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Abstract. We consider the problem of fitting metric data on n points
to a path (line) metric. Our objective is to minimize the total additive
distortion of this mapping. The total additive distortion is the sum of
errors in all pairwise distances in the input data. This problem has been
shown to be NP-hard by [13]. We give an O(log n) approximation for this
problem by using Garg et al.’s [10] algorithm for the multi-cut problem
as a subroutine. Our algorithm also gives an O(log1/p n) approximation
for the Lp norm of the additive distortion.

1 Introduction

One of the most common methods for clustering numerical data is to fit the
data to tree metrics. A tree metric is defined on vertices of a weighted tree.
The distance between two vertices is the sum of the weights of edges on the path
between them. Here the main problem is to find a tree metric that represents the
input numerical data as closely as possible. This problem, known as numerical
taxonomy, has applications in various fields of science, such as linguistics and
evolutionary biology. For example, in evolutionary biology tree metrics represent
the branching process of evolution that leads to the observed distribution of data.
Naturally, this problem has received a great deal of attention. (e.g. see [3, 14]).

The problem of fitting data to tree metrics is usually cast as the problem of
minimization of Lp(D,T ): the Lp norm of additive distortion of the output tree
T with respect to input data D. The input data is specified as an n× n matrix,
where the entry Dij denotes the distance between points i and j. Let Tij denote
the distance between i and j in the output tree metric T . Then the Lp norm
of additive distortion is Lp(D,T ) = (

∑
i,j |Dij − Tij |p)1/p. Such a formulation

was first proposed by [5] in 1967. In 1977, Waterman et al. [15] showed that if
there is a tree metric T coinciding exactly with the input data D, then it can be
constructed in linear time. In the case when there is no tree that fits the data
perfectly, Agarwala et al. [1] used the framework of approximation algorithms
to give heuristics with provable guarantees for the problem. They gave a 3-
approximation to the L∞ norm of the additive distortion for fitting the data to
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a tree metric. They reduced the problem to that of fitting the data to ultrametric,
where each leaf is at the same distance from a common root. For ultrametrics,
they used an exact polynomial-time algorithm for the L∞ norm due to Farach et
al. [8]. Agarwala et al. [1] showed that if there is a ρ-approximation algorithm
for ultrametrics under the Lp norm, then it implies a 3ρ-approximation for tree
metrics under the Lp norm. Our work is motivated by this problem.

For a special case of fitting the data to a tree metric under L1 norm, we
make a simple observation. Suppose we know the structure of the tree along
with a mapping of the points to the vertices of the tree. Then we can find the
edge weights that minimize the L1 norm of additive distortion using linear pro-
gramming. However, finding the topology of the tree is the hard part. Therefore,
we consider a special case of the problem in which we restrict the structure of
the output tree to be a path. For this special case, we give an approximation
algorithm. We believe that our techniques can be extended to solve the original
problem. The main result of this paper is the following theorem.

Theorem 1. There is an O(log1/p n)-approximation algorithm for the problem
of fitting metric data to a line metric to minimize the Lp norm of additive
distortion for p ≥ 1.

1.1 Related Work

Note that fitting points to a path metric is equivalent to fitting points on a
real line, where the distances in the real line are defined in a natural way. The
special case of the problem for the L∞ norm (i.e. with p = ∞) was considered
by H̊astad et al. [11]. They gave a 2-approximation for it.

For fitting points to a line, a well-known result due to Menger (see e.g. [6])
gives the following four point criterion. The four point criterion says that, if
every subset of size 4 can be mapped into the real line exactly, then all the
points can be mapped into the line exactly. An approximate version of Menger’s
result was given by Badoiu et al. [2]. They proved that if every subset of size
4 can be embedded into the line with the L∞ norm of the additive distortion
being at most ε then all the points can be embedded with the L∞ norm of the
additive distortion being at most 6ε.

In a related work, Dhamdhere et al. [7] and Badoiu et al. [2] independently
studied average distortion of embedding a metric into path metrics. The objective
was to minimize

∑
i,j fij , subject to fij ≥ Dij for all i, j, where Dij is the

distance between points i and j in the input and fij is the distance between
them in the output path metric. They gave a 14-approximation for the problem.
While their problem has additional constraint fij ≥ Dij , their objective function
is easier than the L1 norm of the additive distortion. We do not know how to
minimize the Lp (or even the L1) norm of additive distortion under the additional
constraint. However, for the special case of p = ∞, we would like to point out
that the algorithm for min-excess path problem due to Blum et al. [4] gives a
2 + ε approximation. The min-excess path problem asks for a path from a source
s to a destination t that visits at least k vertices and minimizes the objective
l(path)− d(s, t), where l(path) is the length of the path.



1.2 Techniques and Roadmap

In Section 2, we define our problem formally. In Section 3, we show how to reduce
the problem to that of finding the best r-restricted mapping. An r-restricted
mapping of the input points into a line is one in which the distances of all
points in the line from point r are same as that in the input. We show that this
problem is equivalent to a two-cost partition problem. In Section 4, we give an
approximation for this problem via the multi-cut problem [10].

2 Problem Definition

Consider a set of n points, denoted by [n] = {1, 2, . . . , n}. The input data consists
of an n × n matrix Dn×n. The entry Dij denotes the distance between points
i and j. We assume that all the entries of D are non-negative and that D is
symmetric.1 Furthermore, we assume that Dii = 0 for all i.

Let f : [n] → IR denote a mapping of the input points to the real line.
Distance between images of points i and j in the line is given by fij = |f(i) −
f(j)|. The total additive distortion (in the L1 norm) is given by

L1(D, f) =
∑
i,j

|Dij − fij |.

Generalizing this, we can write the Lp norm of the additive distortion as

Lp(D, f) =
( ∑

i,j

|Dij − fij |p
) 1

p .

The goal is to find a map f that minimizes the L1(D, f) (or more generally
Lp(D, f)).

3 Approximation for Lp norm

In this section, we give an approximation algorithm for minimizing the Lp norm
of the additive distortion.

In Lemma 1, we will show that it is sufficient to look at r-restricted mapping
of the points into the real line. The problem of finding an optimal r-restricted
mapping can be cast as a kind of partition problem given the characteristics of
the real line.

1 Our results hold even if the input distances in Dn×n do not satisfy triangle inequality,
i.e. even if D is not a “metric”.



3.1 r-restricted mappings

Let r be a point in the input. A mapping f of the input points to the real line
IR is an r-restricted mapping, if distance on the line of all points from r is same
as that in the input. Formally, Dri = |f(r)− f(i)| for all i.

We will denote an r-restricted mapping by fr. We next show that there is
always a “good” r-restricted mapping. This will enable us to focus only on r-
restricted mappings which are easier to handle. Agarwala et al. [1] prove a similar
lemma for tree metrics. We adapt their proof for the case of line metrics.

Lemma 1. There exists a point r among the input points such that there is an
r-restricted mapping fr that is within a factor of 3 of the optimal mapping for
the Lp norm of additive distortion, for all p ≥ 1.

Proof. Let f∗ denote an optimal mapping of the input points to the line for the
Lp norm of additive distortion. We will modify the optimal solution to produce
a mapping f i for each point i in the input. To produce the restricted mapping
f i, perturb the distances in f∗ so that it becomes i-restricted. In particular, if
f∗(j) ≤ f∗(i) for some j, then set f i(j) = f∗(i)−Dij and if f∗(j) > f∗(i), set
f i(j) = f∗(i) + Dij . Our mapping f i maps point i to f∗(i). It maps rest of the
points according to their distance from i, while maintaining their order to the
left or right of point i in the optimal mapping f∗.

Let εjk denote |Djk−f∗jk|. We can write the additive distortion of the optimal
mapping as Lp(D, f∗) = (

∑
j,k εp

jk)1/p. From the construction of the map f i, it
follows that |f∗jk − f i

jk| ≤ εij + εik.
Now we bound the additive distortion of f i in terms of εjk’s. For all j, k we

have,

|Djk − f i
jk| ≤ |f∗jk − f i

jk|+ |Djk − f∗jk|
≤ (εij + εik) + εjk (1)

Note that |x|p is a convex function of x for p ≥ 1. Therefore, Equation (1)
gives us the following:

|Djk − f i
jk|p ≤ (εij + εik + εjk)p

≤ 3p−1(εp
ij + εp

ik + εp
jk) (2)

By an averaging argument, we can say that

min
i
{Lp(D, f i)p} ≤

∑n
i=1 Lp(D, f i)p

n

We use Equation (2) to bound the sum
n∑

i=1

Lp(D, f i)p ≤
n∑

i=1

∑
j,k

3p−1(εp
ij + εp

ik + εp
jk)

≤ 3pn ·
∑
j,k

εp
jk

= 3pn · Lp(D, f∗)p



Therefore, mini Lp(D, f i) ≤ 3 · Lp(D, f∗) which proves the result.

3.2 Algorithm

The result of Lemma 1 proves that it is sufficient to consider r-restricted map-
pings (with a loss of 3 in the approximation factor). Next we describe the algo-
rithm that implements this idea.

Algorithm A:

1. For each point r = 1, 2, . . . , n, find (approximately) the best r-restricted
mapping fr.

2. Output a mapping that has the smallest additive distortion among these
mappings.

By Lemma 1, the additive distortion of the output of Algorithm A is within
a factor of 3 of the optimal additive distortion. As we point out in Section 5,
finding best r-restricted mapping is NP-hard. Therefore, we approximate the
optimal a-restricted mapping within a factor of O(log1/p n). From the following
observation it follows that the overall approximation factor of our algorithm will
be O(log1/p n).

Lemma 2. If ρ is the approximation factor of the algorithm for r-restricted
mapping, then the solution produced by Algorithm A will be a 3ρ approximation
for the additive distortion.

4 Approximating r-restricted mappings

Let f be an r-restricted mapping. Without loss of generality, we can assume
that f(r) = 0. Let V1 = {i | f(i) < 0} and V2 = {i | f(i) > 0}. Note that
[n] = V1 ∪ {r} ∪ V2. Note that, the mapping f is fully characterized by the
partition V1∪V2 of [n]−{r}. Hence, the problem of finding the best r-restricted
mapping is equivalent to the problem of finding the partition of V = [n]−{r} that
has minimum additive distortion. Henceforth, we will think of the problem as
that of partitioning the input set of points to minimize the cost of the partition,
i.e. the additive distortion. For simplicity, we describe the argument for p = 1.
The other cases (p > 1) are similar.

Consider a partition V1 ∪ V2 induced by an r-restricted mapping f . We can
write an expression for its cost as follows. Consider two points x and y. If they
both belong to the same side of the partition, then the contribution of the pair
{x, y} to the cost of the partition is c(x, y) = |Dxy−fxy| = Dxy−|f(x)−f(y)| =
|Dxy−|Drx−Dry||. On the other hand, if x and y belong to different sides of the
partition, then the contribution is c′(x, y) = |Dxy−fxy| = |Dxy−|f(x)−f(y)|| =
|Drx +Dry−Dxy|. Note that c(x, y) and c′(x, y) are completely determined from
the input matrix Dn×n.



Therefore, we can think of the problem as a graph partitioning problem where
each edge has two costs c(·) and c′(·) associated with it. The objective function
is ∑

x, y on same side

c(x, y) +
∑

x, y on different sides

c′(x, y)

4.1 Two-cost Partition Problem

We are given a complete graph G = (V,E) with two cost functions c and c′.
We want to find a partition of the vertex set V = V1 ∪ V2 which minimizes∑

i=1,2

∑
u,v∈Vi

c(u, v) +
∑

u∈V1,v∈V2
c′(u, v).

Note that, if c(u, v) = 0 for all u, v, then the problem reduces to finding a
minimum cut in the graph. On the other hand, if c′(u, v) = 0, then the problem
is the well known edge deletion for graph bipartition problem (BIP) [12]. Our
algorithm generalizes the algorithm for graph bipartition given by [12, 10]. The
basic idea is to create two copies of each vertex to go on different sides of the
partition. To ensure that they are on different sides, we designate each pair as a
source-sink pair in the multi-cut subroutine.

Algorithm B:

1. Create an auxiliary graph G′ from the graph G as follows.
(a) For each vertex u in the graph G, G′ has two vertices: u and u′.
(b) For each edge (u, v) we create 4 edges in G′: (u, v), (u, v′), (u′, v) and

(u′, v′).
(c) The edges in G′ have weights, denoted by l(·, ·). Set l(u, v) = l(u′, v′) =

c(u, v) and l(u, v′) = l(u′, v) = c′(u, v).
2. Use an approximation algorithm for the multi-cut problem (E.g., [10]) as

a subroutine to find a multi-cut in graph G′ with (u, u′), for all u, as the
source-sink pairs. Let S be the set of edges in the multi-cut returned by the
subroutine.

3. Construct a set of edges T as follows. If {u, v} or {u′, v′} is chosen in S, then
include both in T . Similarly, if {u, v′} or {u′, v} is chosen, then include both
in T .

4. Find a bipartition V ′
1 ∪ V ′

2 of vertices of G′ so that T contains all the edges
going across the partition.2

5. Output the partition V1 ∪ V2, where Vi = V ′
i ∩ V .

The intuition behind this algorithm is as follows. For the cut represented by
T , we will show that we can get a partition of vertices in graph G′ such that only
one of u and u′ is in one partition. From the partition of G′, we get a bipartition
of G. The cost of the bipartition of G is related to the cost of multi-cut obtained
by above algorithm in the graph G′. We prove this in the next lemma.

2 We will show how to do this in the proof of Proposition 1.



Lemma 3. Algorithm B returns a partition V ′ = V ′
1 ∪V ′

2 of graph G′, such that
if u ∈ V ′

1 , then u′ ∈ V ′
2 and vice versa. Moreover,

∑
x∈V ′

1 ,y∈V ′
2
l(x, y) is at most

twice that of the multi-cut found after step 2 by Algorithm B separating each u
from u′.

Proof. Consider the set S of edges found by the multi-cut subroutine whose
removal separates each u from u′. For each edge (x, y) ∈ S, we also include its
“mirror” edge in T . i.e. if (x, y) ∈ S, then (x′, y′) ∈ T from the graph. Note
that, the cost of an edge and its “mirror” edge is same (i.e., l(x, y) = l(x′, y′)).
Therefore, the cost of the edges in T is at most twice the cost of edges in S.

Now we show that removal of the edges in T breaks the graph in two parts
with the desired property. Consider the graph G′\T . Construct a graph H whose
vertices represent the connected components in G′ after removing the edges in
T . Two vertices h1 and h2 in H are connected to each other if the corresponding
connected components in G′ have vertices x and x′.

In Proposition 1, we prove that the graph H is bipartite. Now we can use
graph H to construct a partition V ′ = V ′

1 ∪ V ′
2 in graph G′. Since the vertices

in graph H were connected components in graph G′, there are no edges crossing
the partition V ′

1 ∪ V ′
2 in graph G′. Moreover, bipartiteness of graph H means

that each pair of vertices x and x′ in graph G is split in the partition. The cost
of this partition is at most 2 times the cost of the multi-cut.

Proposition 1. The graph H defined in the proof of Lemma 3 is bipartite.

Proof. For the sake of contradiction, assume that H has a cycle of odd length.
Consider three consecutive vertices u, v and w in this odd cycle. Let v be con-
nected to u and w.

Let x be a vertex of G′ that belongs to the connected component u and defines
the edge {u, v} in graph H. Therefore, x′ is the component v. Similarly, let y be
a vertex in component w and y′ be the corresponding vertex in component v.
Since x′ and y′ are in the same connected component v, there is a path x′ → y′

that lies completely inside the component v. Since we didn’t remove any of the
edges on the path x′ → y′, all the mirror edges haven’t been removed either.
Therefore the the mirror path x → y connects x and y. This contradicts the fact
that x and y were in different connected components.

This proves that the graph H is a bipartite graph.

Lemma 4. The cost of the optimal multi-cut is a lower bound on the cost of
partition of graph G.

Proof. Consider a partition V = V1∪V2 of graph G. From this, we can construct
a partition of the vertex set of G′. Let V ′

1 = V1 ∪ {x′ | x ∈ V2} and V ′
2 = V ′\V ′

1 .
Then, removing all the edges in G′ crossing this partition ensures that no vertex x
is connected to its counterpart x′. i.e. The set of edges going across the partition
is a multi-cut. The cost of these edges is exactly the cost of the partition of G.



Recall that GVY algorithm for multi-cut [10] is an O(log k) approximation
for k terminals. Here we have n terminals. Therefore by Lemmas 3 and 4, we
get an O(log n) approximation for the best r-restricted mapping. Along with
Observation 2 give us an O(log n) approximation for the L1 norm of additive
distortion.

To get an approximation algorithm for the Lp norm, we modify the costs in
the two-cost partition problem as follows. Let c(x, y) = |Dxy−|Dax−Day||p and
c′(x, y) = |Dax + Day −Dxy|p. With these costs, Algorithm B gives an O(log n)
approximation for Lp(D, fa)p. Therefore, for the Lp norm of additive distortion,
we get an O(log1/p n) algorithm.

5 Open questions

We can show that the problem of finding the best r-restricted mapping is NP-
hard by reducing the edge deletion for graph bipartition (BIP) [9] to it. Consider
a graph G. Let V (G) = n. We construct a distance matrix D on n + 1 points
V (G) ∪ {a}. Set the diagonal entries Dxx to 0. Set Dax = 1/2 for all x ∈ V (G).
For all {x, y} ∈ E(G), set Dxy = 1. Set the rest of the entries to 1/2. Consider
an r-restricted mapping. Let V (G) = V1 ∪ V2 be the partition induced by the
r-restricted mapping. Then the cost of the r-restricted mapping is B(V1, V2) +
(1/2)(

(
n
2

)
− |E(G)|), where B(V1, V2) is the number of edges that need to be

deleted to obtain V1 and V2 as two sides of a bipartite graph. Therefore, finding
the optimal r-restricted mapping corresponds to minimizing the number of edges
deleted for making the graph G bipartite. This proves that finding the best r-
restricted mapping is NP-hard. However, this reduction is not approximation
preserving. So it does not preclude the possibility of a PTAS for this problem.
Getting even a constant factor approximation would be quite interesting.

In the proof of NP-hardness of r-restricted mapping problem, we used an
input matrix D that does not satisfy the triangle inequality. For input matrix D
that is a metric (i.e. it satisfies the triangle inequality), it might be possible to
get a polynomial time algorithm for the best r-restricted mapping.

Agarwala et al. [1] have shown that for the problem of fitting data to tree
metrics, the best r-restricted tree metric is within a factor of 3 of the optimal
solution. However, the problem of approximating the additive distortion of the
best r-restricted tree is still open.
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