
A PAC�style Model for Learning from Labeled and Unlabeled

Data

Maria�Florina Balcan� Avrim Blum�

April ��� ����
�DRAFT�

Abstract

There has recently been substantial interest in practice in using unlabeled data together
with labeled data in machine learning� and a number of di�erent approaches have been
developed� However� the assumptions these methods are based on are often quite distinct
and not captured by standard theoretical models� In this paper we describe a PAC�style
model that captures many of these assumptions� and analyze sample�complexity issues in
this setting� that is� how much of each type of data one should expect to need in order to
learn well� and what are the basic quantities that these numbers depend on� Our model
can be viewed as an extension of the standard PAC model� where in addition to a concept
class C� one also proposes a type of compatibility that one believes the target concept
should have with the underlying distribution� In this view� unlabeled data can be helpful
because it allows one to estimate compatibility over the space of hypotheses� and reduce
the size of the search space to those that are� in a sense� a�priori reasonable with respect
to the distribution� We discuss a number of technical issues that arise in this context� and
provide sample�complexity bounds both for uniform convergence and speci�c ��cover based
algorithms� We also consider algorithmic issues� and give an algorithm for a natural problem
of learning a linear separator from example�pairs� motivated by co�training�

� Introduction

There has recently been substantial interest in using unlabeled data together with labeled
data for machine learning� The motivation is that unlabeled data can often be much cheaper
and more plentiful than labeled data� and so if useful information can be extracted from it
that reduces dependence on labeled examples� this can be a signi�cant bene�t� A number of
techniques have been developed for doing this� along with experimental results on a variety
of di�erent learning problems� These include label propagation for word�sense disambiguation
���	
 co�training for classifying web pages ��	� parsing ���	� and improving visual detectors ��
	

transductive SVM ���	 and EM ���	 for text classi�cation
 graph�based methods ���	� and others�
In fact� the problem of learning from labeled and unlabeled data was the topic of a workshop
at the most recent ICML conference ���	�

The di�culty from a theoretical point of view� however� is that standard discriminative
learning models do not really capture how and why unlabeled data can be of help� In particular�
in the PAC model there is a complete disconnect between the data distribution D and the
target function f being learned ��� ��	� The only prior belief is that f belongs to some class
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C� even if D is known fully� any function f � C is still possible� For instance� it is perfectly
natural �and common� to talk about� say� the problem of learning AC� circuits ���	 or an
intersection of halfspaces ��� ��� ��	 over the uniform distribution
 but clearly in this case
unlabeled data is useless � you can just generate it yourself� For learning over an unknown
distribution �the standard PAC setting�� unlabeled data can help somewhat� by allowing one
to use distribution�speci�c sample�complexity bounds� but this does not seem to fully capture
the power of unlabeled data in practice�

In generative�model settings� one can easily talk about the use of unlabeled data� e�g�� ��� 
	�
However� these results make strong assumptions that imply that the unlabeled distribution in
essence is committing to the target function or its complement as the correct answer� and the
only use of labeled data then is to decide which is which� For instance� a typical generative�
model setting would be that we assume positive examples are generated by one gaussian� and
negative examples are generated by another gaussian� in this case� given enough unlabeled data�
we could recover the gaussians and would need labeled data only to tell us which gaussian is
which�� Instead� we would like our model to allow for a distribution over data �e�g�� documents
we want to classify� where there are a number of plausible distinctions we might want to make�

The goal of this paper is to provide a PAC�style framework that bridges between these
positions and captures many of the ways unlabeled data is typically used� We extend the PAC
model in a way that allows one to express relationships that one hopes the target function and
underlying distribution will possess� but without going so far as is done in generative models�
We then analyze sample�complexity issues in this setting� that is� how much of each type of
data one should expect to need in order to learn well� and what are the basic quantities that
these numbers depend on� We also give algorithmic results for a natural problem of learning a
linear separator from pairs of examples� motivated by co�training�

The high�level idea of the proposed model is to augment the notion of a concept class� which
is a set of functions �like linear separators or decision trees�� with a notion of compatibility

between a target function and the data distribution� That is� rather than talking of �learning
a concept class C�� we would talk of �learning a concept class C under compatibility notion ���
Furthermore� we require that the degree of compatibility be something that can be estimated
from a �nite sample� speci�cally� � is actually a function from C � X to ��� �	� where the
compatibility of h with D is Ex�D���h� x�	� The degree of incompatibility is then something we
can think of as a kind of �unlabeled error rate�� For example�

Example � �margins�� Suppose examples are points in Rn and C is the class of linear sepa�
rators� A natural belief in this setting is that data should be �well�separated�� not only
should the target function separate the positive and negative examples� but it should
do so by some reasonable margin �� This is the assumption used by Transductive SVM
���	� In this case� we could de�ne ��h� x� � � if x is farther than distance � from the
hyperplane de�ned by h� and ��h� x� � � otherwise� So� the incompatibility of h with
D is probability mass within distance � of h � x � �� Or we could de�ne ��h� x� to be a
smooth function of the distance of x to the separator� if we do not want to commit to a
speci�c � in advance� �In contrast� de�ning compatibility of based on the largest � such
that D has probability mass exactly zero within distance � of the separator would not �t
our model� it cannot be written as an expectation over individual examples and indeed
one cannot distinguish �zero� from �exponentially close to zero� with a small sample��

�Castelli and Cover ��� �� do not assume gaussians in particular� but they do assume the distributions are
distinguishable� which from our perspective has the same issue�
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Example � �Co�training�� In co�training ��	� we assume examples come as pairs hx�� x�i�
and our goal is to learn a pair of functions hh�� h�i� For instance� if our goal is to classify
web pages� x� might represent the words on the page itself and x� the words attached
to links pointing to this page from other pages� The hope that underlies co�training
is that the two parts of the example are consistent� which then allows the co�training
algorithm to bootstrap from unlabeled data�� In this case� we might naturally de�ne the
incompatibility of some hypothesis hh�� h�i as Prhx��x�i�D�h��x�� �� h��x��	�

Example � �Linear separator graph cuts�� As a special case of Example � above� suppose
examples are pairs of points in Rn� C is the class of linear separators� and we believe the
two points in each pair should both be on the same side of the target function �i�e�� like
co�training but we are requiring h� � h���

� Again we can de�ne the incompatibility of
some h to be the probability mass on examples hx�� x�i such that h�x�� �� h�x��� What
makes this problem interesting is that we can view examples as edges� view the data as a
graph embedded in Rn� and given a set of labeled and unlabeled data� view our objective
as �nding a linear separator minimum s�t cut�

This setup allows us to analyze the ability of a �nite unlabeled sample to reduce our dependence
on labeled examples� as a function of the compatibility of the target function and various
measures of the �helpfulness� of the distribution� In particular� in our model� we �nd that
unlabeled data can help in several distinct ways�

� If we assume �or hope� the target function is highly compatible with D� then if we have
enough unlabeled data to estimate compatibility over all h � C� we can in principle reduce
the size of the search space from C down to just those h � C whose estimated unlabeled
error rate is low�

� By providing an estimate of D� unlabeled data can allow us to use a more re�ned
distribution�speci�c notion of �hypothesis space size� such as Annealed VC�entropy ��	 or
the size of the smallest ��cover ��	� rather than VC�dimension� In fact� for natural cases
�such as those above� we �nd that the sense in which unlabeled data reduces the �size�
of the search space is best described in these distribution�speci�c measures�

� Finally� if the distribution is especially nice� we may �nd that not only does the set of
�compatible� h � C have a small ��cover� but also the elements of the cover are far apart�
In that case� if we assume the target function is fully compatible� we may be able to learn
from even fewer labeled examples than the ��� needed just to verify a good hypothesis�
�Though here D is e�ectively committing to the target as in generative models��

Our framework also allows us to address the issue of how much unlabeled data we should
expect to need� In the end� we are using unlabeled data primarily to estimate compatibility of
each h � C� so the �VCdim���� form of standard PAC sample complexity bounds now becomes

�The co�training algorithm trains two learning algorithms� one for each half� It uses a small amount of labeled
data to get some initial information 	e�g�� it might learn that if a link with the words 
my advisor� points to a
page then that page is probably a faculty member�s home page
 and then when it �nds an unlabeled example
where one half is con�dent 	e�g�� the link says 
my advisor�
� it uses that to label the example and give it to the
other learning algorithm�

�As a motivating example� consider the problem of word�sense disambiguation� given the text surrounding
some target word 	like 
plant�
 we want to determine which dictionary de�nition is intended 	tree or factory�
�
Yarowsky ���� uses the fact that if a word appears twice in the same document� it is probably being used in the
same sense both times� If we consider hypotheses that assign real�valued weights to context words and compute
a weighted vote over words in the surrounding text� this then corresponds to �nding a linear separator�
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a bound on the number of unlabeled examples needed to perform this estimation� However�
technically� the set whose VC�dimension we now care about is not C but rather a set de�ned
by both C and �� that is� the overall complexity depends both on the complexity of C and the
complexity of the notion of compatibility �see Section ���

Relationship to the luckiness framework� There is a strong connection between our
approach and the luckiness framework ���	� In both cases� the idea is to de�ne an ordering of
hypotheses that depends on the data� in the hope that we will be �lucky� and �nd that not too
many other functions are as compatible as the target� There are two main di�erences� however�
The �rst is that the luckiness framework uses labeled data both for estimating compatibility
and for learning� this is a more di�cult task� and as a result our bounds on labeled data can
be signi�cantly better� For instance� in Example � above� for any non�degenerate distribution�
a dataset of � n�� pairs can be completely shattered by fully�compatible hypotheses� so the
luckiness framework does not help� In contrast� with a larger �unlabeled� sample� one can
potentially reduce the space of compatible functions quite signi�cantly � see Section � and ��
Secondly� the luckiness framework talks about compatibility between a hypothesis and a sample�
whereas we de�ne compatibility with respect to a distribution� This allows us to talk about
the amount of unlabeled data needed to estimate compatibility� There are also a number of
di�erences at the technical level of the de�nitions�

Outline of results� We give results both for sample complexity �in principle� how much data
is needed to learn� and e�cient algorithms� In terms of sample�complexity� in Section �� we
give the simplest version of our results� for the case of �nite hypothesis spaces� For in�nite
hypothesis spaces� VC�dimension is generally not a good way to measure the �size� of the set
of compatible functions� even if all compatible functions are very similar� their VC�dimension
may be as high as for the entire class� So� we instead in Section � we use a distribution�speci�c
analog� the expected number of partitions of a sample drawn from D� that in many natural
cases does decrease substantially �and can be estimated from the unlabeled dataset if desired��

These results give bounds on the number of examples needed for any learning algorithm
that produces a compatible hypothesis of low empirical error� To achieve tighter bounds� in
Section � we give results based on the notion of ��cover size� These bounds hold for algorithms
of a very speci�c type� that �rst use the unlabeled data to choose a small set of �representative�
hypotheses �every compatible h � C is close to at least one of them�� and then choose among the
representatives based on the labeled data� We point out that this can yield bounds substantially
better than with uniform convergence �e�g�� we can learn even though there will whp exist bad
h � C consistent with the labeled and unlabeled samples��

In Section �� we give our algorithmic results� We begin with a particularly simple C and �
for illustration� and then give our main algorithmic result� an e�cient algorithm for the case
of Example �� if we assume both elements of the pair are drawn independently given the label�
In the process� we get a simpli�cation to the noisy halfspace learning algorithm of ��	�

� A Formal Framework

We assume that examples �both labeled and unlabeled� come according to a �xed unknown
distributionD over an instance space X� and they are labeled by some unknown target function
c�� As in the standard PAC model� a concept class or hypothesis space is a set of functions over
the instance space X� and we will often make the assumption �the �realizable case�� that the
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target function belongs to a given class C� For a given hypothesis h� the �true� error rate of
h is de�ned as err�h� � errD�h� � Prx�D�h�x� �� c��x�	� For any two hypotheses h�� h� � C�
the distance with respect to D between h� and h� is de�ned as d�h�� h�� � dD�h�� h�� �
Prx�D�h��x� �� h��x�	� We will use derr�h� to denote the empirical error rate of h on a given
labeled sample and �d�h�� h�� to denote the empirical distance between h� and h� on a given
unlabeled sample�

We de�ne a notion of compatibility to be a mapping from a hypothesis h and a distributionD
to ��� �	 indicating how �compatible� h is with D� In order for this to be estimable from a �nite
sample� we require that compatibility be an expectation over individual examples� Speci�cally�
we de�ne�

De	nition � A legal notion of compatibility is a function � � C � X � ��� �	 where we �over�

loading notation� de�ne ��h�D� � Ex�D���h� x�	� Given a sample S� we de�ne ��h� S� to be

the empirical average over the sample�

De	nition � Given compatibility notion �� the incompatibility of h with D is ����h�D�� We

will also call this its unlabeled error rate� errunl�h�� when � and D are clear from context� For

a given sample S� we use derrunl�h� to denote the empirical average over S�

Finally� we need a notation for the set of functions whose incompatibility is at most some
given value � �

De	nition � Given threshold � � we de�ne CD����� � fh � C � errunl�h� � �g� So� e�g��

CD����� � C� Similarly� for a sample S� we de�ne CS����� � fh � C � derrunl�h� � �g

For simplicity� and to reduce notation� we will assume in the rest of this paper that ��h� x� �
f�� �g so that ��h�D� � Prx�D���h� x� � �	�

The main high�level implication in this framework is that unlabeled data can decrease the
number of labeled examples needed if �a� the target function indeed has a low unlabeled error
rate� �b� the distributionD is helpful in the sense that not too many other hypotheses also have
a low unlabeled error rate� and �c� we have enough unlabeled data to estimate unlabeled error
rates well�

� Finite hypothesis spaces

We begin with some immediate sample�complexity bounds� for the case where we measure the
�size� of a set of function by just the number of functions in the set� In the standard PAC
model� one typically talks of either the realizable case� where we assume that c� � C� or the
agnostic case where we do not� In our setting� we have the additional issue of unlabeled error
rate� and can either make an a�priori assumption that the target function�s unlabeled error is
low� or else aim for a more Occam�style bound in which we have a stream of labeled examples
and halt once they are su�cient to justify the hypothesis produced� For simplicity� we �rst give
a bound for the �doubly realizable� case�

Theorem � If we see

mu 	
�

�

�
ln jCj� ln

�

�

�
unlabeled examples and

ml 	
�

�

�
ln jCD�����j� ln

�

�

�
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labeled examples� then with probability 	 � � �� all h � C with derr�h� � � and derrunl�h� � �
have err�h� � ��

Proof� The number of unlabeled examples is su�cient to ensure that with probability �� ����
the set of hypotheses with derrunl�h� � � is contained in CD������ The number of labeled
examples then ensures that with probability �� ���� none of those whose true �labeled� error
is at least � have an empirical �labeled� error of ��

So� if the target function indeed has zero labeled and unlabeled error� Theorem � gives su��
cient conditions on the number of examples needed to ensure that an algorithm that optimizes
both quantities over the observed data will� in fact� achieve a PAC guarantee� To emphasize
this� we will say that an algorithm PACunl�learns the pair �C� �� if it is able to achieve a PAC
guarantee using sample sizes polynomial in the bounds of Theorem ��

We can think of theorem � as bounding the number of labeled examples we need as a
function of the �helpfulness� of the distribution D with respect to our notion of compatibility�
That is� in our context� a helpful distribution is one in which CD����� is small� and so we do not
need much labeled data to identify a good function among them� We can get a similar bound
in the situation when the target function is not fully compatible�

Theorem � Given t � ��� �	� if we see

mu 	
�

��

�
ln jCj� ln

�

�

�

unlabeled examples and

ml 	
�

�

�
ln jCD���t� ���j� ln

�

�

�

labeled examples� then with probability 	 �� �� all h � C with derr�h� � � and derrunl�h� � t� �
have err�h� � �� and furthermore all h � C with errunl�h� � t have derrunl�h� � t� ��

Proof� Same as Theorem � except apply Hoe�ding bounds to the unlabeled error rates�

In particular� this implies that if errunl�c
�� � t and err�c�� � � then with probability 	 � � �

the h � C that optimizes derr�h� and derrunl�h� has err�h� � ��
Finally� we give a simple Occam luckiness type of bound for this setting� Given a sample

S� let us de�ne descS�h� � ln jCS���derrunl�h��j� That is� descS�h� is the description length of h
�in �nats�� if we sort hypotheses by their empirical compatibility and output the index of h in
this ordering� Similarly� de�ne ��descD�h� � ln jCD���errunl�h� � ��j� This is an upper�bound
on the description length of h if we sort hypotheses by an ��approximation to the their true
compatibility�

Theorem � For any set S of unlabeled data� given ml labeled examples� with probability �� ��
all h � C satisfying derr�h� � � and descS�h� � �ml � ln����� have err�h� � �� Furthermore� if

jSj 	 �

��
�ln jCj� ln �

�
	� then with probability �� �� all h � C satisfy descS�h� � ��descD�h��

The point of this theorem is that an algorithm can use observable quantities to determine if it
can be con�dent� and furthermore if we have enough unlabeled data� the observable quantities
will be no worse than if we were learning a slightly less compatible function using an in�nite�size
unlabeled sample�
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� Algorithmic results

��� A simple computational example

We give a simple example here to illustrate the above bounds� and for which we can give a
polynomial�time algorithm that takes advantage of them� Let the instance space X � f�� �gn�
and for x � X� let vars�x� be the set of variables set to � by x� Let C be the class of disjunctions
�e�g�� x� 
 x� 
 x��� and for h � C� let vars�h� be the set of variables disjoined by h� Now�
suppose we say an example x is compatible with function h if either vars�x� � vars�h� or else
vars�x� � vars�h� � �� This is a very strong notion of �margin�� it says� in essence� that every
variable is either a positive indicator or a negative indicator� and no example should contain
both positive and negative indicators�

Given this setup� we can give a simple PACunl�learning algorithm for this pair �C� ��� We
begin by using our unlabeled data to construct a graph on n vertices �one per variable�� putting
an edge between two vertices i and j if there is any example x in our unlabeled sample with
i� j � vars�x�� We now use our labeled data to label the connected components� If the target
function is fully compatible� then no component will get both positive and negative labels�
Finally� we produce the hypothesis h such that vars�h� is the union of the positively�labeled
components� This is fully compatible with the unlabeled data and has zero error on the labeled
data� so by Theorem �� if the sizes of the datasets are as given in the bounds� with high
probability the hypothesis produced will have error � ��

Notice that if we want to view the algorithm as �purchasing� labeled data� then we can
simply examine the graph� count the number of connected components k� and then request
�

�
�k ln � � ln �

�
	 labeled examples� �Here� �k � jCS�����j�� By the proof of Theorem �� if the

number of unlabeled examples is at least �

�
�n ln ��ln�����	� with high probability �k � jCD�����j�

so we are purchasing no more than the number of labeled examples in the theorem statement�
Also� it is interesting to see the di�erence between a �helpful� and �non�helpful� distribution

for this problem� An especially non�helpful distribution would be the uniform distribution over
all examples x with jvars�x�j � �� in which there are n components� In this case� unlabeled
data does not help at all� and one still needs !�n� labeled examples �or� even !�n��� if the
distribution is a non�uniform as in VC�dimension lower bounds ���	�� On the other hand� a
helpful distribution would be one such that with high probability the number of components is
small� leading to a lower number of labeled examples�

��� Learning linear separators from example pairs

We now consider the case of Example �� the target function is a linear separator in Rn and each
example is a pair of points both of which are assumed to be on the same side of the separator
�i�e�� an example is a line�segment that does not cross the target plane�� Given a set of labeled
and unlabeled data� our goal is to �nd a separator that is consistent with the labeled examples
and compatible with the unlabeled ones� �Even though C is in�nite� this would then with high
probability have low true error by the bounds in Section ���

Unfortunately� the consistency problem for this task is NP�hard� given a graph G embedded
in Rn with two distinguished points s and t� it is NP�hard to �nd the linear separator that cuts
the minimum number of edges� even if the minimum is � ���	� For this reason� we will make an
additional assumption� that the two points in an example are each drawn independently given
the label� That is� there is a single distribution D over Rn� and with some probability p� two
points are drawn iid from D� �D restricted to the positive side of the target function� and with
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probability ��p� the two are drawn iid from D� �D restricted to the negative side of the target
function��

Blum and Mitchell ��	 give positive algorithmic results for co�training when �a� the two
halves of an example are drawn independently given the label �which we are assuming now��
�b� the underlying function is learnable via Statistical Query algorithms �which is true for linear
separators by ��	�� and �c� we have enough labeled data to produce a weakly�useful hypothesis
on one of the halves to begin with�� Our contribution in this paper is to show how we can run
that algorithm with only a single labeled example� In the process� we simplify the results of ��	�

Theorem 
 There is a polynomial�time algorithm to learn a linear separator under the above

assumptions� from a polynomial number of unlabeled examples and a single labeled example�

Proof Sketch� Assume for convenience that the target separator passes through the origin�
and let us denote the separator by c� � x � �� We will also assume for convenience that
PrD�c

��x� � �� � ����� � � ���	
 that is� the target function is not overwhelmingly positive or
overwhelmingly negative �if it is� this is actually an easy case� but it makes the arguments more
complicated�� De�ne the margin of some point x as the distance of x�jxj to the separating
plane� or equivalently� the cosine of the angle between c� and x�

We begin by drawing a large unlabeled sample S� The �rst step is to ensure that some
reasonable ���poly� fraction of S has margin at least ��poly� which we can do via the Outlier
Removal Lemma of ��� ��	� The Outlier Removal Lemma states that one can algorithmically
remove an �� fraction of S and ensure that for the remainder� for any vector w� maxx�S�w �x�

� �
poly�n� b� �����Ex�S ��w �x��	� where b is the number of bits needed to describe the input points�
We can now perform a linear transformation to put the points into isotropic position �for all
unit�length w� E��w � x��	 � ��� which then guarantees that �since the maximum is bounded��
at least a ��poly fraction of the points have at least a ��poly distance to the separator�

The second step is we argue that a random halfspace has at least a ��poly chance of being a
weak predictor� ���	 uses the perceptron algorithm to get weak learning
 here� we need something
simpler since we do not yet have any labeled data�� Speci�cally� consider some positive point
x such that the angle between x and c� is 	�� � �� and imagine that we draw h at random
subject to h � c� 	 � �half of the h�s will have this property�� Then we have�

Prh�h � x 
 �jh � c� 	 �� � �	��� ���	 � ��� � ��	�

Since we have that at least a ��poly fraction of the positive x � S have margin at least ��poly�
this means that

Prh�x�h � x 
 �jh � c� 	 �� x � c� 	 �� 
 ���� ��poly�

and similarly for the negative examples with signs reversed� This means that a ��poly proba�
bility mass of functions h must in fact be weakly�useful predictors�

The �nal step of the algorithm is as follows� Using the above observation� we pick a random
h� and plug it into the bootstrapping theorem of ��	 �which� given unlabeled pairs hx� x�i�
will use h�x� as a noisy label of x�� feeding the result into an SQ algorithm�� repeating this
process poly�n� times� With high probability� our random h was a weakly�useful predictor
on at least one of these steps� and we end up with a low�error hypothesis� For the rest of

�A weakly�useful predictor is de�ned to be a predictor h such that Pr�h	x
 � �jc�	x
 � �� � Pr�h	x
 �
�jc�	x
 � ��� �� it is equivalent to the usual notion of a 
weak hypothesis� when the target function is balanced�
but requires the hypothesis give more information when the target function is unbalanced� Kalai and Servedio
���� show that this property is also su�cient for boosting in the presence of noise�






the runs of the algorithm� we have no guarantees� We now observe the following� First of
all� any function h with small err�h� must have small errunl�h�� Secondly� because of the
assumption of independence given the label� the only functions with low unlabeled error rate
are functions close to c�� close to 
c�� close to the �all positive� function� or close to the �all
negative� function�� That is because if h is not close to one of these� it must be the case
that for some � � f�� �g� Prx�h�x� � �jc��x� � �� � �
� � � 
	 for 
 � !���� which implies
Prx�x��h�x� �� h�x��jc��x� � c��x�� � �� 	 
���
�� So� if we simply examine all the hypotheses
produced by this procedure� and pick some h with a low unlabeled error rate that is at least
����far from the �all�positive� or �all�negative� functions� then either h or 
h is close to c��
We can now just draw a single labeled example to determine which case is which�

� In�nite hypothesis spaces� uniform convergence bounds

For in�nite hypothesis spaces� the �rst issue that arises is that in order to achieve uniform
convergence of unlabeled error rates� the set whose complexity we care about is not C but rather
��C� � f�h � h � Cg where we de�ne �h�x� � ��h� x�� For instance� suppose examples are just
points on the line� and C � fha�x� � ha�x� � � i� x � ag� In this case� VCdim�C� � �� However�
we could imagine a compatibility function such that ��ha� x� depends on some complicated
relationship between the real numbers a and x� In this case� VCdim���C�� is much larger� and
indeed we would need many more unlabeled examples to estimate compatibility over all of C�

A second issue is that even if we assume the target function is fully compatible and the
distribution is helpful� VC�dimension may not be a good way to measure the �size� of the set
of surviving functions� For instance� if we consider a margin�based notion of compatibility �the
case of Example ��� then even if data is concentrated in two well�separated �blobs�� the set
of compatible functions still has as large a VC�dimension as for the entire class� even if all
compatible functions are very similar with respect to D� So� instead of VC�dimension� a better
measure is the expected number of splits of a sample of size m drawn from D �its logarithm is
sometimes called �annealed VC�entropy��� Speci�cally� for any C� we denote by C�m�D	 the
expected number of splits of m points �drawn i�i�d�� from D with concepts in C� Also� for a

given ��xed� S � X� we will denote by S the uniform distribution over S� and by C
h
m�S

i
the

expected number of splits of m points �drawn i�i�d�� from S with concepts in C� We can now
get a bound as follows�

Theorem �

mu � O

�
V Cdim ���C��

��
log

�

�
�

�

��
log

�

�

�
unlabeled examples and

ml �
�

�

�
log��s� � log

�

�

�
labeled examples� where

s � CD���t� �����ml�D	

are su	cient so that with probability 	 �� �� all h � C with derr�h� � � and derrunl�h� � t� �
have err�h� � �� and furthermore all h � C have jerrunl�h��derrunl�h�j � ��

�I�e�� exactly the case of the generative models we maligned at the start of this paper�

�



This is the analog of Theorem � for the in�nite case� In particular� this implies that if
errunl�c

�� � t then with probability 	 �� � the h � C that optimizes derr�h� and derrunl�h� has
err�h� � ��
Proof Sketch� By standard VC�bounds ��� ��	� the number of unlabeled examples is su�cient
to ensure that with probability � � ��� we can estimate� within �� Prx�D��h�x� � �	 for all
�h � ��C�� Since �h�x� � ��h� x�� this implies we have can estimate� within �� the unlabeled
error rate errunl�h� for all h � C� and so the set of hypotheses with derrunl�h� � t�� is contained
in CD���t� ����

The bound on the number of labeled examples follows from ��	 and ��	 �where it is shown
that the expected number of partitions can be used instead of the maximum in the standard VC
proof�� This bound ensures that with probability �� ���� none of the functions in CD���t����
whose whose true �labeled� error is at least � have an empirical �labeled� error of ��

We can also give a bound where we specify the number of labeled examples as a function of
the unlabeled sample
 this is useful because we can imagine our learning algorithm performing
some calculations over the unlabeled data and then deciding how many labeled examples to
purchase� For simplicity� let us just consider the �doubly realizable case� in which we imagine
the target function satis�es err�c�� � � and errunl�c

�� � ��

Theorem � An unlabeled sample S of size

O

�
max�V Cdim�C�� V Cdim���C��	

��
log

�

�
�

�

��
log

�

�

�

is su	cient so that if we label ml examples drawn uniformly at random from S� where

ml �
�

�

�
log��s� � log

�

�

�
and s � CS�����

h
�ml� S

i

then with probability 	 �� �� all h � C with derr�h� � � and derrunl�h� � � have err�h� � ��

Proof� Standard VC�bounds �in the same form as for Theorem �� imply that the number
of labeled examples ml is su�cient to guarantee the conclusion of the theorem with �err�h��
replaced by �errS�h�� �the error with respect to S� and ��� replaced with ������ The number
of unlabeled examples is enough to ensure that� with probability 	 � � ���� for all h � C�
jerr�h�� errS�h�j � ���� Combining these two statements yields the theorem�

For example� for Example �� in the worst case �over distributions D� this will recover
the standard margin sample�complexity bounds� In particular� CS����� contains only those
separators that split S with margin 	 �� and therefore� s is no greater than the maximum
number of ways of splitting �ml points with margin �� However� if the distribution is especially
nice� then the bounds can be much better because there may be many fewer ways of splitting
S with margin �� For instance� in the case of two well�separated �blobs� discussed above� if S
is large enough� we would have just s � ��

� �	Cover	based Bounds

The bounds in the previous section are for uniform convergence� they provide guarantees for
any algorithm that optimizes well on the observed data� In this section� we consider stronger
bounds based on ��covers that can be obtained for algorithms that behave in a speci�c way�

��



they �rst use the unlabeled examples to choose a �representative� set of compatible hypotheses�
and then use the labeled sample to choose among these� Recall that a set C� � �X is an ��cover
for C with respect to D if for every c � C there is a c� � C� which is ��close to c�

To illustrate how this can produce stronger bounds� imagine the case of Section ���� We
saw there we could learn from just a single labeled example� using essentially an ��cover based
algorithm� However� it is not hard to show that even for a labeled set L as large as o�log n��
and an unlabeled set U of size poly�n�� for natural D there will with high probability exist
high�error functions consistent with L and compatible with U �� So� we do not yet have uniform
convergence�

Theorem 
 If t is an upper bound for errunl�c
�� and p is the size of a minimum �� cover for

CD���t� ���� then using

mu � O

�
V Cdim ��C�

��
log

�

�
�

�

��
log

�

�

�

unlabeled examples and

ml � O

�
�

�
ln
p

�

�
labeled examples� we can with probability 	 �� � identify a hypothesis which is ��� close to c��

Proof Sketch� First� given the unlabeled sample U � de�ne H� � C as follows� for every
labeling of U that is consistent with some h in C� choose a hypothesis in C for which derrunl�h�
is smallest among all the hypotheses corresponding to that labeling� Next� we obtain C� by
eliminating from H� those hypotheses f with the property that derrunl�f� � t � ��� We then
apply a greedy procedure on C�� and we obtain G� � fg�� � � � � gsg� as follows�

Initialize H�
� � C� and i � ��

�� Let gi � argmin
f�Hi

�

derrunl�f��
�� Using unlabeled data� determine Hi��

� by crossing out from Hi
� those hypotheses f with

the property that �d�gi� f� 
 ���

�� If Hi��
� � � then set s � i and stop
 else� increase i by � and goto ��

Our bound on mu is su�cient to ensure that� with probability 	 �� ���� H� is an ��cover
of C� which implies that� with probability 	 � � ���� C� is an ��cover for CD���t�� It is then
possible to show G� is� with probability 	 �� ���� a ���cover for CD���t� of size at most p� The
idea here is that by greedily creating a ���cover of C� with respect to distribution U � we are
creating a ���cover of C� with respect to D� which is a ���cover of CD���t� with respect to D�
Furthermore� we are doing this using no more functions than would a greedy ���cover procedure
for CD���t� ��� with respect to D� which is no more than the optimal ��cover of CD���t� ����

Now to learn c� we use labeled data and we do empirical risk minimization on G�� By
standard bounds ��	� the number of labeled examples is enough to ensure that with probability

�Proof� Let D be uniform on f�� �gn 	we have n boolean variables x�� � � � � xn
 and for simplicity let c�	x
 � x��
Now� let V be the set of all variables that 	a
 appear in every positive example of L and 	b
 appear in no negative
example of L� Since L has size o	log n
� with high probability V has size n��o��� 	on average� each labeled example
cuts the size of V by a factor of �
� Now� consider the hypothesis corresponding to the conjunction of all variables
in V � This correctly classi�es the examples in L� and whp it classi�es every other example in U negative because
each example in U has only a ���jV j chance of satisfying every variable in V � and the size of U is much less than
�jV j� So� this means it is compatible with U and consistent with L� even though its true error is high�

��



	 � � ��� the empirical optimum hypothesis in G� has true error at most ���� This implies
that overall� with probability 	 �� �� we �nd a hypothesis of error at most ����


 Conclusions

We have provided a PAC�style model that incorporates both labeled and unlabeled data� and
have given a number of sample�complexity bounds� The intent of this model is to capture many
of the ways unlabeled data is typically used� and to provide a framework for thinking about
when and why unlabeled data can help�

Our best ���cover based� bounds apply to strategies that use the unlabeled data �rst to
select a small set of �reasonable� rules and then use labeled data to select among them� as do
our algorithms of Section �� It is interesting to consider how this relates to algorithms �like
the original co�training algorithm� that use labeled data �rst� and then use unlabeled data to
bootstrap from them�
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