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Abstract

Kernel conditional random fields are introduced as a framework for discriminative modeling of
graph-structured data. A representer theorem for conditional graphical models is given which
shows how kernel conditional random fields arise from risk minimization procedures defined using
Mercer kernels on labeled graphs. A procedure for greedily selecting cliques in the dual represen-
tation is then proposed, which allows sparse representations. By incorporating kernels and implicit
feature spaces into conditional graphical models, the framework enables semi-supervised learning
algorithms for structured data through the use of graph kernels. The clique selection and semi-
supervised methods are demonstrated in synthetic data experiments, and are also applied to the
problem of protein secondary structure prediction.
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1 Introduction

Many classification problems involve the annotation of data items having multiple components,
with each component requiring a classification label. Such problems are challenging because the
interaction between the components can be rich and complex. In text, speech, and image processing,
for example, it is often useful to label individual words, sounds, or image patches with categories
to enable higher level processing; but these labels can depend on one another in a highly complex
manner. For biological sequence annotation, it is desirable to annotate each amino acid in a protein
with a label, with the collection of labels representing the global geometric structure of the molecule.
Here the labels in principle depend on the physical characteristics of the molecule and its ambient
chemical environment. In each case, classification tasks naturally arise which clearly violate the
assumption of independent and identically distributed instances that is made in the majority of
classification procedures in statistics and machine learning. It is therefore of central importance to
extend recent advances in classification theory and practice to structured, non-independent data
classification problems.

Conditional random fields (Lafferty et al., 2001) have been proposed as an approach to modeling
the interactions between labels in such problems using the tools of graphical models. A conditional
random field (CRF) is a model that assigns a joint probability distribution over labels conditional
on the input, where the distribution respects the independence relations encoded in a graph. In
general, the labels are not assumed to be independent, nor are the observations conditionally
independent given the labels, as is assumed in generative models such as hidden Markov models.
The CRF framework has already been used to obtain promising results in a number of domains
where there is interaction between labels, including tagging, parsing and information extraction
in natural language processing (Collins, 2002, Sha and Pereira, 2003, Pinto et al., 2003) and the
modeling of spatial dependencies in image processing (Kumar and Hebert, 2003). In all of this
work, however, conditional random fields are based on explicit feature representations.

We present an extension of conditional random fields that permits the use of implicit features
spaces through Mercer kernels. Such an extension is motivated by the significant body of recent
work that has shown kernel methods to be extremely effective in a wide variety of machine learn-
ing techniques; for example, they enable the integration of multiple sources of information in a
principled manner. Our introduction of Mercer kernels into conditional graphical models is also
motivated by the problem of semi-supervised learning. In many domains, the collection of anno-
tated training data is difficult and costly, as it requires the efforts of expert human annotators,
while the collection of unlabeled data may be relatively easy and inexpensive. The emerging theme
in recent research in semi-supervised learning is that kernel methods, in particular those based on
graphical representations of unlabeled data, form a theoretically attractive and empirically promis-
ing set of techniques for combining labeled and unlabeled data (Belkin and Niyogi, 2002, Chapelle
et al., 2002, Smola and Kondor, 2003, Zhu et al., 2003).

In Section 2 we formalize the learning problem in terms of graphical processes, a form of stochas-
tic process where random variables are indexed by graphs. A version of the classical representer
theorem of Kimeldorf and Wahba (1971) is given which shows that the solution to a regularized
risk minimization problem necessarily leads to a representation in terms of the kernel over the
data. However, unlike the classical result, for kernel conditional random fields the dual parameters
depend on all potential assignments of labels to cliques in the graph, not only the observed labels.
The resulting framework is closely related to the methods proposed recently by Taskar et al. (2003);
the representer theorem derived here provides additional justification for these methods.

This generalized representer theorem motivates the need for algorithms to derive sparse rep-
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resentations, since the full representation has parameters for each labeled clique in the graphs
appearing in the training data. In Section 3 we present a greedy algorithm for selecting a small
number of representative cliques. This “clique selection” algorithm parallels the “import vector
selection” algorithms of kernel logistic regression (Zhu and Hastie, 2001), and the feature selection
methods that have been previously proposed for conditional random fields using explicit features
(McCallum, 2003).

In Section 4 we explain how kernels for semi-supervised learning can be incorporated into our
framework to combine labeled data with unlabeled data. The ideas and methods are demonstrated
on a synthetic data set in Section 5, where the effects of the underlying graph kernels, clique selec-
tion, and sequential modeling can be clearly seen. In Section 6 we report the results of experiments
using kernel CRFs for protein secondary structure prediction. This is the task of mapping primary
sequences of amino acids onto a string of secondary structure assignments, such as helix, sheet, or
coil. It is widely believed that secondary structure can contribute valuable information to discern-
ing how proteins fold in three dimensions. We compare kernel conditional random fields, estimated
using clique selection, against support vector machine classifiers, with both methods using kernels
derived from position-specific scoring matrices (PSI-BLAST profiles) as input features. In addition,
we give results for the use of graph kernels derived from the PSI-BLAST profiles in a transduc-
tive, semi-supervised framework for estimating the kernel CRFs. The paper concludes with a brief
discussion in Section 7.

2 Representation

Before proceeding with formalism, we give some intuition for what our framework is intended to
capture. Our goal is to annotate structured data, where the structure is represented by a graph.
Labels are to be assigned to the nodes in the graph in order to minimize some loss function, such as
0-1 error; the labels come from a small set Y, for example, Y = {red, blue, green}. Each vertex in
the graph is associated with a feature vector xv ∈ X . In image processing, the feature vector at a
node might include a pixel intensity, as well as average pixel intensities smoothed over neighboring
regions using wavelets. In protein secondary structure prediction, each node might correspond to
an amino acid in the protein, and the feature vector at a node may include an amino acid histogram
of all protein fragments in a database which closely match the given protein at that node.

We consider models of the joint assignment of labels to a graph. A bit more abstractly, recall
that a stochastic process is a family of random variables ξt ∈ Rm indexed by t ∈ T ; when T = R,
the index is often thought of as time. In standard kernel machines such as Gaussian processes,
one considers a stochastic process indexed by feature vectors x ∈ Rn, defining a covariance kernel
E[〈ξx, ξx′〉] = K(x, x′). In our framework, we shall adopt a generalization, which might be called
a graphical process—a stochastic process indexed by graphs together with their feature vectors,
(g, x). Thus, we consider random variables ξ(g,x) ∈ Rm together with certain covariance kernels
E[

〈
ξ(g,x), ξ(g′,x′)

〉
] = K((g,x), (g′,x′)) for the purpose of predicting labels on graphs.

2.1 Cliques and labeled graphs

Let G denote a collection of finite graphs. For example, G might be the set of finite chains,
appropriate for sequence modeling, or the rectangular 2-dimensional grids, appropriate for some
image processing tasks. The set of vertices of a graph g ∈ G is denoted by V (g), and size of the
graph is the number of vertices, denoted |g| = |V (g)|. A clique is a subset of the vertices which
is fully connected, with any pair of vertices joined by an edge; we denote the set of cliques in
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the graph by C(g). The number of vertices in a clique is denoted by |c|. Similarly, we denote by
C(G) = {(g, c) | g ∈ G, c ∈ C(g)} the collection of cliques across varying graphs. In other words, a
member of C(G) consists of a graph and a distinguished clique of that graph. We will work with
kernels that compare components of different graphs. For example, we could consider a kernel
K : C(G)× C(G) → 0 given by K((g, c), (g′, c′)) = δ(|c|, |c′|).

We next consider labelings of a graph. Let Y be a finite set of labels; infinite Y is also
possible in a regression framework, but we restrict to finite Y for simplicity. The set of Y-
labelings of a graph g is denoted Y(g) =

{
y |y ∈ Y |g|}, and the collection of all Y-labeled graphs

is Y(G) = {(g, x) | g ∈ G, y ∈ Y(g)}. Similarly, let X be an input feature space; for example,
X = Rn. The set X (g) =

{
x |x ∈ X |g|} denotes the set of assignments of a feature vector to

each vertex of the graph g; X (G) = {(g,x) | g ∈ G, x ∈ X (g)} is the collection of all such anno-
tated graphs. Finally, let YC(g) =

{
(c, yc) | c ∈ C(g), yc ∈ Y |c|

}
be the set of Y-labeled cliques

in a graph. As above, we similarly define XYC(g) = {(x, c,yc) |x ∈ X (g), (c, yc) ∈ YC(g)} and
XYC(G) = {(g, x, c, yc) | (x, c,yc) ∈ XYC(g)}.

2.2 Representer Theorem

The prediction task for conditional graphical models is to learn a function h : X (G) → Y(G) where
h(g, x) ∈ Y(g) is a labeling of g, with the goal of minimizing a suitably defined loss function. The
classifier h = hn is chosen based on a labeled sample

{
(g(i), x(i), y(i))

}n

i=1
, with each (g(i),x(i),y(i))

being a labeled graph, the graph possibly changing from example to example.
To limit the complexity of the hypothesis, we will assume that it is determined completely by a

function f : XYC(G) → R. Let f(g, x) denote the collection of values {f(g, x, c, yc)}, with c ∈ C(g)
varying over the cliques of g and yc ∈ Y |c| varying over all possible labelings of that clique. We
assume that a loss function φ(y, f(g, x)) is given. As an important example, and the loss function
used in this paper, consider the negative log loss

φ(y, f(g, x)) = −
∑

c∈C(g)
fc(x, yc) + log

∑

y′∈Y(g)

exp


 ∑

c∈C(g)
fc(x,y′c)


 (1)

where fc(x, yc) is shorthand for f(g,x, c, yc). The negative log marginal loss could also be consid-
ered for minimizing the per-node error. The negative log loss function corresponds to a conditional
random field given by

p(y | g,x) = Z−1(g, x, f) exp

(∑
c

fc(x,yc)

)
(2)

We now extend the standard “representer theorem” of kernel machines (Kimeldorf and Wahba,
1971) to conditional graphical models. While this is a simple extension, we’re not aware of an
analogous formulation in the statistics or machine learning literature.

Let K be a Mercer kernel on XYC(G); thus

K((g, x, c,yc), (g
′, x′, c′, y′c′)) ∈ R (3)

for each (x, c,yc) ∈ XYC(g) and (x′, c′, y′c′) ∈ XYC(g′). Intuitively, this assigns a measure of
similarity between a labeled clique in one graph and a labeled clique in a (possibly) different graph.
We denote by HK the associated reproducing kernel Hilbert space, and by ‖·‖K the associated
norm on L2(XYC(G)).
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Consider a regularized loss function of the form

Rφf =
n∑

i=1

φ
(
y(i), f(g(i), x(i))

)
+ Ω(‖f‖K) (4)

It is important to note that the loss depends on all possible assignments yc of labels to each clique,
not just those observed in the labeled data y(i).

Suppressing the dependence on the graph g in the notation, let Kc(x, yc; , ·) = K((g,x, c, yc), ·).
Following the argument for the standard representer theorem, we can decomposeH asH = Hn⊕H⊥n
where

Hn = span
({

Kc(x(i), yc; ·)
}

i,yc

)
(5)

Thus, we write

f = f⊥ +
n∑

i=1

∑

c∈g(i)

∑
yc

α(i)
c (yc) Kc(x(i), yc; ·) (6)

where f⊥ ∈ H⊥n . By the reproducing property,

f(g(j), x(j), c′, y′c′) =
∑

i,c,yc

α(i)
c (yc) K

(
(g(i), xi, c,yc), (g

(j),x(j), c′, y′c′)
)

(7)

since, by definition, f⊥ is orthogonal to each Kc(x(i), yc; ·). Finally, if Ω is strictly increasing, the
penalty term Ω(‖f‖K) can only be decreased by letting f⊥ = 0. This proves the following result.

Proposition (Representer theorem for CRFs). Let K be a Mercer kernel on XYC(G) with
associated RKHS norm ‖·‖K , and let Ω : R+ → R+ be strictly increasing. Then the minimizer f?

of

Rφf =
n∑

i=1

φ
(
y(i), f(g(i), x(i))

)
+ Ω(‖f‖K) (8)

if it exists, has the form

f?(·) =
n∑

i=1

∑

c∈C(g(i))

∑

yc∈Y|c|
α(i)

c (yc)Kc(x(i),yc; ·) (9)

The key property distinguishing this result from the standard representer theorem is that the “dual
parameters” α

(i)
c (yc) now depend on all assignments of labels.

2.3 Two special cases

Let K be a Mercer kernel on Z = X × Y × Y. Thus, the kernel is defined in terms of the matrix
entries K(z, z′) where z = (x, y1, y2). Using K we can define a kernel on edges in XYC(G) by
K ((g,x, (v1, v2), (y1, y2)), (g′, x′, (v′1, v

′
2), (y

′
1, y

′
2))) = K((xv1 , y1, y2), (x′v′1 , y

′
1, y

′
2)). For the regular-

ized risk minimization problem

min
f∈HK

Rφ(x, f, λ) = min
f∈HK

n∑

i=1

φ(y(i), f(x(i))) + λ ‖f‖K (10)
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where f ∈ HK , the CRF representer theorem implies that the solution f? has the form

f?
(v1,v2)(x, y1, y2) =

n∑

i=1

∑

y,y′

∑

(v,v′)

α
(i)
(v,v′)(y, y′) K((xv1 , y1, y2), (x(i)

v , y, y′)) (11)

In the special case of kernel K(z,z′) = K(x, x′) δ(y1, y
′
1) it follows that

f?
(v1,v2)(x, y1, y2) =

n∑

i=1

∑

v∈V (g(i))

α(i)
v (y1) K(xv1 ,x

(i)
v ) (12)

Under the probabilistic model (2), this is simply kernel logistic regression. In the special case of
K(z,z′) = K(x, x′) δ(y1, y

′
1) + δ(y1, y

′
1) δ(y2, y

′
2) we get that

f?
(v1,v2)(x, y1, y2) =

∑

i,v

α(i)
v (y1) K(x(i)

v , xv1) + α(y1, y2) (13)

and we recover a simple type of semiparametric CRF.

3 Clique Selection

The representer theorem shows that the minimizing function f is supported by labeled cliques
over the training examples; however, this may result in an extremely large number of parameters.
We therefore pursue a strategy of incrementally selecting cliques in order to greedily reduce the
regularized risk. The resulting procedure is parallel to forward stepwise logistic regression, and to
related methods for kernel logistic regression (Zhu and Hastie, 2001).

Our algorithm will maintain an active set A =
{
(g(i), c,yc)

} ⊂ YC(G) of labeled cliques, where
the labelings are not restricted to those appearing in the training data. Each such candidate
clique can be represented by a basis function h(·) = K((g(i), x(i), c, yc), ·) ∈ HK , and is assigned a
parameter αh = α

(i)
c (yc). We work with the regularized risk

Rφ(f) =
∑

i

φ
(
y(i), f(g(i),x(i))

)
+

λ

2
‖f‖2

K (14)

where φ is the log-loss of equation (1). To evaluate a candidate h, one strategy is to compute the
gain supα Rφ(f)−Rφ(f +αh), and to choose the candidate h having the largest gain. This presents
an apparent difficulty, since the optimal parameter α cannot be computed in closed form, and must
be evaluated numerically. For sequence models this would involve forward-backward calculations
for each candidate h, the cost of which is prohibitive.

As an alternative, we adopt the functional gradient descent approach, which evaluates a small
change to the current function. For a given candidate h, consider adding h to the current model
with small weight ε; thus f 7→ f + εh. Then Rφ(f + εh) = Rφ(f) + εdRφ(f, h) + O(ε2), where the
functional derivative of Rφ at f in the direction h is computed as

dRφ(f, h) = Ef [h]− Ẽ[h] + λ 〈f, h〉K (15)

where Ẽ[h] =
∑

i h(x(i), y(i)) is the empirical expectation and Ef [h] =
∑

i

∑
y p(y |x(i), f)h(x(i), y)

is the model expectation conditioned on x. Following our earlier notation,

h(x(i), y) =
∑

c∈C(g(i))
h(g(i), x(i), c, yc) (16)

5



Initialize with f = 0, and iterate:

1. For each candidate h ∈ HK , supported by a single labeled clique, calculate the
functional derivative dRφ(f, h).

2. Select the candidate h = arg maxh |dRφ(f, h)| having the largest gradient direction.
Set f 7→ f + αhh.

3. Estimate parameters αf for each active f by minimizing Rφ(f).

Figure 1: Greedy Clique Selection. Labeled cliques encode basis functions h which are greedily
added to the model, using a form of functional gradient descent.

is the sum over all cliques. The idea is that in directions h where the functional gradient dRφ(f, h)
is large, the model is mismatched with the labeled data; this direction should be added to the
model to make a correction. This results in the greedy clique selection algorithm summarized in
Figure 1.

An alternative to the greedy functional gradient descent algorithm above is to estimate param-
eters αh for each candidate. When each candidate clique is a vertex, the gain can be efficiently
approximated using a mean field approximation. Under this approximation, a candidate is evalu-
ated according to the approximate gain

Rφ(f)−Rφ(f + αh) ≈
∑

i

∑
v

Z(f, x(i))−1p(y(i)
v |x(i), f) exp(αh(x(i), y(i)

v )) + λ 〈f, h〉 (17)

which is a logistic approximation. We adopt this approach in our experimental results for proteins
when only vertex cliques are used. In the experiments reported below for sequences, the marginal
probabilities p(yt = 1 |x) and expected counts for the state transitions are required; these are
computed using the forward-backward algorithm, with log domain arithmetic to avoid underflow.
A quasi-Newton method (BFGS, cubic-polynomial line search) is used to estimate the parameters
in step 3.

4 Kernels for Semi-Supervised Learning

One of the emerging themes in semi-supervised learning is that graph kernels can provide a useful
framework for combining labeled and unlabeled data. Here an undirected graph is defined over
labeled and unlabeled data instances, and generally the assumption is that labels vary smoothly
over the graph. The graph is represented by the weight matrix W . Let D be the diagonal degree
matrix Dii =

∑
j wij . The focus of the graph kernels is the eigensystem of the combinatorial

Laplacian matrix L = D −W , or the normalized Laplacian L̃ = D−1/2LD−1/2. The eigenvectors
of the smaller eigenvalues vary more smoothly over the graph than those of the larger eigenvalues.
In a physical analogy, imagining springs on the edges of the graph, the eigenvectors correspond to
the vibrational modes of the graph and the eigenvalues are the corresponding frequencies.

To obtain smooth functions (soft labelings) over the graph, one can construct a kernel from the
graph Laplacian but substituting eigenvalues λ by r(λ), where r is a non-negative and (typically)
decreasing function. This regularizes high frequency components and encourages smooth functions
on the graph. This view of graph kernels, proposed by Smola and Kondor (2003), unifies within
a single framework several graph kernel methods, including manifold learning (Belkin and Niyogi,
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Figure 2: Left: The galaxy data is comprised of two interlocking spirals together with a “dense
core” of samples from both classes. Center: Kernel logistic regression comparing two kernels, RBF
and a graph kernel using the unlabeled data. Right: Kernel conditional random fields, which take
into account the sequential structure of the data.

2002), cluster kernels (Chapelle et al., 2002), diffusion kernels (Kondor and Lafferty, 2002), random
walks (Szummer and Jaakkola, 2001), normalized cuts (Yu and Shi, 2001), and Gaussian fields
(Zhu et al., 2003). In this paper, we define semi-supervised graph kernels over the vertices. It is
straightforward to plug such graph kernels into kernel CRFs, to enable semi-supervised learning
for sequences and more complex graphical structures.

5 Synthetic Data Experiments

To work with a data set that will distinguish a semi-supervised graph kernel from a standard kernel,
and a sequence model from a non-sequence model, we prepared a synthetic data set (“galaxy”) that
is a variant of spirals, see Figure 2 (left). Note the mixed dense core of data from both classes.

We sample 100 sequences of length 20 according to an HMM with two states, where each state
emits instances uniformly from one of the classes. There is a 90% chance of staying in the same
state, and the initial state is uniformly chosen. The idea is that under a sequence model we should
be able to use the context to determine which of the classes an example from the core is truly from.
However, under a non-sequence model without the context, the core region will be indistinguishable,
and the dataset as a whole will have about 20% Bayes error rate. Note the choice of semi-supervised
vs. standard kernels and sequence vs. non-sequence models are orthogonal; the four combinations
are all tested on.

We construct the semi-supervised graph kernel by first building an unweighted 10-nearest
neighbor graph. We compute the associated graph Laplacian L, and then form the kernel K =
10

(
L + 10−6I

)−1. This corresponds to a function r(λ) = 1
λ+10−6 on L’s eigenvalues. The standard

kernel is the radial basis function (RBF) kernel with an optimal bandwidth σ = 0.35.
Now we apply both kernels to a non-sequence model, kernel logistic regression; see Figure 2

(center). The sequence structure is ignored. Ten random trials were performed with each training
set size, which ranges from 20 to 400 points. The error intervals are one standard error. As
expected, when the labeled set size is small, the RBF kernel results in significantly larger test error
than the graph kernel. Furthermore, both kernels saturate at the 20% Bayes error rate.

Next we apply both kernels to a KCRF sequence model. Experimental results are shown in
Figure 2 (right). Note the x-axis is the number of training sequences: Since each sequence has
20 instances, the range is the same as Figure 2 (center). The kernel CRF is capable of getting
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Figure 3: Mean field estimate of the change in loss function with the graph kernel (left) and the
RBF kernel (right) for the first four iterations of clique selection on the galaxy dataset. For the
graph kernel the endpoints of the spirals are chosen as the first two cliques.

below the 20% Bayes error rate of the non-sequence model, with both kernels and sufficient labeled
data. However the graph kernel is able to learn the structure much faster than the RBF kernel.
Evidently the high error rate for low label data sizes prevents the RBF model from effectively using
the context.

Finally we examine clique selection in KCRFs. For this experiment we use 50 training sequences.
We use the mean field approximation and only select vertex cliques. At each iteration the selection
is based on the estimated change in risk for each candidate vertex (training position). We plot the
estimated change in risk for the first four iterations of clique selection, with the graph kernel and
RBF kernel respectively in Figure 3. Smaller values (lower on z-axis) indicate good candidates with
potentially large reduction in risk if selected. For the graph kernel, the first two selected vertices
are sufficient to reduce the risk essentially to the minimum (note in the third iteration the z-axis
scale is already 10−6). Such reduction does not happen with the RBF kernel.

6 Protein Secondary Structure Prediction

We used the RS126 dataset, on which many current secondary structure prediction methods have
been developed and tested (Cuff and Barton, 1999). It is a non-homologous dataset, since among
the 126 protein chains, no two proteins share more than 25% sequence identity over a length
of more than 80 residues (Cuff and Barton, 1999). The dataset can be downloaded from http:
//barton.ebi.ac.uk/.

We adopt the DSSP definition of protein secondary structure (Kabsch and Sander, 1983), which
is based on hydrogen bonding patterns and geometric constraints. The 8 DSSP labels are reduced
to a 3 state model as follows: H & G map to helix (H), E & B map to sheets (E), and all other
states map to coil (C) (Cuff and Barton, 1999).

For protein secondary structure prediction, state-of-the-art performance is achieved by window-
base methods, using the position-specific scoring matrices (PSSM) as input features, i.e., PSI-
BLAST profiles (Jones, 1999), together with Support Vector Machines (SVMs) as the underlying
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Figure 4: Clique selection for KCRFs on a particular trial. Left: regularized risk; Center: test
set log likelihood; Right: test set accuracy. The two curves show the use of vertex cliques only
(dashed) and both vertex and edge cliques (solid).

learning algorithm (Kim and Park, 2003). In our experiments, we apply a linear transformation L
to the PSSM matrix elements according to L(x) = 0 for x ≤ −5, L(x) = 1

2 + x
10 for −5 ≤ x ≤ 5,

and L(x) = 1 for x ≥ 5. This is the same transform used by Kim and Park (2003) in the recent
CASP (Critical Assessment of Structure Predictions) competition, which achieved one of the best
results. The window size is set to 13 by cross-validation. Therefore the number of features per
position is 13× 21 (the number of amino acids plus gap).

6.1 Clique selection.

We use an RBF kernel with bandwidth σ = 0.1 chosen by cross-validation. Figure 4 (left) shows
the kernel CRF risk reduction as clique selection proceeds, when only vertex clique candidates
are allowed (note there are always position independent edge parameters in the KCRF models, to
prevent the models from degrading into kernel logistic regression), and when both vertex and edge
cliques are allowed. The kernel between vertex cliques is K(z, z′) = K(x, x′) δ(y1, y

′
1), and between

edge cliques it is K(z, z′) = K(x, x′) δ(y1, y
′
1) δ(y2, y

′
2). The total number of clique candidates is

about 4800 (vertex only) and 20000 (vertex and edge). The rapid reduction in risk indicates sparse
training of kernel CRFs is successful. Also when more flexibility is allowed by including edge cliques,
the risk reduction is much faster. The more flexible model also has higher test set log likelihood
(center); however, this does not translate into test set accuracy (right).

6.2 Per-residue accuracy.

To evaluate prediction performance, we use the overall per-residue accuracy (i.e., Q3). We exper-
iment with training set size of 5 and 10 sequences respectively. For each size we perform 10 trials
where the training sequences are randomly sampled, and the remaining proteins are used as the
test set. For kernel CRF we select 300 cliques, again from either vertex candidates alone or vertex
and edge candidates. We compare them with the SVM-light package (Joachims, 1998) for SVM
classifier. All methods use the same RBF kernel. See Table 1. KCRFs and SVMs have comparable
performance.

6.3 Transition accuracy.

Further information can be obtained by studying transition boundaries, for example, the transition
from “coil” to “sheet.” From the point of view of structural biology, these transition boundaries may
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5 protein set 10 protein set
Method Accuracy std Accuracy std

KCRF (v) 0.6625 0.0224 0.6933 0.0276
KCRF (v+e) 0.6562 0.0202 0.6933 0.0272

SVM 0.6509 0.0307 0.6875 0.0235

Table 1: Per-residue accuracy of different methods for secondary structure prediction, with the
RBF kernel. KCRF (v) uses vertex cliques only; KCRF (v+e) uses vertex and edge cliques.

5 protein set 10 protein set
Method Accuracy std Accuracy std

KCRF (v) 0.1097 0.0271 0.1462 0.0235
KCRF (v+e) 0.1114 0.0250 0.1522 0.0214

SVM 0.0667 0.0313 0.1066 0.0311

Table 2: Transition accuracy with different methods.

5 protein set 10 protein set
Method Accuracy std Accuracy std

KCRF (v) 0.6722 0.0194 0.6854 0.0190
KCRF (v+e) 0.6674 0.0201 0.6819 0.0194
Trans. SVM 0.6480 0.0276 0.6813 0.0210

Table 3: Per-residue accuracy with semi-supervised methods.

provide important information about how proteins fold in three dimensions. From a computational
and modeling perspective, they may indicate positions where most secondary structure prediction
systems fail. We measure transition accuracy where a transition is defined as a pair of adjacent
positions (i, i+1) whose true labels differ. A transition is classified correctly only if both labels are
correct. This is a very hard problem; see Table 2. There seems to be a small improvement with
KCRFs. Figure 5 shows a plot of the true protein sequence labels and KCRFs’ predicted labels.

6.4 Semi-supervised learning.

We start with an unweighted 10 nearest neighbor graph over positions in both training and test
sequences, with the metric being Euclidean distance in the feature space. Then the eigensystem
of the normalized Laplacian is computed. The semi-supervised graph kernel is obtained with the
function r(λi) = 1

λ+0.01 on the first i ≤ 200 eigenvalues. The rest of the eigenvalues are set to
zero. We use the graph kernel together with the RBF kernel in KCRF. As a clique candidate is
associated with a kernel, we now select the two best candidates per iteration, one with the graph
kernel and the other with the RBF kernel. We still run for 300 iterations for all trials. We also
report the results using transductive SVMs (TSVMs) (Joachims, 1999) with the RBF kernel. See
Table 3. The approximate average running time of each trial, including both training and testing,
is 7 minutes for SVMs, 30 minutes for KCRFs, and 16 hours for transductive SVMs. For KCRFs
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Figure 5: KCRF classification on 5 protein fragments (PDB ID top to bottom: 1S01, 1RHD, 1RBP,
1R092, and 1PYP). The first row of each protein shows the true labels as C(red), E(green), and
H(blue). The second row shows the KCRF marginals, where the R,G,B color components reflect
the posterior probabilities. The third row shows with black dots the decoding errors made by the
model.

the majority of the time is spent on clique selection.
The semi-supervised graph kernel does not significantly improve performance. Diagnosing the

cause, we find upon examining the graph together with all of the test labels, that the labels are not
smooth with respect to the graph: on average only 54.5% of a node’s neighbors have the same label
as that node. Obviously it is useless to ask for smooth functions on the graph. The problem appears
to lie in the Euclidean distance-based similarity graph. Detecting faulty graphs and constructing
better graphs, without the use of large numbers of labeled examples, remain important areas for
future research.

7 Conclusion

Kernel conditional random fields have been introduced as a framework for approaching graph-
structured classification problems. A representer theorem was derived which shows how KCRFs
can be motivated by first principles and regularization theory. The resulting techniques combine
the strengths of hidden Markov models, or more general Bayesian networks, kernel machines, and
standard discriminative linear classifiers including logistic regression and SVMs. The formalism of
graphical processes that has been presented is general, and should apply naturally to a wide range
of problems.

Our experimental results on synthetic data, while carefully controlled to be simple, clearly
indicate how sequence modeling, graph kernels for semi-supervised learning, and clique selection
for sparse representations work together within this framework. The success of these methods in
real problems will depend on the choice of suitable kernels that capture the structure of the data.

For protein secondary structure prediction, our results are only suggestive. Secondary structure
prediction is a problem that has been extensively studied for more than 20 years; yet the task
remains difficult, with prediction accuracies remaining low. The major bottleneck lies in beta-sheet
prediction, where there are long range interactions between regions of the protein chain that are
not necessarily consecutive in the primary sequence. Our experimental results indicate that KCRFs
and semi-supervised kernels have the potential to lead to progress on this problem, where the state
of the art has been based on heuristic “sliding window” methods. However, our results also suggest
that the improvement due to semi-supervised learning is hindered by the lack of a good similarity
measure with which to construct the graph. The construction of an effective graph is a challenge
that may best be tackled by biologists and machine learning researchers working together.
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