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Abstract

Location games model competitive placement of services such as fast-food chains, product
positioning, as well as political competition. We consider a two-player, sequential location
game, with n stages. At each stage, players 1 and 2 choose locations from a feasible set in
sequence. After all moves are made, consumers each purchase one unit of the good from the
closest location, breaking ties uniformly at random. Since player 1 has a natural first-mover
disadvantage here (player 2 can obtain a payoff of half the total market just by replicating player
1’s moves), we examine her worst-case payoff. When the number of stages is known to both
players we show that (i) if the feasible locations form a finite set in R?, player 1 must obtain

at least 17 in the single-move game (i) in the original Hotelling game (uniformly distributed

consumers on the unit interval), player 1 obtains % even in the multiple stage game. However,

player 1’s worst-case payoff suffers if she does not know the number of moves, but player 2 does.
In the Hotelling game, where the number of stages is either 1 or 2, player 1’s payoff falls to 15—2
If she has no information at all about n, we provide a lower bound for her worst-case payoff: it
must equal at least half the payoff of the single-stage game.

1 Introduction

Starting with the classic Hotelling model (Hotelling, 1929), there is an extensive literature on loca-
tion games. These games have been applied in several different contexts, including firms competing
in a market (Gabscewicz and Thisse, 1992, provide a survey), political competition among parties
or candidates (see Shepsle, 1991, for a survey), and facility location (surveyed by Eiselt, Laporte,
and Thisse, 1993).

In this paper, we consider worst-case payoffs in a sequential location game with two players.
Given a demand distribution and a feasible set of locations, each player picks a feasible location
in every stage with player 1 always moving first. After players have chosen their locations, each
consumer buys one unit of the product from the closest player, breaking ties uniformly at random.
We consider the game without prices: Each player maximizes its market share. We allow players
to locate at previously occupied locations, therefore, it is immediate that player 1 has a first-mover
disadvantage in this game. By replicating the moves of player 1, the second player obtains a payoff
no worse than % Hence, we focus on the worst-case (or min-max) payoff of player 1.

We consider the location game without prices. This version is commonly applied to, e.g.,
political contests and the facility location problem. As Osborne and Pitchik (1987) show, the
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(simultaneous-move) game with prices may not possess a pure strategy equilibrium. With mixed
strategy equilibria, the range of possible outcomes may be large. Further, characterizing the set of
mixed strategy equilibria can be difficult. For a similar reason, we consider the sequential rather
than simultaneous location game.!

We first examine a class of games in which the set of feasible locations is finite, and contained
in R%. Without loss of generality, consumers are distributed over R¢ (so there are d attributes
of the product a consumer cares about). In the single-stage game (with each player choosing just
one location), we characterize completely the set of feasible worst-case payoffs for player 1 over all
choices of consumer distribution and location set. In this case, the worst-case payoff of player 1 is
equivalent to her payoff in a Nash equilibrium?.

We show that there exists such a location game in R%, such that observed market shares are a

result of a Nash equilibrium of this game if and only if the share of the first mover is between #

and %, and the shares of the players sum to 1. That is, over all location games in d-dimensional

Euclidean space, the minimum payoff to player 1 in a Nash equilibrium is d—_lH, and the maximum

is % Further, for any y € [d—il, %], there exist instances of the game such that r; = y. With a

location set in R?, player 1 must obtain at least % of the payoff.

This result provides an upper bound for the size of the first-mover disadvantage in such a game.
Entry timing games are often characterized by a trade-off between factors that imply a first-mover
advantage (for example, in the political context, an early entrant has more time to raise money)
and those that lead to a disadvantage. Our result implies that, keeping all other things the same,
if the payoff increase as a result of a first-mover advantage exceeds % (so that the total payoff
exceeds %), players should seek immediate entry in the single-stage game.

We then consider a multi-stage game in which the two players move sequentially at each stage,
with player 1 picking a location first, followed by player 2. General results on multi-stage games
may not be feasible. In particular, player 1’s payoff need not be monotone in the number of stages.
We provide two examples to demonstrate this. In one, we construct a game, in which, player 1
obtains % in a Nash equilibrium of the single-stage, but only % in the two-stage game. Conversely,
we exhibit a game in which player 1’s payoff converges to % as the number of stages grows.

In the original Hotelling game (with the location set being the unit interval, and consumers
uniformly distributed over this interval), we show that in the n-move game, for any n, the worst-
case payoff of player 1 is % In fact, we demonstrate a set of locations such that, if firm 1 occupies
each location in this set, regardless of player 2’s moves, it obtains a payoff of at least %

Such games have also been studied in computational geometry, under the label “Voronoi games.”
In these games, the location set is continuous, and the consumers are assumed to be uniformly
distributed over some compact set. Co-location of players is not permitted. Cheong et al. (2002),
show that when the Voronoi game is played on a square with uniform demand, with a large enough
number of moves, and the second player locates all her points after observing all of player 1’s
moves, player 2 obtains a payoff of at least % + « for a fixed constant . Some of the results we
obtain here are cited as open questions by Cheong et al. In particular, we characterize the value of
the sequential game and the corresponding optimal strategies, when played in a high dimensional
space. For the Voronoi game on the uniform line and uniform circle, Ahn et al. (2001) show that
player 1 has a strategy which guarantees her a payoff of strictly more than %, while player 2 can
get a payoff arbitrarily close to % without actually getting % Variations of the original single-move
Hotelling game with multiple players, have also been considered under the name of “competitive

!Prescott and Vischer (1977) show that the outcomes of a sequential location game can differ significantly from
those that obtain in a simultaneous move game.
2Interestingly, all Nash equilibria of this game are also subgame-perfect equilibria.



facility location.” Eiselt et al. (1993) is an excellent survey of some of this work.

We next consider an “online” game, in the same “adversarial” spirit as the online algorithms
literature (see for example, Borodin and El Yaniv, 1998). Much of this literature examines single-
player decision problems, with nature being an adversary that chooses the input to minimize the
player’s payoff (or maximize her cost). The player must therefore make decisions that are “robust”
with respect to future inputs. Single-player online games studied previously include facility location
games where demand arrives over time (Mettu and Plaxton, 2000) and auctions (Bar-Yossef et al.,
2002).

To extend this framework to our two-player game, we assume that player 2 knows exactly the
number of stages, but player 1 knows only that the number of stages is in some feasible set. In this
case, the worst-case payoff of player 1 contains an additional minimization over the set of stages.
Hence, this worst-case payoff is no longer interpretable as occurring in a Nash equilibrium.

Suppose player 1 knows that there are one or two stages to the game, whereas player 2 knows
the actual number of stages. Then, even in the original Hotelling game, player 1 can no longer
guarantee a payoff of %; in fact, we show that her worst-case payoff is % Finally, suppose player
1 has no information about the number of stages (i.e., she believes that this can be any positive
integer). By replicating the previous moves of player 2, player 1 obtains a payoff no worse than
half the payoff it gets in an equilibrium of the single-stage game. This provides a lower bound for
player 1’s worst-case payoff.

The rest of this paper is organized as follows. We begin by describing the model and definitions
in Section 2. In Section 3 we study the multiple move game when both players know the number
of moves. In Section 4, we extend these results to the online game, where player 1 does not know
n. We conclude in Section 5.

2 Preliminaries

Consider R¢ with d > 1, endowed with the Euclidean distance function, §. Consumers are dis-
tributed on RY, with distribution F(-) defined over the Borel o—algebra on R?. Without loss of
generality, the total mass of consumers is normalized to 1.

There are two players. L C R? denotes a compact set of points at which players may locate.?
The game has n stages. At each stage, the players move in sequence. First, player 1 chooses
a location in L, and then player 2 responds. At any stage, either player is allowed to choose a
location already occupied by either of the players. The game is therefore represented as a 4-tuple,
(n,d, L, F).

Let s; denote the location chosen by player 1 at stage ¢, and ¢; the location chosen by player 2.
Let S; and T; denote the first 4 moves of players 1 and 2 respectively, with Sy = Ty = (). A pure
strategy for player 1 at stage 7 is a map a; : S;_1 X T;_1 — L. Similarly, a pure strategy for player
2 at stage ¢ is a map b; : S; X T;_; — L. A pure strategy for player 1 in the game as a whole is
denoted A = (ay,...,a,) and similarly for player 2.

After each player has chosen its n locations, each consumer buys 1 unit of the good from
the closest location. If the closest location is not unique, the consumer randomizes with equal
probability over the set of closest locations.

Given a multiset Y of locations and some point v in R?, define §(v,Y) = minyey 6(v,y) as the

3Without loss of generality, we assume that L spans R%. Otherwise, we can project the d-dimensional space
orthogonally to the subspace spanned by L. The orthogonal projection 7 has the property that for any two location
points I1,l> € L and a demand point & € R%, §(I1,z) < §(l2,x) < 6(l1,n(x)) < §(I2,m(x)). Thus payoffs and
equilibrium strategies in the game remain unaffected.



distance between v and the point in Y closest to v. Let ky(v) = |[{y € Y : §(v,y) = §(v,Y)}
be the number of points in Y which are at minimum distance from v. The demand gathered by
a point y € Y is defined as r(y,Y \ {y}) = VERA:3(0,)=0(v,Y ) #(U)dF(v). Now let S and T be
the locations chosen by player 1 and player 2 respectively. Then, player 1’s payoff is given by
r(S,T) = Y es(s,SUT\ {s}). Player 2’s payoff is (T, S) = 1 —r(S,T). Note that by definition,
for any move x and set of moves Y, we have r(z,Y) < r(z,y) Vy €Y.

The strategy choices of the two players, a and b, imply chosen locations, S(a,b) and T'(a,b)
respectively. Notationally, for convenience, we often suppress the dependence of S,T on a,b. The
worst-case payoff of player 1 is defined as r; = max, miny, r(S(a,b),T(a,b)).

Since this is a constant-sum game, a strategy of player 2 that minimizes the payoff of player 1
must maximize the payoff of player 2. Hence, when n is known to both players, the strategies (a, B)
that lead to player 1 earning its worst-case payoff constitute a Nash equilibrium of the game.

3 Known number of stages

In this section, we examine the game when the number of stages is known to both players. First,
suppose there is a single stage in the game, so that each player moves only once. In focusing on
the worst-case payoff to player 1, we essentially bound the size of the first mover disadvantage in
this model.

We first consider the case of a finite location set.* Let G4(1) = (1,d, L, F) denote an instance
of the single-stage location game in d-dimensional Euclidean space, where L is a finite location set.
Let G4 denote the set of such games.

It is clear that r; < %, since player 2 can ensure ry = % via the strategy b = a, which replicates

each move of player 1. How low can the worst-case payoff of player 1 be? The following example
shows that, when the location set is in R?, player 1’s payoff can be as low as %
Example 1 Consider the game given by Figure 1, with L = {a/, V', '}, and f(a) = f(b) = f(c) = %,
where f(v) denotes the density of demand at v. Player 2’s best response is as follows: If Player 1
chooses a’, player 2 chooses V'; if player 1 chooses b, player 2 chooses ¢’; otherwise, player 2 chooses
a'. Given this, player 1 is indifferent over {a’,’,¢'}. Regardless of the location she chooses, player
1 obtains a payoff of %, with player 2 obtaining %

In fact, we show that this game represents the worst case for player 1 over all such location
games in R?. That is, there does not exist a demand distribution and a finite location set in R?,
such that player 1 obtains a Nash equilibrium payoff strictly less than % in this single-move location
game. The result extends more generally: in R?, player 1 must obtain at least d—il, and there exists
a game in which it obtains exactly # (so the bound is tight).

Recall that when the number of stages is known to both players, the worst-case payoff of player
1 is identical to its payoff in a Nash equilibrium. We therefore state our result in terms of Nash

equilibrium payoffs.

Theorem 1 There exists a location game G4(1) € G4 such that 1,79 are payoffs in a Nash equi-
librium of G4(1) if and only if r € [d—_}_l, %] androg =1—r1r1.

1 1].

Proof: Tt is immediate that, in any equilibrium, ry + ro = 1. Hence, we prove that r; € [m, 5

“Finiteness of the location set is necessary to prove Theorem 1 below, as we show in a remark following the
theorem. The demand distribution F'(-) may be continuous.
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Figure 1: A location game in the Euclidean plane. Points a,b, and ¢ have demands z, %(1 — )
and %(1 — x) respectively, and, L = {a’, V', ¢'}. Lines are labeled by the Euclidean distance between
their endpoints.

“If” part:

Given a value z € [#, 1], we construct a game G4(1) for which r; = z. This essentially
reconstructs Example 1 in d dimensions. We first construct the game in the (d + 1)-dimensional
Euclidean space (for ease of exposition), then project it down to the d-dimensional Euclidean space.

The set of location points is a simplex given by L = {l,ls,...,l4+1}, where point /; is at position
—1 on the i co-ordinate axis.

There are d + 1 demand points v;. Let f represent the density of demand. Set f(v1) = z €
[d—il, $land f(v;) = 1(1—=)Vi > 1. Fix € > 0 such that € < 1. Demand point v; has i co-ordinate
1 —¢, and for j # i, the j'* co-ordinate is €[(j — i)mod d].

Defined =1+ 4% =1+ Méwﬂ). This induces the following distance function between
demand points and location points:

2 2[1 + (j —i)mod d] + de® i # j
52(li,vj)={ 1) ] e Zi;

For any demand point v;, we can define a precedence relation <; as l; <; 1y if 6(1;,v5) < 6(lyr, vj).
It follows that for every j, we have [; <; l(j+1)m0dd =y l(j+2)m0dd <o = l(jfl)modd‘ This
precedence relation is identical to that induced by a Condorcet voting paradox (Condorcet, 1785)
instance with d + 1 voters and d 4 1 choices.

It is now immediate that r(l;, l(z'fl)modd) z'fl)modd) =1(1-z) for
1> 1. For z € [#1’ %], we have z > %(1 — z). Player 1’s equilibrium strategy, therefore, is to
choose [1, and the resulting payoff is ry = z.

Finally, we obtain our d-dimensional instance by orthogonally projecting D to the d-dimensional
hyperplane formed by the points in L. Such a projection reduces each 62(l;, v;) by the same amount,

=z for i = 1, and rl(li,l(



and hence preserves the precedence relation <;.
“Only if” part:

Note first that, for any G4(1) € G4, we have r1 < 1 in any Nash equilibrium. By choosing t = s,
Player 2 earns o = 3, and so can do no worse in equilibrium. Hence, r; < %

For any subset S or R%, let F(S) = [ . dF(v) represent the total demand of points in S. In

order to continue, we need to define the concept of centerpoints. A point py € R? is a centerpoint
if every closed half-space H that contains py has demand F(H) > % The following theorem may

be found in Matousek (2003) (also Edelsbrunner, 1987).

Theorem 2 [Centerpoint Theorem]| For any mass distrz’bution F in RY, there exists a point pg
such that any closed half-space containing py has at least 1 of the mass.

The centerpoint of a distribution need not be unique; in Example 1, any point in the convex
hull of a,b and c is a centerpoint. However, at least one centerpoint is guaranteed to exist. In the
remainder of this proof, we prove the following (stronger) claim using centerpoints:

Let py be a centerpoint of the distribution F', and let Ly be the set of location points at minimum
distance from py. Then there exists a point | € Ly such that r1(1,1") > for alll' € L.

We consider two cases:
Case (i) Ly = {lp}, that is, there is a unique location point closest to the centerpoint py. Consider
any other location point I, and let H°(lp,I') = {v € R : §(ly,v) < §(I',v)} be the open half-space
consisting of points closer to Iy than to I’. Since d(lp,po) < 0(I',po), there is a closed half-space
containing py which is fully contained in H(ly,1"). Therefore, r1(lo,l") > F(H(lp,l")) > and
locating at [y ensures that Player 1 earns at least

d+1

#7
d+1 payoff.

Case (ii) |Lg| > 1. Define a precedence relation on Ly as follows: [ <" if and only if r;(1,1') < ﬁ.
We need to show that there exists a point [ € L such that there is no I’ € L with [ < I’. We begin
by proving that < is acyclic on Lg; that is, there is no sequence of elements (I1,ls,...,[;) in L
with Iy <1lg <3 < ... <1y <1y. Let L' = {l1,ls,...,l;,} be the set of location points forming this
cycle.

For any two location points [,I’ € Ly, define H°(I,I') = {v € R? : §(I,v) < 6(I',v)} to be the
open half-space containing points strictly closer to [ than to I’. Define H=(I,I") = {v € R%: §(l,v) =
d(I',v)} to be the hyperplane of points equidistant from [ and ', and let H¢(l,l') = H°(l,l') U
H=(I,1") be the closed half-space containing points at least as close to [ as to I'. By definition,
r(l,1") = F(H°(1,I')) + $F(H=(1,1")). Furthermore, if I < ', then F(H°(l,I')) + $F(H=(1,1")) <
-

Suppose < induces a cycle in Lg; let this cycle be I; < ... < I, < [;. Let X = {v € R%:
d(l1,v) = 6(la,v) = ... = §(lk,v)} be the set of points equidistant from all the points in the cycle;
by definition, the centerpoint py must belong to this set X. Therefore, X is not empty.

Let m = max{d + 1,k}; so 2 < m < d+ 1. For all 4, the fact that I; < [;;; means that
F(H®(lix1,1:)) + $F(H= (liy1,1)) > 7%5. Therefore, F(H(liy1,1;)) > 7% + $F(X), since X C
H=(lj+1,1;). Taking the complement, F(H°(l;,li+1)) < # — 2F(X). Therefore, we obtain that
F(UZT HO (I, 1i41)) < B2 — 2F(X). Since 1 < m < d+ 1, we have F(UZT HO (I, li41) U X) <
7 + 3 F(X).

Taking complements once again and noting that m < d+ 1, we have F(N" " He(l;41,1;) \ X) >
m — $F(X). However, the set N"7'H°(l;y1,0;) \ X must be disjoint from H¢(l1,[;), since all
points in L' are equidistant from X. But F(H(l1,l;)) > #‘il + $F(X), since I, < ;. But this
contradicts the fact that the total demand in the space is 1. Therefore, we have a contradiction,
and the cycle L’ cannot exist.



We have shown that the relation < is acyclic. An acyclic relation on a finite set must contain
a point Iy which is not preceded by any other point I’ € Ly. Such a point can be found by starting
at any point [ € Ly, and moving to any point I’ € Ly such that I’ < [. Since < is acyclic and L is
finite, this process must terminate at an ly such that there is no point I’ € Ly with I’ < [.

If Player 1 locates at lp and Player 2 locates at any point " € Lg, then 7 (lg,l") > d—il because
I' does not precede ly. If Player 2 locates at some point I’ ¢ Ly, then the argument for Case (i)

(|Lo| = 1) shows that r(lp,l") > d—il. This completes the proof of the “only if” part. |

3.1 Choosing the best location point

In Theorem 1 we show that one of the points closest to a centerpoint must get a payoff of at least
# in the one move game. The following example shows that this does not hold in general for an
arbitrary location point closest to a centerpoint, thus necessitating a proof as given above.

Example 2 Consider the following instance of the location game in 3-dimensional Euclidean space,
with the co-ordinates labeled z, y and z respectively. The demand is concentrated at 4 points:
p1 = (1,0,0),ps = (—0.5,—v/3/2,0),p3 = (—0.5,v/3/2,0) and py = (0,0,5). The demand at pi, py
and p3 are 0.25 — ¢, where 0 < € < 1. The demand at p4 is 0.25 + 3e. The set of location points
consists of a set L' of several points at distance 1 from ps with the z-co-ordinate at least 5.5, and
a single location point Iy = (0,0,4).

The only centerpoint of this demand distribution is at ps. All location points are equidistant
from it, since they are all at distance 1. However, if player 1 locates at any point in L', then player
2 can locate at [y resulting in a payoff of only % + 1.5¢ for player 1.

Therefore, if there is more than one location point closest to the set of centerpoints, one cannot
arbitrarily locate at any one of them. By Theorem 1, there must exist a point closest to a cen-
terpoint, such that locating at that point guarantees at least d—-lrl payoff for player 1; the point I
in Example 2 is such a point. In this sense, our result may be viewed as a strengthening of the

Centerpoint Theorem.

3.2 Finiteness of the location set

Finiteness of the location set, L, is used in the “only if” part of the theorem to show that the
acyclicity of < implies that we can find a sink node. The following example, a variant of the largest
number game, indicates that there is no extension to a countably infinite set. Consider the unit
interval, [0,1]. Let f(0) =1 (so that all demand is at the point 0). Let L = {1},cz,, where Z is
the set of positive integers. For any point /; chosen by player 1, player 2 can find a point closer to
0, and obtain a payoff of 1.

3.3 Monotonicity of payoffs

In the game in G4 constructed in the “If” part of Theorem 1, with z = #, consider the payoff
of player 1 as the number of moves n increases (with both players knowing n). While the number
of moves is less than d 4 1, player 1 can weakly increase her payoff by locating at each stage at a
location where she has not located yet. When the number of moves is d + 1 or more, the strategy
of first locating at all points in L and then replicating player 2’s previous move guarantees a payoff
which converges from below to % as n increases.



Given the last remark above, one might conjecture that, in the multi-stage game, the worst-case
payoff of player 1 is weakly increasing in the number of moves, n. However, the following example
demonstrates that this is not always true.

Example 3 Consider two replicas of the game in Example 1, with location sets L; = {a},b,c;}
for 2 = 1,2. The demand density is é at each of the points in D; = {a;, b;, ¢;}, for i = 1,2. Further,
let a} be the closest location point in L; to the demand points D;, for ¢ = 1,2 and j # 7. Let
5(ai,a"j) > 2 for i = 1,2 and j # i, so that the points in L; are sufficiently far from the points in
D;.

Suppose n = 1, so that each player moves just once. Player 1’s optimal action is to choose
either a} or af. If player 1 chooses a), player 2’s best response is to choose any of {a},ab,bh, ch},
with a corresponding best response set if player 1 chooses a;. In either case, player 1 obtains a
payoff of %

Now, suppose n = 2. Without loss of generality, suppose player 1 chooses a location in L; with
her first move. Conditional on choosing a point in Ly, locating at o} is an optimal action for player
1. Now, player 2 responds by locating at b}. Consider player 1’s best response. If she chooses any
point in Ls, player 2 will choose the corresponding point in Lo such that it obtains % of the demand
closest to each of L; and Ly, and hence captures a payoff of % in the game. If instead, player 1
chooses any point in Ly, player 2 will then choose @), obtaining all of the demand closest to Lo,
and at worst % of the demand closest to L1, for an overall payoff no worse than % Hence, player 1

can obtain no more than % in the 2-move game.

Example 2 suggests that there is no general result on the equilibrium payoffs as n increases. Since
results on the general n-move game are difficult to obtain, we next study the game in Hotelling’s
original setting, where the demand is distributed uniformly over [0, 1], and L = [0,1]. Let H(n) =
(n,1,[0,1],U]0, 1]) denote the Hotelling game with n rounds, L = [0, 1], and F'(z) = = for = € [0, 1].
We first show that there is no second-mover advantage in H(n). In particular, for any fixed n,
there exists a set of location points S that player 1 can choose which implies that its payoff is at
least %, regardless of the strategy of player 2.

Theorem 3 For the game H(n), we have r; = 3.
Proof: Consider S = (s, $2,...,5y), where s; = ﬁ + @ This divides the unit line into n + 1
intervals—the two border intervals are of length %, while the internal intervals are of length %

Let the second player’s chosen location points be given by T' = (¢1,...,t,). We will show that
each point ¢; gets payoff at most % This implies that ry > % As observed earlier, player 2 can
obtain a payoff of % by simply replicating each of player 1’s moves (i.e. set t; = s; for each 7). First
note that, even in the absence of any points ¢;, the total demand captured by point s; individually
is at most % for any 3.

Consider the point ;. Suppose t; = s; for some j. Clearly, the market share of point #; is
at most % from our observation above. Next suppose that ¢; lies in one of the border intervals.
Again, since the length of these intervals is ﬁ, the market share of ¢; is at most %

Finally, consider the case when ¢; lies in some interval (s;,s;+1). If there is at least one other
point ; in this interval, ¢; and t; may share the total demand in that interval, each getting at
most % If t; is the only point in this interval, then, it gets %(3]4_1 — t;) demand from the left
and 1(¢; — s;) demand from the right. Combining the two, we have that t; gets at most ﬁ of the
demand. Thus player 2 obtains a payoff no greater than % [ |

A similar result was obtained independently by Ahn et al. (2001), in the context of Voronoi
games, which differ from our location games in that co-location is not allowed in Voronoi games.



Note that player 1’s strategy in Theorem 3 is independent of player 2’s strategy T'. Thus, player
1’s strategy guarantees her a payoff of at least % even when both players move simultaneously at
each round, or indeed, even if the order of moves is completely arbitrary.

4 Player 1 does not know the number of stages

Next, we consider an “online” version of the location game. In this game, the number of stages, n,
is known to player 2 but not to player 1. Instead, player 1 merely knows that n € N, where N is
some feasible set for the number of stages.

In terms of worst-case payoffs, this changes the flavor of the game completely. The worst-
case payoff of player 1 now contains an additional uncertain element, the number of stages in
the game. As a result, the worst-case payoffs in the game can no longer be thought of as equi-
librium payoffs. Given location sets S, T for the two players, and a known number of stages n,
let 7 (S,T,n) = r(Sy,T,) denote player 1’s payoff in the game. Then, when player 1 does not
know the number of stages, but only that it lies in some set N, her worst-case payoff is given by
r1(N) = max, min, mingey r1(S(a,b), T'(a,b),n).

To illustrate the nature of the difficulty in analyzing this case, suppose first that N = {1,2},
that is, player 1 knows that the number of stages is either 1 or 2. In contrast with Theorem 2,
the following theorem shows that, in the set-up of the original Hotelling game H, player 1 can no
longer ensure a payoff of % across all possible outcomes.

Theorem 4 Suppose player 1 knows that n € N = {1,2}, and player 2 knows n. Then, in the

game H(N), we have r(N) = 3.

Proof: We first show that r;(N) > % Consider the following strategy for player 1. It first locates
at s; = % If n = 1, player 2 will also choose t; = %, so player 1 earns exactly % (that is, r; (1) = %)

Suppose n = 2. Without loss of generality (w.l.o.g.), player 2’s first move is to ¢t; < s1. Firstly,
if t1 = %, then player 1 chooses sy = i. It is easy to verify that in this case, player 1 gets a revenue
of at least 1—76 > % If % >t > %, player 1 then chooses so = t; — €, for some small € > 0. Now,
regardless of player 2’s second move, player 2 obtains a payoff at most 1 + (3 —#1)/2 < % By

locating at & + €, for some small € > 0, player 2 obtains a payoff that approximates (but is strictly

less than) 112

On the other hand, if player 2 first locates at ¢, < %, then player 1 chooses so = g. Now, if
player 2 chooses t3 > s1, she earns a payoff at most 1—72 If t5 = s1, its payoff is at most %. For any
other point t3 < s1, its payoff is at most % Therefore, r,(2) > %, implying r; (N) > %

Next we show that r;(N) < % Suppose not. Then, player 1’s first move must be to some
point in (%, 1—72) (else ri(1) < %) W.l.o.g, suppose player 1’s first move is to s; € (%, %] Suppose
n = 2, and consider the following sequence of play. Player 2 chooses t; = %(1 — 1) < s1. At the
second stage, if player 1 moves to sy < s1, then player 2 makes its second move to to = s1 + € for
some small € > 0. Otherwise, player 2 moves to some t5 > s; that obtains maximum payoff. The
latter payoff is at least %(1 — s1). A simple calculation again shows that in either of these cases,

player 2 earns a payoff of at least % -5 > % [ |

The above theorem shows that if H is played with the number of stages restricted to being no
more than 2, then player 1’s worst-case payoff is lower than % What if player 1 has no information
at all about the number of stages? The techniques used for the above theorem do not extend easily
to larger n, since the number of cases increases rapidly as n increases. However, we show below
that a simple strategy guarantees a payoff of % to player 1 irrespective of the number of rounds in
the game.



We in fact show a more general theorem that applies to all sequential two-player location games,
including H and those in G;. The theorem shows that in a multi-stage game, player 1 must obtain
at least % of her payoff in the single-stage game, even when she has no knowledge of the number of
stages (that is, the set of feasible stages, IV, is the set of positive integers). We prove the theorem
by exhibiting a particular strategy that earns this payoff: locate at the single-stage equilibrium
location, then replicate each move of player 2.

Theorem 5 Suppose that, in a Nash equilibrium of a single stage location game, player 1 earns
r1 = p. Consider the multiple-stage game in which player 1 only knows that n € Z, but player 2
knows n. In this game, r\(Z) > §.

Proof: Consider the following strategy for player 1. At stage 1, she chooses a location s; that yields
the payoff of a single-stage equilibrium, p. For ¢ > 1, player 1 replicates player 2’s previous move,
so that s; = t;_;. For any location y € SUT, we have r(y,SUT \ {y}) <r(y,s1) <1—p.

Now, 71 (S, T,n) > S0 o r(s;, SUT\{s;}) = S0 r(t;, SUT\{t;}) = r(T,S) —r(tn, SUT\{tn}).
This implies 271 (S, T,n) > 1 —r(tp, SUT \ {t,}) > p. Thus, r1(Z;) > min, 7 (S, T,n) > 5. N

An immediate implication is that player 1 can obtain at least Q(d—{i-l) in any game in Gy, and at

least i in the game H, when she does not know the number of stages.

Corollary 6 Suppose player 1 has no information about n, but player 2 knows n.
(i) for any location game Gq(Z4) € G, we have 1| € [57—=, 5]

2(d+1)’ 2
(ii) for the game H(Z.), we have ry > *.

5 Conclusion

We have shown that in a one move location game in R?, player 1 can always guarantee at least

L of the total payoff. If player 1 earns a payoff strictly less that #, this payoff could not

ﬁ;\lfe emerged from a Nash equilibrium of the location game in d-dimensional FEuclidean space.
Conversely, for every x € [d—-lrlv %], there exists a location game such that player 1 obtains a market
share exactly z in equilibrium.

In the multiple-move game on a unit line, when both players know the number of moves, both
obtain a payoff of % in a Nash equilibrium. It would be interesting to generalize this result to games
in higher dimensions.

The situation changes when player 1 does not know the number of moves. Even if the number
of moves is 1 or 2, in the game on a unit line, player 1 obtains a payoff strictly less than % However,
we demonstrate a strategy for player 1, using which she can obtain at least half the payoff of the
single-move game in a Nash equilibrium. An interesting open problem is to completely characterize
this worst-case payoff.
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