on showing that every
additional miss at one task is compensated by an addition
hit at another task.

2. SCHEDULES AND MODELS
We begin by defining the models and other terminology

used in this paper.

2.1 Computation DAGs and Schedules
Following standard terminology, we model a computation

as a directed acyclic graph (dag) G. Each node in G repre-
sents the execution of a single non-preemptable task, called

an action. The edges represent any ordering dependences
among the actions—a path from a node u to a node v im-
plies that the action for u must complete before the action
for v starts. We also assume an integer weight function w(a)
over the actions which indicates the number of time steps
taken by the action. Note that we will use node and action
interchangeably in this paper.

We assume the computation C = (G, w) generated by a
program may depend on the input and is revealed online,
i.e., we do not assume it is known before running the pro-
gram. We assume that w may also depend on the particular
schedule (e.g., to account for the difference in time between
a cache hit and a cache miss), but that G depends only on
the input. We can thus talk about the dag independently
of the particular schedule.

A schedule of a computation (G, w) consists of a sequence
of steps (1, . . . , τ ) in which each action a covers a contiguous
block of w(a) steps (i, . . . , i + w(a)− 1) for some i, 1 ≤ i ≤
τ −w(a)+1. We say the action starts on step i and finishes
on step i + w(a) − 1. An action is ready on step i if all its
ancestors in G have finished before step i, and is waiting on
step i if it is ready on step i but starts after step i. In all
schedules an action must be ready on the step it starts.

A p-schedule, for p ≥ 1, is a schedule such that each step
is covered by at most p actions. A schedule is sequential
if p = 1, and parallel otherwise. A greedy p-schedule is a
p-schedule with the property that an action only waits on
step i if step i is covered by p actions.

The work of a computation (G, w) is defined to be the
sum of the weights of the actions. The depth is defined to
be the maximum, among all the paths in G, of the sum of the
weights along the path.2 The number of steps of a schedule
S, denoted |S| is the maximum step on which an action
finishes. Note that these definitions preserve an important
well-known property of greedy p-schedules:

Lemma 1. Let Wp be the work and dp be the depth of a
computation when run with a greedy p-schedule Sp. Then
|Sp| < Wp/p + dp.

Given a priority order on the actions, a prioritized p-
schedule Sp is a schedule in which an action can only start
on step i if no action with higher priority is waiting on step
i. A prioritized p-schedule is based on a 1-schedule for the
same dag if the priorities are defined by the order of actions
in the 1-schedule (highest priority first).

A depth-first 1-schedule (1df-schedule) is a prioritized 1-
schedule in which the priority is given by the maximum step
number on which any of the action’s parents finished. This is
the schedule executed by a “standard” sequential implemen-
tation. Note that multiple nodes can have the same parent
(e.g., when the parent is a fork node) so there are typically
many 1df-schedules for the same dag. The user can decide
which one is best to optimize cache behavior. A depth-first
p-schedule (pdf-schedule) of G is a p-schedule based on a
1df-schedule of G. An example is given in Figure 2.

To simplify the exposition, we will map a parallel sched-
ule to a sequential schedule that preserves the parallel order,
as follows. A linearization of a p-schedule Sp of (G, w) is a
sequential schedule S` of (G, w) such that if an action a1 fin-
ishes before an action a2 starts in Sp, then it appears before
2These measures are called total work and total critical-path
length, respectively, in the distributed shared-memory model
of [9].
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Figure 2: A greedy pdf-schedule of a dag G, for p = 3.
All nodes have weight 1. On the left, the nodes of
G are numbered in order of a 1df-schedule, S1, of G.
On the right, G is labeled according to the greedy
pdf-schedule, Sp, based on S1; Sp = V1, . . . , V7, where
for i = 1, . . . , 7, Vi, the set of nodes scheduled in step
i, is the set of nodes labeled i in the figure.

a1 in S`. For the example in Figure 2, one linearization of
the pdf-schedule is

9, 17, 1, 8, 3, 2, 4, 10, 5, 6, 7, 11, 14, 12, 16, 15, 13.

We define the number of parallel steps of a linearization S`

of Sp to be the same as the number of steps of Sp, e.g., 7
in the example. We will consider worst case linearizations,
i.e., the adversary can select the linearization during exe-
cution time. Note that what the adversary controls is the
“ordering” among the actions that cover the same parallel
step.

Following [7], we define the premature nodes of a p-schedule.
Consider any prefix S ′

` of a linearized p-schedule S` based
on a sequential schedule S1. Let S ′

1 be the longest prefix of
S1 such that all the nodes in S ′

1 are in S ′

`. The nodes in S ′

`

can be partitioned into two groups: those not in S ′

1, called
premature nodes, and those in S ′

1, called mature nodes. S ′

1

is also called the mature-prefix of S ′

`. The following lemma
is an immediate consequence of Theorem 2.3 of [7].

Lemma 2. Let S` be a linearized p-schedule based on a
sequential schedule S1 of a dag. Then any prefix of S` has
fewer than (p− 1)dp premature nodes, where dp is the depth
of the dag under the schedule S`.

Note that this lemma does not provide a bound on the num-
ber of nodes that are ever premature—which can be as bad
as Ω(n) for a dag of n nodes—only a bound on how many
nodes can be simultaneously premature.

2.2 Caching Models
In this paper we are interested in modeling multiproces-

sors with a shared memory and a smaller, but faster shared
data cache. In the following definitions we stick to standard
terminology as much as possible.

We assume the cache and the memory each consists of a
set of fixed-size blocks that hold multiple memory words,
and that there is a fixed mapping C from memory blocks to
cache blocks. We say a memory block is associated with the
cache blocks it maps to. If every memory block maps to all
cache blocks the cache is fully associative. If every memory
block maps to one cache block, the cache is direct mapped.

The residency R ⊂ C of memory blocks in the cache is
a partial one-to-one function from memory blocks to cache

blocks. A memory access of block m can update the resi-
dency. If m is already in the cache at some cache block c
(i.e. (m, c) ∈ R) we call the access a cache hit and R is
unchanged. If m is not in the cache, then for some c such
that (m, c) ∈ C, (m, c) will be added to R (loaded) and if
there is an (m′, c) ∈ R, then it is removed from R (evicted).
We call this a cache miss.

The replacement policy for a cache dictates which memory
block is removed from R on eviction. On a cache miss for m,
any m′ such that (m, c) ∈ C and (m′, c) ∈ R is a candidate
for eviction. In the LRU (least recently used) replacement
policy, the evicted memory block is the candidate memory
block whose most recent access is the furthest in the past. In
the ideal replacement policy, the evicted memory block is the
candidate memory block whose next access is the furthest
in the future. This policy is known to minimize the number
of misses [6].

Frigo et al. [13] introduced the Ideal Cache model, which
is fully associative and uses the ideal replacement policy.
Although idealized, the model can be emulated on more re-
alistic cache models at the cost of only constant factors [13].
Many cache-oblivious algorithms have been designed using
this model (e.g., see [3] and the references therein).

In this paper, we make the natural extension of the Ideal
Cache model to a multiprocessor setting. For a given p-
schedule, a parallel step may be covered by up to p memory
accesses. Note that there may be overlap even among the
memory blocks accessed in a step.3 Multiprocessors have
different policies for resolving (serializing) concurrent ac-
cesses to the same memory block. In this paper, we (pes-
simistically) consider the serialization to be under the con-
trol of the adversary: our bounds consider all possible lin-
earizations of the p-schedule. By serializing concurrent ac-
cesses to the cache, a linearization serves two purposes: it
determines what the cache’s consistent state is for each ac-
cess and it totally orders the cache misses/hits so that se-
quential replacement policies can be directly applied. Note
that linearization is for the purposes of cache analysis only:
the actions in a parallel step are assumed to occur in parallel.

2.3 DAGs with Caching
For analyzing costs for computations with caching we as-

sume each memory access is its own action, and has weight 1
if it is a cache hit and weight m if it is a cache miss. Typical
values for m on current processors are in the hundreds, and
increasing with each passing year. The weight of a mem-
ory access can depend on the schedule, since whether it is a
hit or a miss can depend on the order in which actions are
scheduled. For example, if node 7 and node 9 in Figure 2 are
to the same memory block m, and node 8 does not access
memory, then node 7 is a miss and node 9 is a hit in the
1df-schedule. In the pdf-schedule, on the other hand, node
9 is a miss (because node 9 is scheduled before node 7) and
node 7 may be either a hit or a miss depending on whether
m gets evicted before node 7 is scheduled. We assume the
weights of all other actions do not depend on the schedule.

We will refer to a 1-schedule under the Ideal Cache model
as the Sequential Ideal Cache model, and a linearized p-
schedule under the Ideal Cache model as the Shared Ideal

3In the case of false sharing, the processors may be inter-
ested in different memory words that reside in the same
memory block; such actions are rightfully unordered in the
dag.



Cache model. Similarly, we will refer to a 1-schedule under
a variant of the Ideal Cache model that uses LRU instead of
ideal replacement as the Sequential LRU Cache model, and
a linearized p-schedule under the same variant as the Shared
LRU Cache model. Finally, observe that a replacement pol-
icy need not dictate an eviction priority based solely on the
ordering of accesses in its schedule. We will also consider a
replacement policy for p-schedules called Seq-LRU, which is
LRU according to a given 1-schedule (and not the current p-
schedule).4 We will refer to a linearized p-schedule under a
variant of the Ideal Cache model that uses Seq-LRU instead
of ideal replacement as the Shared Seq-LRU Cache model.

3. LOW MISS CACHE SHARING
This section presents our main results, as summarized by

the bounds in Table 1. To simplify the presentation of the
results, we will show only the case where the parameter δ in
the bounds is 0, leaving to Section 4 the generalization to
δ > 0. The section concludes with our lower bound on the
shared cache size required to have no extra misses.

3.1 Shared Caching with No Extra Misses
In this section, we compare the number of cache misses

MI on the Sequential Ideal Cache model with cache size C1

to the total number of misses Mp on the Shared Ideal Cache
model with p processors and cache size Cp. Our main result
shows that for any computation, if Cp ≥ C1 + pdp, then
Mp ≤ MI when using a p-schedule based on the sequential
schedule. This implies that although the set of miss nodes
differs between the two schedules, overall there are no extra
misses.

Theorem 1. Consider a computation with MI misses and
WI work on the Sequential Ideal Cache model with cache size
C1 under a sequential schedule S1. Any linearized greedy p-
schedule S` based on S1 will have at most MI misses and
WI

p
+dp parallel steps on the Shared Ideal Cache model with

p processors and any cache size Cp ≥ C1 + (p− 1)dp, where
dp is the depth of the computation dag under the schedule
S`.

Proof. We denote as a bad node any node that incurred
a hit in S1 but a miss in S`, and a good node any node that
incurred a miss in S1 but a hit in S`. We will show that
any bad node has a 1-1 correspondence with a good node
accessing the same memory block.

Let v be a bad node, and let b be the memory block ac-
cessed by v. Let S ′

` be the prefix of S` up to but not includ-
ing v, and let S ′

1 be the mature-prefix of S ′

` (i.e., the longest
prefix of S1 such that all its nodes are in S ′

`).
To facilitate the proof, we consider an abstract Shared

Cache Model that is identical to the Shared Ideal Cache
model except that it has a replacement policy that we de-
fine below. Because the ideal replacement policy necessarily
incurs no more misses than any other replacement policy,
showing that the abstract model incurs at most MI misses
implies that the Shared Ideal Cache model incurs at most
MI misses.

In the abstract model, we use C1 cache blocks to mimic
the cache residency for S1 under the Sequential Ideal Cache
model and use the rest to hold memory blocks accessed by
premature nodes. Specifically, we maintain the invariants

4We discuss in Section 4 how this might be implemented.

that (I1) every cache resident memory block in the sequen-
tial cache immediately after S ′

1 is also cache resident in the
shared cache immediately after S ′

`, and (I2) the shared cache
holds any memory block accessed by a premature node. By
lemma 2, there are always fewer than (p − 1)dp premature
nodes, and each such node can access at most one mem-
ory block. It follows that all the needed blocks fit within a
shared cache of size C1 + (p − 1)dp.

Because the bad node v is a hit in S1, there must a node
earlier in S1 that incurred a miss in S1 and brought b into
the sequential cache. Let v1 be the latest node among any
such nodes. Note that b resides in the sequential cache from
immediately after v1 to immediately after v (and possibly
longer). Let v2, . . . , vj be any nodes between v1 and v in
S1 that also access b. These accesses are all hits in S1. We
denote the nodes v1, . . . , vj as the run for v. We will show
that these accesses are all hits in S`, and hence v1 is a good
node, and the rest are neither good nor bad.

Each node vi, i ∈ [1..j], is scheduled either before or after
v in S`. We consider each case in turn.

Suppose vi is scheduled after v in S`. Node v is prema-
ture until all of v1, . . . , vj are scheduled. Thus, immediately
before vi is scheduled in S`, v is premature. By invariant I2,
b is in the shared cache at that point, so vi is a hit.

Next, suppose at least one node vi, i ∈ [1..j], were sched-
uled before v in S`. We will show that v would be a hit in
S`, a contradiction. If vi were premature in S ′

`, then b is in
the shared cache immediately before v (by invariant I2), and
v would be a hit, a contradiction. Thus, any vi scheduled
before v is mature in S ′

`, i.e., vi is in S ′

1. As noted above,
b resides in the sequential cache from vi to v, so it is in the
sequential cache immediately after S ′

1. By invariant I1, v
would be a hit, a contradiction.

Summarizing, we have shown that any node in the run for
a bad node v is scheduled after v in S`, and is a hit in S`.
This includes v1, the node at the start of the run, which was
a miss in S1. Thus v1 is a good node.

Therefore, for each bad node there is a good node. To see
that no other bad node is associated with this same good
node, note that a bad node ensures that all nodes in its run
are hits in S`. If two bad nodes were to share the same good
node, the bad node with the lower sequence number would
be included in the run of the other bad node and hence
would be a hit in S`, a contradiction.

It follows that S` incurs at most MI misses.
Finally, because S` has at most as many miss nodes as

S1, its work is at most WI . By Lemma 1, S` has fewer than
WI/p + dp parallel steps.

A Sequential Ideal Cache of size C1 can be simulated by
a Sequential LRU Cache of size 2C1 incurring at most twice
the misses [24], yielding the following corollary.

Corollary 1. Consider a computation with MI misses
and WI work on the Sequential Ideal Cache model with cache
size C1 under a sequential schedule S1. Any linearized greedy
p-schedule S` based on S1 will have at most 2MI misses and
WI+mMI

p
+dp parallel steps on the Shared Ideal Cache model

with p processors and any cache size Cp ≥ 2(C1+pdp), where
dp is the depth of the dag under the schedule S`.

3.2 Shared LRU Caching with No Extra Misses
In this section, we show that the optimal replacement pol-

icy is not required to obtain good cache behavior—simply



matching the replacement priorities of the sequential cache
can suffice. In particular, we consider the Shared Seq-LRU
Cache model, a weaker variant of the Shared Ideal Cache
model that uses an LRU replacement policy according to
a given 1-schedule. Specifically, the model associates with
each memory access its sequence number in the 1-schedule.
At any step in the p-schedule, we can associate these se-
quence numbers with the set of memory accesses in the p-
schedule so far. For each memory block currently resident
in the shared cache, we let the maximum sequence number
among these accesses be the block’s priority. We evict the
memory block with lowest priority.

The following theorem shows that a result similar to Theo-
rem 1 can be obtained for the Shared Seq-LRU Cache model.

Theorem 2. Consider a computation with ML misses and
WL work on the Sequential LRU Cache model with cache size
C1 under a sequential schedule S1. Any linearized greedy p-
schedule S` based on S1 will have at most ML misses and
WL

p
+ dp parallel steps on the Shared Seq-LRU Cache model

with p processors and any cache size Cp ≥ C1 + (p − 1)dp,
where dp is the depth of the computation dag under the
schedule S`.

Proof. The proof has a similar high level structure as
the proof of Theorem 1 but is complicated by not being
able to leverage an ideal replacement policy.

Let bad nodes, good nodes, the bad node v, its memory
block b, the prefix S ′

`, its mature-prefix S ′

1, and the run
v1, . . . , vj for v all be defined as in the proof of Theorem 1.

We will show that all the accesses in the run for v are hits
in S`. Each node vi, i ∈ [1..j], in the run is scheduled either
before or after v in S`. We consider each case in turn.

Suppose vi is scheduled after v in S`. Node v is premature
until all of v1, . . . , vj are scheduled. Thus, immediately be-
fore vi is scheduled in S`, v is premature. Hence b is among
the (p − 1)dp highest priority memory blocks. The shared
cache always holds the Cp highest priority memory blocks,
so b is in the shared cache immediately before vi, and vi is
a hit.

Next, suppose at least one node vi, i ∈ [1..j], were sched-
uled before v in S`. We will show that v would be a hit
in S`, a contradiction. If vi were premature in S ′

`, then b
is among the (p − 1)dp highest priority memory blocks, so
b is in the shared cache immediately before v, and v would
be a hit, a contradiction. Thus, any vi scheduled before v
is mature in S ′

`. Let vi′ have the largest sequence number
among these nodes. Immediately after vi′ is scheduled in
S`, memory block b is in the shared cache.

We claim that the number of memory blocks in S ′

` with
higher priority than b is less than the shared cache size, and
hence b is in the shared cache when v is scheduled, contra-
dicting v being a miss in S`. To simplify the exposition, we
define vj+1 to be v in what follows. Because vi′+1, . . . , vj+1

are hits in S1, the nodes in S1 between each consecutive pair
in this sequence can access up to C1 − 1 distinct memory
blocks. Thus there can be far more than Cp distinct memory
blocks accessed between vi′+1 and v. As the p-schedule may
schedule these intervening nodes in a different order, a more
careful argument is needed than simply counting the num-
ber distinct memory blocks between vi′+1 and v. Instead,
we argue that because v is scheduled no later than vi′+1

(by the definition of vi′ ), the only mature nodes with larger
sequence numbers than vi′ in S ′

` lie between vi′ and vi′+1.

Moreover, by Lemma 2 there are fewer than (p − 1)dp pre-
mature nodes, each of which can access at most one distinct
memory block. The claim follows.

Finally, it follows as argued in the previous proof that v1

is a good node, we have a 1-1 correspondence from the bad
nodes to the good nodes, and hence S` incurs at most ML

misses. The theorem follows by applying Lemma 1.

3.3 Miss vs. Cache Size Trade-offs for Shared
LRU Caching

In this section, we consider the Shared LRU Cache model;
this model uses standard LRU replacement (unlike the Shared
Seq-LRU Cache model considered in Section 3.2). We present
a trade-off between the shared cache size and the number of
misses. Unlike the result in Corollary 1, the shared cache is
only an additive term larger than the sequential cache.

Theorem 3. Let α ≥ 1 be an integer parameter. Con-
sider a computation with ML misses and WL work on the
Sequential LRU Cache model with cache size C1 under a
sequential schedule S1. Any linearized greedy p-schedule S`

based on S1 will have at most WL/α + ML misses and at

most (1+m/α)WL

p
+dp parallel steps on the Shared LRU Cache

model with p processors and any cache size Cp ≥ C1 + (α +
1)(p − 1)dp, where dp is the depth of the computation dag

under the schedule S`.

Proof. We use the definitions for good node, bad node,
and run from Theorem 1. Consider a bad node v and its
run v1, . . . , vj in S1 (this is the sequence of accesses to the
same memory block such that v1 is a miss and v2, . . . , vj , v
are hits in S1). We call each pair (vj , v) a support pair.
We consider two cases relative to each support pair (va, vb):
when va appears before vb in S` (i.e., as in S1) and when
it appears after. We refer to nodes (actions) that access
memory as access nodes. We say that a node v is premature
for n access nodes if during n accesses in S` v is premature.

Consider the first case. By definition vb is a hit in S1

and a miss in S`. For vb to become a miss in S` it must
be separated from va by at least Cp access nodes. In S1

vb is separated from va by at most C1 access nodes. To
force a miss we therefore need to insert at least Cp − C1 =
(α + 1)(p − 1)dp new access nodes between va and vb in
S`. Such nodes can be inserted in two ways. First, access
nodes that come after vb in S1 can be executed prematurely
relative to vb. By Lemma 2 there can be at most (p − 1)dp

such nodes. Second va can be executed prematurely in S`.
To force a miss at least (α+1)(p−1)dp−(p−1)dp = α(p−1)dp

access nodes that appear before va in S1 must appear after
va in S`. Thus va must be premature for at least α(p− 1)dp

access nodes.
To analyze how many accesses in S` can be premature for

α(p−1)dp access nodes we note that for each access node in
S` at most (p − 1)dp loads are premature (Lemma 2), and
that there are a total of at most WL access nodes. Therefore
we can have at most ((p − 1)dpWL)/(α(p − 1)dp) = WL/α
accesses that are premature for α(p − 1)dp accesses nodes.
These are the only possible additional misses caused by the
first case, va before vb. These will add mWL/α steps to Wp.

We now consider the second case, vb before va in S`. Con-
sider the run v1, . . . , vj for vb in S1 and the step at which
each node in the run becomes mature in S`. Call these the
maturing points. Then in S` vb can either be scheduled be-
fore all the maturing points or between two maturing points



1C

...

1C 1C1C

1C 1C

1C +1

1C +1 1C +p−1

1C +p−1

1C

1C +(h−1)(p−1)+1

1C

1C

1C

1C

1C

1 2
...

+2(p−1)+p

+p +2(p−1)

...

...

...

...

...

...

...
1 2

+(h−1)(p−1)+1

+h(p−1)

+h(p−1)

Figure 3: Computation dag for showing the lower
bound in Theorem 4.

vi and vi+1. In the latter case it will either be a cache hit
because vi supports it, or we can count the fact it is a cache
miss against vi as discussed above (because vi must prema-
ture for α(p−1)dp access nodes). In the prior case one of v1

or vb will support the other as long as neither is premature
for more than C1 +(α+1)(p−1)dp access nodes. Therefore
to create a net additional miss one of them has to be pre-
mature for C1 + (α + 1)(p − 1)dp access nodes. Since this
is greater than α(p− 1)dp we have already counted these in
the first case. We need to show, however, that such a node
can’t net two additional misses: it’s own due to the second
case and another node’s due to the first case.

Consider a node v. To net two additional misses, v needs
to support another node v+ in S1 (which will be a bad node),
and needs to be supported by a node vj in S1 (so v can be
a bad node). The node vj must be scheduled in S` at least
α(p − 1)dp access nodes before v matures otherwise vj will
support v+ S` and v+ won’t be a bad node. For the second
case, v has to be scheduled C1+(α+1)(p−1)dp access nodes
before vj in S`. Therefore if v falls into both cases it has
to be premature for (C1 + (α + 1)(p − 1)dp) + (α(p − 1)dp)
access nodes. This means each span of α(p−1)dp of memory
accesses for which a node is premature is responsible for at
most one additional miss. The same bound on additional
misses as the first case follows.

3.4 A Lower Bound on Shared Caching with
No Extra Misses

Theorems 1 and 2 show that a shared cache of size C1 +
(p − 1)dp suffices to have no extra misses. In this section,
we show that a shared cache of size C1 + o((p− 1)dp) is not
sufficient.

Theorem 4. For all number of processors p ≥ 2, sequen-
tial cache size C1 ≥ 2, miss cost m ≥ 2, sequential depth

dL > 6m, and shared cache size Cp ≤ C1 +
(p−1)dp

3
, there

exists a computation dag G such that:
(1) a 1df-schedule S1 of G incurs ML misses and dL depth
on the Sequential LRU Cache model with cache size C1, and
(2) any linearized greedy p-schedule S` based on S1 incurs

greater than ML misses on the Shared Ideal Cache model
with cache size Cp, where dp is the depth of the computation
dag under the schedule S`.

Proof. Consider the computation dag depicted in Fig-
ure 3. Nodes are labeled with the memory block they access.
Unlabeled nodes do not access memory. Each node labeled
C1 has m−1 children, except that the top such node has one
child, the bottom such node has no children, and the next-
to-bottom such node has m − 1 + C1 children. All nodes
have weight 1, except that nodes that are misses in a given
schedule have weight m. The construction works when dL

is an even number, although it is trivially adapted to handle
odd dL. The middle section of the dag repeats itself a total
of h times, where h is determined by the analysis below.

Consider a 1df-schedule S1 of the dag that schedules the
children of a parent node in left-to-right order. S1 accesses
memory blocks 1, 2, . . . , C1, which are all misses, followed by
h additional accesses of block C1, which are all hits, followed
by accesses to blocks 1, 2, . . . , C1, which are all hits. After
that, S1 accesses the remaining h(p−1) blocks twice each in
succession, with the first access a miss and the second a hit.
Thus S1 incurs only one miss for each memory block, which
is the minimum number possible: ML = C1 + h(p − 1).

The sequential depth dL is m+2h−1+m+1 = 2m+2h.
Thus setting h = (dL − 2m)/2 gives the desired sequential
depth. Also, because dL > 6m, we have that h > 2m, i.e.,

m < h/2 (1)

Now consider the p-schedule S` and assume that it also
incurs only one miss for each memory block. That is, any
time an access to a memory block is scheduled after the first
such time, it must be a hit. We will show this leads to a
contradiction.

Given the assumption, S` accesses memory blocks 1, 2, . . . ,
C1, which are all misses, in an order determined by the lin-
earization. This is followed by h rounds of one processor ac-
cessing C1 (a hit) and p− 1 processors accessing new blocks
(misses). While these latter processors are incurring cost
m to service the miss, the former processor executes the
m − 1 children of the hit node. Immediately after the last
of these h rounds, S` has accessed all C1 + h(p − 1) blocks
and each block still needs to be accessed one more time. By
the assumption, all the blocks must currently reside in the
shared cache, otherwise there would be subsequent misses.
Thus Cp ≥ C1 + h(p − 1). Moreover, dp = dL = 2m + 2h.

But also, Cp ≤ C1 +
(p−1)dp

3
= C1 + (p−1)(2m+2h)

3
, which by

equation 1 is less than C1 + h(p − 1), a contradiction.
Thus S` incurs more misses than S1.

Note that although Theorem 4 is stated in terms of the
Sequential LRU Cache model, it can be generalized to other
sequential cache models. The only properties of the sequen-
tial cache that are needed for the proof are (1) that we can
determine a priori C1 memory blocks that map to distinct
cache blocks (we need the memory blocks labeled 1, 2 . . . , C1

to each map to distinct cache blocks), and (2) only refer-
enced blocks are brought into the cache (so that evictions
occur only as planned). Thus, for example, the Shared Ideal

Cache with cache size C1 +
(p−1)dp

3
will incur more misses

than even a direct-mapped sequential cache with cache size
C1. As the proof shows, an extra miss occurs because the
p-schedule has too large of a working set—clever caching
strategies can not overcome this problem.



4. FURTHER RESULTS AND DISCUSSION

4.1 Trading Off Work for Cache Size
For the ideal and shared seq-LRU cache models the bounds

on cache size is due to the fact that there can be (p − 1)dI

premature cache misses. Here we show how the number of
premature cache misses can be reduced by adding a delay δ
to each of the cache misses. This delay is executed before the
cache miss is processed and will reduce the number of pre-
mature cache misses from (p−1)dI to (p−1)dI/(1+δ). For
the bounds, it is important that a preemption can happen
any time during the delay.

To deal with the delay in the dag model of computations
we allow for the insertion of new actions into a computa-
tion. This violates our assumption that the dag structure
is independent of the schedule, but only in a limited way.
In particular for certain actions v (cache misses in our case)
we add a chain of δ new associated actions immediately pre-
ceding v, each with weight 1. We say that v is δ-extended,
and say that a dags G′ is an an extension of G if when any
associated actions are removed from G′ the dags are the
same. A prioritized p-schedule S` of a dag G′ is an exten-
sion of a 1-schedule S1 of a graph G, if G′ is an extension of
G, the priorities for actions v ∈ G are given by their order
in S1 (highest priority first), and the priority of any of the
associated actions of a δ-extended action v ∈ G are assigned
starting just above the priority for v.

Theorem 5. Let S ′

` be a prefix of a linearized p-schedule
S` that is an extension of a sequential schedule S1. The
number of δ-extended premature actions in S ′

` is less than
(p − 1)dp/(δ + 1).

Proof. For a δ-extended action v to be premature, all
of its associated actions need to be premature since their
priorities fall immediately higher than that of v. There-
fore if there can be at most (p − 1)dp premature actions
(Lemma 2) then there can be at most (p − 1)dp/(δ + 1) δ-
extended actions, along with their δ associated actions, that
are premature.

Based on this theorem, and assuming every cache miss
is δ-extended, adjusting the proof of Theorems 1 and 2 to
generate the bounds given in Table 1 is not hard. For exam-
ple the proof of Theorem 1 goes through even if (I2) states
that the shared cache holds any memory block accessed and
missed by a premature action. The stricter bound on pre-
mature misses then gives the required bounds. Given Mp

misses in S` the work increases by δMp since every miss
adds δ actions.

We note that these bounds do not violate the lower bound
of Theorem 4 since by adding the delay actions we are chang-
ing the structure of the dag.

4.2 Coarse-Grained Parallelism
Our results also apply to multithreaded computation mod-

els (e.g., [10]). In such models the actions are properly par-
titioned into a set of paths in the dag, which are called
threads. In practice it is best to avoid preempting threads
between actions since it might involve a context switch (the
assumption is the actions within a thread share state such
as the register set). Formally we say a thread t is preempted
between actions a1 and a2 of t if a1 finishes on some step i,
and a2 is ready but does not start on step i+1, e.g., because
an action from another thread is scheduled instead.

In general a prioritized p-schedule often needs to preempt
a thread to schedule a higher priority action from another
thread. This ability is important in our results so that the
number of premature actions of certain types can be limited,
e.g., cache misses. Since we do not care about other actions,
however, we can looses the definition of a prioritized schedule
to only prioritize certain actions. This means that preemp-
tion is never necessary before any other action. Formally
we say a p(a)-prioritized p-schedule is one in which only ac-
tions satisfying a predicate p(a) are prioritized. In Table 1
the bounds of rows 1, 2 and 4 are valid when p(a) is only
true for the action immediately following each cache miss in
a thread. This is because all we care about are the prema-
ture nodes that are misses—by only preempting after cache
misses we can get more than (p−1)dp premature nodes, but
only (p−1)dp of them can be cache misses. When combined
with delay (Section 4.1) we still require that a thread can
be preempted any time during its delay steps. The lower
bound of Theorem 4 is valid for any p(a) which is at least
true for the action immediately following each cache miss in
a thread. Finally, in Table 1, the bounds of row 3 are valid
when p(a) is true for all memory references, but not other
instructions. This is because even a premature cache hit can
cause an extra miss.

4.3 Maintaining the Priority Order
Section 3.2 considered a replacement policy for p-schedules

called Seq-LRU, which is LRU according to a given 1-schedule.
Implementing such a replacement policy is actually not much
more difficult than implementing a standard LRU policy, at
least if the 1-schedule is a 1df-schedule. The standard im-
plementation of an LRU policy uses a doubly linked list to
maintain the priority order. Executing a cache hit on mem-
ory block b will splice b out of where it currently appears in
the list and put it at the head of the list. Executing a cache
miss on b will add b to the head of the list, and evict the tail
of the list.

To extend this to maintain the Seq-LRU policy for a 1df-
schedule we have each ready node v maintain an additional
finger element in the list which corresponds to its priority;
i.e., all elements in the list after the finger correspond to ac-
cesses that occur after v in the 1df-schedule, and elements
before the finger correspond to accesses before v in the 1df-
schedule. Here we outline how these fingers can be main-
tained. When v executes a memory access the memory block
is spliced in immediately before the finger element (instead
of at the head of the list). Any nodes that become ready af-
ter v is executed, and are not dependent on any other nodes,
are given fingers immediately following v (if more than one,
they are put in their sequential order). If the ready child is
dependent on other nodes, the child inherits the latest finger
from its parents.

The implementation as is described is sequential. To im-
plement a parallel version would likely require some form of
tree. We do not study such a parallel version here, which
could likely use the priority queue scheduler presented in [8].

4.4 Direct-Mapped Shared Caches
Many machines provide direct-mapped caches. We are

currently exploring two ways to extend our results to direct-
mapped shared caches. One approach is to study random-
ized direct-mapped caches, in which memory blocks are as-
signed to cache blocks using a random hash function. Such



a cache has similar characteristics to a fully associative LRU
cache in that the more memory accesses between two consec-
utive accesses to the same block b, the greater the likelihood
that b will be evicted between the two. In the LRU this is
a 0-1 step function, while in the randomized direct-mapped
case it is a smoothly increasing function. We conjecture
that bounds similar to Theorem 3 can be shown on expec-
tation. A second approach is to consider a machine with a
direct-mapped cache augmented by a fully associative vic-
tim cache [17]. We conjecture that a small (O(pdp) size)
specially-designed victim cache may suffice, because it need
only hold blocks accessed by the currently premature nodes.

5. CONCLUSION
This paper presented upper and lower bounds for the

number of cache misses of a computation when run on p
processors or threads with a shared cache as compared to
the number of misses for the same computation on a single
processor. The user is free to optimize the single processor
ordering (e.g., by reordering loops, or the order of function
calls), and our bounds are then relative to that ordering.
We showed that for the Ideal Cache and a variant of the
LRU cache the p processor version need suffer no additional
misses when the shared cache is pdp larger than the single
processor cache. We showed that these bounds are tight
for greedy schedules. For the true LRU cache the p proces-
sor version might require additional misses, but these are
bounded. All our bounds are for prioritized schedules based
on the sequential schedule.

Our results give some theoretical justification for sharing
caches among processors since they show that under certain
conditions it is adequate to support a total shared cache
size that is only slightly larger than the single processor
cache size. The results also indicate that perhaps prior-
itized schedules, and in particular pdf-schedules, are the
most appropriate for machines with shared caches.
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