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Abstract. We show that any priority queue data structure that sup-
ports insert, delete, and find-min operations in pq(n) time, when there
are up to n elements in the priority queue, can be converted into a priority
queue data structure that also supports meld operations at essentially no
extra cost, at least in the amortized sense. More specifically, the new data
structure supports insert, meld and find-min operations in O(1) amor-
tized time, and delete operations in O(pq(n) α(n, n/pq(n))) amortized
time, where α(m, n) is a functional inverse of the Ackermann function.
For all conceivable values of pq(n), the term α(n, n/pq(n)) is constant.
This holds, for example, if pq(n) = Ω(log∗ n). In such cases, adding the
meld operation does not increase the amortized asymptotic cost of the
priority queue operations. The result is obtained by an improved analy-
sis of a construction suggested recently by three of the authors in [14].
The construction places a non-meldable priority queue at each node of a
union-find data structure. We also show that when all keys are integers
in [1, N ], we can replace n in all the bounds stated above by N .

1 Introduction

Priority queues are basic data structures used by many algorithms. The most
basic operations, supported by all priority queues, are insert, which inserts an
element with an associated key into the priority queue, and extract-min, which
returns the element with the smallest key currently in the queue, and deletes it.
These two operations can be used, for example, to sort n elements by performing
n insert operations followed by n extract-min operations. Most priority queues
also support a delete operation, that deletes a given element from the queue, and
find-min, which finds, but does not delete, an element with minimum key.

Using the insert and delete operations we can easily implement a decrease-key
operation, or more generally a change-key operation, that decreases, or arbitrar-
ily changes, the key of a queue element. (We simply delete the element from
the queue and re-insert it with its new key.) As the decrease-key operation is
the bottleneck operation in efficient implementations of Dijkstra’s single-source
shortest paths algorithm [3], and Prim’s algorithm [15] for finding a minimum
spanning tree, many priority queues support this operation directly, sometimes
in constant time. The efficient implementation of several algorithms, such as the
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algorithm of Edmonds [4] for computing optimum branching and minimum di-
rected spanning trees, require the maintenance of a collection of priority queues.
In addition to the standard operations performed on individual priority queues,
we also need, quite often, to meld, or unite, two priority queues from this collec-
tion. This provides a strong motivation for studying meldable priority queues.

Fibonacci heaps, developed by Fredman and Tarjan [5], are very elegant and
efficient meldable priority queues. They support delete operations in O(log n)
amortized time, and all other operations, including meld operations, in O(1)
amortized time, where n is the size of the priority queue from which an element
is deleted. (For a general discussion or amortized time bounds, see [17].) Brodal
[2] obtained a much more complicated data structure that supports delete oper-
ations in O(log n) worst-case time, and all other operations in O(1) worst-case
time. Both these data structures are comparison-based and can handle elements
with arbitrary real keys. In this setting they are asymptotically optimal.

While O(log n) is the best delete time possible in the comparison model, much
better time bounds can be obtained in the word RAM model of computation,
as was first demonstrated by Fredman and Willard [6, 7]). In this model each
key is assumed to be an integer that fits into a single word of memory. Each
word of memory is assumed to contain w ≥ log n bits. The model allows random
access to memory, as in the standard RAM model of computation. The set of
basic word operations that can be performed in constant time are the standard
word operations available in typical programming languages (e.g., C): addition,
multiplication, bit-wise and/or operations, shifts, and their like.

Thorup [18, 19] obtained a general equivalence between priority queues and
sorting. More specifically, he showed that if n elements can be sorted in O(nf(n))
time, where f(n) is a non-decreasing function, then the basic priority queue
operations can be implemented in O(f(n)) time. Using a recent O(n log log n)
sorting algorithm of Han [9], this gives priority queues that support all operations
in O(log log n) time. Thorup [20] extends this result by presenting a priority
queue data structure that supports insert, find-min and decrease-key operations
in O(1) time and delete operations in O(log log n) time. (This result is not implied
directly by the equivalence to sorting.) Han and Thorup [10] obtained recently a
randomized O(n

√
log log n) time sorting algorithm. This translates into priority

queues with O(
√

log log n) expected time per operation.

Adding a meld operation

The priority queues mentioned in the previous paragraph do not support meld
operations. Our main result is a general transformation that takes these priority
queues, or any other priority queue data structure, and produces new priority
queue data structures that do support the meld operation with essentially no
increase in the amortized cost of the operations! We show that any priority
queue data structure that supports insert, delete, and find-min operations in
pq(n) time, where n is the number of elements in the priority queue, can be
converted into a priority queue data structure that also supports meld operations
at essentially no extra cost, at least in the amortized sense. More specifically,
the new data structure supports insert, meld and find-min operations in O(1)



amortized time, and delete operations in O(pq(n) α(n, n/pq(n))) amortized time,
where α(m,n) is a functional inverse of the Ackermann function (see [16]). For
all conceivable values of pq(n), the factor α(n, n/pq(n)) is constant. This holds,
for example, if pq(n) = Ω(log∗ n). In such cases, adding the meld operation does
not increase the amortized asymptotic cost of the priority queue operations. If
the original priority queue is deterministic, so is the new one.

The result is obtained by an improved analysis of a construction suggested re-
cently by three of the authors (see [14]). This construction places a non-meldable
priority queue at each node of a union-find data structure. The simple analysis
given in [14] gave an upper bound of O(pq(n)α(n, n))) on the cost of all pri-
ority queue operations. Here we reduce the amortized cost of insert, meld and
find-min operations to O(1), and more importantly, reduce the amortized cost
of delete operations to O(pq(n)α(n, n/pq(n))). In other words, we replace the
factor α(n, n) by α(n, n/pq(n)). This is significant as α(n, n/pq(n)) is constant
for all conceivable values of pq(n), e.g., if pq(n) = Ω(log∗ n).

Applying this result to non-meldable priority queue data structures obtained
recently by Thorup [19], and by Han and Thorup [10], we obtain meldable RAM
priority queues with O(log log n) amortized cost per operation, or O(

√
log log n)

expected amortized cost per operation, respectively. Furthermore, Thorup’s equiv-
alence between priority queues and sorting and the transformation presented
here imply that any sorting algorithm that can sort n elements in O(nf(n))
time, where f(n) is a non-decreasing function, can be used to construct meld-
able priority queues with O(1) amortized cost for insert, find-min and meld
operations, and O(f(n)α(n, n/f(n))) amortized cost for delete operations.

As a by-product of the improved meldable priority queues mentioned above,
we obtain improved algorithms for the minimum directed spanning tree problem
in graphs with integer edge weights: A deterministic O(m log log n) time algo-
rithm and a randomized O(m

√
log log n) time algorithm. These bounds improve,

for sparse enough graphs, on the O(m + n log n) running time of an algorithm
by Gabow et al. [8] that works for arbitrary edge weights. For more details (and
references) on directed spanning tree algorithms, see [14].

Although the most interesting results are obtained by applying our transfor-
mation to RAM priority queues, the transformation itself only uses the capabil-
ities of a pointer machine.

Improvement for smaller integer keys
We also show, using an independent transformation, that when all keys are
integers in the range [1, N ], all occurrences of n in the bounds above can be
replaced by N , or more generally, by min{n, N}. This, in conjunction with the
previous transformation, allows us, for example, to add a meld operation, with
constant amortized cost, to the priority queue of van Emde Boas [22, 23] which
has pq(n) = O(log log N). The amortized cost of a delete operation is then:

O(log log N · α(min{n,N}, min{n,N}/ log log N)
= O(log log N · α(N, N/ log log N)) = O(log log N) .

(The original data structure of van Emde Boas requires randomized hashing to
run in linear space [13]. A deterministic version is presented in [19].)



make-set(x) :

p[x] ← x
rank[x] ← 0

union(x, y) :

link(find(x),find(y))

link(x, y) :

if rank[x] > rank[y]
then p[y] ← x
else p[x] ← y

if rank[x] = rank[y]
then rank[y] ← rank[y] + 1

find(x) :

if p[x] 6= x
then p[x] ← find(p[x])

return p[x]

Fig. 1. The classical union-find data structure

2 The Union-find data structure

A union-find data structure supports the following operations:
make-set(x) – Create a set that contains the single element x.
union(x, y) – Unite the sets containing the elements x and y.
find(x) – Return a representative of the set containing the element x.
A classical, simple, and extremely efficient implementation of a union-find

data structure is given in Figure 1. Each element x has a parent pointer p[x] and a
rank rank[x] associated with it. The parent pointers define trees that correspond
to the sets maintained by the data structure. The representative element of each
set is taken to be the root of the tree containing the elements of the set. To find
the representative element of a set, we simply follow the parent pointers until we
get to a root. To speed-up future find operations, we employ the path compression
heuristic that makes all the vertices encountered on the way to the root direct
children of the root. Unions are implemented using the union by rank heuristic.
The rank rank[x] associated with each element x is an upper bound on the depth
of its subtree. In a seminal paper, Tarjan [16] showed that the time taken by the
algorithm of Figure 1 to process an intermixed sequence of m make-set, union
and find operations, out of which n are make-set operations, is O(mα(m,n)),
where α(m,n) is the extremely slowly growing inverse of Ackermann’s function.
The analysis of the next section relies on the following lemma:

Lemma 1. Suppose that an intermixed sequence of n make-set operations, at
most n link operations, and at most f find operations are performed on the
standard union-find data structure. Then, the number of times the parent pointers
of elements of rank k or more are changed is at most O((f + n

2k ) ·α(f + n
2k , n

2k )).

Proof. (Sketch) A node x is said to be high if rank[x] ≥ k. There are at most n/2k

high elements. The changes made to the pointers of the high elements may be
seen as resulting from a sequence of at most n/2k make-set operations, n/2k link
operations and f find operations performed on these elements. By the standard
analysis of the union-find data structure, the total cost of at most f + n/2k−1

union-find operations on n/2k elements is at most O((f+ n
2k−1 )·α(f+ n

2k−1 , n
2k )) =

O((f + n
2k ) · α(f + n

2k , n
2k )), as required. ut

3 The transformation

In this section we describe a transformation that combines a non-meldable pri-
ority queue data structure with the classical union-find data structure to pro-



duce a meldable priority queue data structure with essentially no increase in the
amortized operation cost. This transformation is essentially the transformation
described in [14] with some minor modifications. An improved analysis of this
transformation appears in the next section.

This transformation T receives a non-meldable priority queue data struc-
ture P and produces a meldable priority queue data structure T (P). We assume
that the non-meldable data structure P supports the following operations:

make-pq(x) – Create a priority queue that contains the single element x.
insert(PQ, x) – Insert the element x into the priority queue PQ.
delete(PQ, x) – Delete the element x from the priority queue PQ.
find-min(PQ) – Find an element with the smallest key contained in PQ.

It is assumed, of course, that each element x has a key key[x] associated with
it. We can easily add the following operation to the repertoire of the operations
supported by this priority queue:

change-key(PQ, x, k) – Change the key of element x in PQ to k.

This is done by deleting the element x from the priority queue PQ, changing
its key by setting key[x] ← k, and then reinserting it into the priority queue.
(Some priority queues directly support operations like decrease-key . We shall
not assume such capabilities in this section.)

We combine this non-meldable priority queue with the union-find data struc-
ture to obtain a meldable priority queue that supports the following operations:

MAKE-PQ(x) – Create a priority queue containing the single element x.
INSERT(x, y) – Insert element y into the priority queue whose root is x.
DELETE(x) – Delete element x from the priority queue containing it.
FIND-MIN(x) – Find element with smallest key in queue with root x.
MELD(x, y) – Meld the queues whose root elements are x and y.
CHNG-KEY(x, k) – Change the key associated with element x to k.

As in the union-find data structure, each priority queue will have a rep-
resentative, or root, element. The operations INSERT(x, y) and FIND-MIN(x)
assume that x is the root element of its priority queue. Similarly, MELD(x, y) as-
sumes that x and y are root elements. It is possible to extend the data structure
with an additional union-find data structure that supports a find(x) operation
that returns the root element of the priority queue containing x. (As explained
in [11], a meldable priority queue data structure that supports a MELD(x, y) op-
eration that melds the priority queues containing the elements x and y, where x
and y are not necessarily representative elements must include, at least implic-
itly, an implementation of a union-find data structure.)

A collection of meldable priority queues is now maintained as follows. Each
priority queue of the collection is maintained as a tree of a union-find data
structure. Each element x contained in such a tree thus has a parent pointer p[x]
assigned to it by the union-find data structure and a rank rank[x]. In addition
to that, each element x has a ‘local’ priority queue PQ[x] associated with it.



MAKE-PQ(x) :

p[x] ← x
rank[x] ← 0
PQ[x] ← make-pq(x)

INSERT(x, y) :

MAKE-PQ(y)
MELD(x, y)

DELETE(x) :

CHNG-KEY(x, +∞)

FIND-MIN(x) :

find-min(PQ[x])

CHNG-KEY(x, k) :

change-key(PQ[x], x, k)
FIND(x)

MELD(x, y) :

if rank[x] > rank[y]
then

HANG(y, x)
else

HANG(x, y)
if rank[x] = rank[y]
then

rank[y]←rank[y]+1

FIND(x) :

CUT-PATH(x)
COMPRESS-PATH(x)
return p[x]

CUT-PATH(x) :

if p[x] 6= x then
CUT-PATH(p[x])
UNHANG(x, p[x])

COMPRESS-PATH(x) :

if p[x] 6= x then
COMPRESS-PATH(p[x])
HANG(x, p[p[x]])

HANG(x, y) :

insert(PQ[y],find-min(PQ[x]))
p[x] ← y

UNHANG(x, y) :

delete(PQ[y],find-min(PQ[x]))

Fig. 2. A meldable priority queue obtained by planting a non-meldable priority queue
at each node of the union-find data structure.

This priority queue contains the element x itself, and the minimal element of
each subtree of x. (Thus if x has d children, PQ[x] contains d + 1 elements.)
If x is at the root of a union-find tree, then to find the minimal element in
the priority queue of x, a FIND-MIN(x) operation, we simply need to find the
minimal element is the priority queue PQ[x], a find-min(PQ[x]) operation.

When an element x is first inserted into a priority queue, by a MAKE-PQ(x)
operation, we initialize the priority queue PQ[x] of x to contain x, and no other
element. We also set p[x] to x, to signify that x is a root, and set rank[x] to 0.

If x and y are root elements of the union-find trees containing them, then a
MELD(x, y) operation is performed as follows. As in the union-find data struc-
ture, we compare the ranks of x and y and hang the element with the smaller
rank on the element with the larger rank. If the ranks are equal we decide, arbi-
trarily, to hang x on y and we increment rank[y]. Finally, if x is hung on y, then
to maintain the invariant condition stated above, we insert the minimal element
in PQ[x] into PQ[y], an insert(PQ[y],find-min(PQ[x])) operation. (If y is hung
on x we perform an insert(PQ[x],find-min(PQ[y])) operation.)

A DELETE(x) operation, which deletes x from the priority queue containing
it is implemented in the following indirect way. We change the key associated
with x to +∞, using a CHNG-KEY(x, +∞) operation, to signify that x was
deleted, and we make the necessary changes to the data structure, as described
below. Each priority queue in our collection keeps track of the total number of
elements contained in it, and the number of deleted elements contained in it.
When the fraction of deleted elements exceeds a half, we simply rebuild this
priority queue. This affects the amortized cost of all the operations by only a
constant factor. (For more details see Kaplan et al. [12].)



How do we implement a CHNG-KEY(x, k) operation then? If x is a root
element, we simply change the key of x in PQ[x] using a change-key(PQ[x], x, k)
operation. If x is not a root, then before changing the key of x we perform a
FIND(x) operation. A FIND(x) operation compresses the path connecting x to
the root by cutting all the edges along the path and hanging all the elements
encountered directly on the root. Let x = x1, x2, . . . , xk be the sequence of
elements on the path from x to the root of its tree. For i = k− 1, k− 2, . . . , 1 we
unhang xi from xi+1. This is done by removing find-min(PQ[xi]) from PQ[xi+1].
After that, we hang all the elements x1, x2, . . . , xk−1 on xk. This is done by
setting p[xi] to xk and by adding find-min(PQ[xi]) to PQ[xk]. (Note that we
also unhang xk−1 from xk and then hang it back.)

If x is not a root element then after a FIND(x) operation, x is a child of the
root. Changing the key of x is now relatively simple. We again unhang x from
p[x], change the key of x and then hang x again on p[x]. A moment’s reflection
shows that it is, in fact, enough just to change the key of x in PQ[x], and then
perform a FIND(x) operation. The element x may temporarily be contained in
some priority queues with a wrong key, but this will immediately be corrected.

A simple implementation of all these operations is given in Figure 2. The
important thing to note is that the operation of a meldable priority queue mimics
the operation of a union-find data structure and that changing a pointer p[x]
from y to y′ is accompanied by calls to UNHANG(x, y) and HANG(x, y′).

Since the union-find data structure makes only an amortized number of
O(α(n, n)) hanging and unhangings per union or find operation, we immedi-
ately get that each meldable priority queue operation takes only O(pq(n) α(n, n))
amortized time. This was the result obtained in [14]. Here, we tighten the anal-
ysis so as to get no asymptotic overhead with current priority queues.

4 The improved analysis

In this section we present an improved analysis of the data structure presented in
the previous section. We assume that the non-meldable priority queue P supports
insert, delete and find-min operations in O(pq(n)) (randomized) amortized time.
By applying a simple transformation described in [1] we can actually assume that
the amortized cost of insert and find-min operations is O(1) and that only the
amortized cost of delete operations is O(pq(n)). We now claim:

Theorem 1. If P is a priority queue data structure that supports insert and
find-min operations in O(1) (expected) amortized time and delete operations in
O(pq(n)) (expected) amortized time, then T (P) is a priority queue data structure
that supports insert, find-min and meld operations in O(1) (expected) amortized
time and delete operations in O(pq(n) α(n, n/pq(n))) (expected) amortized time,
where α(m, n) is the inverse Ackermann function appearing in the analysis of
the union-find data structure, and n here is the maximum number of elements
contained in the priority queue.

Proof. Consider a sequence of n operations on the data structure, of which f ≤ n
are DELETE or CHNG-KEY operations. (Each such operation results in a FIND



operation being performed, hence the choice of the letter f .) Our aim is to show
that the cost of carrying out all these operations is O(n+f pq(n)α(n, n/pq(n))).
This bounds the amortized cost of each operation in terms of the maximum num-
ber of elements contained in the priority queues. In the full version of the paper
we will give a slightly more complicated analysis that bounds the amortized com-
plexity of each operation in terms of the actual number of elements contained in
the priority queue at the time of the operation.

All the operations on the data structure are associated with changes made
to the parent pointers p[x] of the elements contained in the priority queues. To
change the value of p[x] from y to y′, we first call UNHANG(x, y) which performs
a delete operation on PQ[y], and then call HANG(x, y′) which performs an insert
operation on PQ[y′] and sets p[x] to y′. As insert operations are assumed to take
constant time, we can concentrate our attention on the delete, or UNHANG,
operations. As the total number of pointer changes made in the union-find data
structure is at most O(nα(n, n)), and as each priority queue acted upon is of
size at most n, we get immediately an upper bound of O(n pq(n)α(n, n)) on the
total number of operations performed. This is essentially the analysis presented
in [14]. We want to do better than that.

If element x is a root of one of the union-find trees, we let size(x) be the
number of elements contained in its tree. If x is no longer a root, we let size(x) be
the number of descendants it had just before it was hanged on another element.
It is easy to see that we always have size(x) ≥ 2rank(x).

Let p = pq(n) + n/f , S = p2 and L = log S. We say that an element x is big
if size(x) ≥ S. Otherwise, it is said to be small . We say that an element x is high
if rank(x) ≥ L. Otherwise, it is said to be low. Note that if an element is big (or
high), so are all its ancestors. We also note that all high elements are big, but
big elements are not necessarily high. We let SMALL, BIG, LOW and HIGH
be the sets of small/big/low and high vertices, respectively. As noted above, we
have SMALL ⊆ LOW and HIGH ⊆ BIG but LOW ∩ BIG may be non-empty.

Below we bound the total cost of all the UNHANG(x, p[x]) operations. All
other operations take only O(n) time. We separate the analysis into four cases:

Case 1: x, p[x] ∈ SMALL

We are doing at most f path compressions. Each path in the union-find forest
contains at most L small elements. (This follows from the invariant rank[p[x]] >
rank[x] and from the fact that high elements are big.) Thus, each path com-
pression involves at most L unhang operations in which x, p[x] ∈ SMALL. As
each priority queue involved is of size at most S, the total cost is O(f · L ·
pq(S)) = O(f · p) = O(n + f · pq(n)). (Note that L = log S = O(log p) and
that pq(S) = O(log S) = O(log p). (We assume that pq(n) = O(log n).) Hence
L · pq(S) = O(log2 p) = O(p).)

Case 2: x ∈ SMALL and p[x] ∈ BIG.

In each one of the f path compressions performed there is at most one unhang
operation of this form. (As ancestors of big elements are also big.) Hence, the
total cost here is O(f pq(n)).



Case 3: x, p[x] ∈ BIG ∩ LOW.

To bound the total cost of these operations we bound the number of elements
that are contained at some stage in BIG ∩ LOW. An element is said to be a
minimally-big element if it is big but all its descendants are small. As each ele-
ment can have at most one minimally-big ancestor, and each minimally-big ele-
ment has at least S descendants, it follows that there are at most n/S minimally-
big elements. As each big element is an ancestor of a minimally-big element, it
follows that there are at most Ln/S elements in BIG ∩ LOW.

An element x ∈ BIG ∩ LOW can be unhanged from at most L other ele-
ments of BIG ∩ LOW. (After each such operation rank[p[x]] increases, so after
at most L such operations p[x] must be high.) The total number of operations
of this form is at most L2n/S < n/p. Thus, the total cost of all these operations
is O(n pq(n)/p) = O(n).

Case 4: x, p[x] ∈ HIGH.

To bound the number of UNHANG(x, p[x]) operations in which x, p[x] ∈ HIGH,
we rely on Lemma 1. As each UNHANG(x, p[x]) operation, where x ∈ HIGH is
associated with a parent pointer change of a high vertex, it follows that the total
number of such operations is at most O((f + n

S ) ·α(f + n
S , n

S )) = O(f ·α(f, n
S )).

(This follows as n/S ≤ f .) Now
α(f, n

S ) ≤ α(n
p , n

p2 ) ≤ α(n, n
p ) ≤ α(n, n

pq(n) ) .

This chain of inequalities follows from the fact that f ≥ n/p and from simple
properties of the α(m, n) function. (The α(m, n) function is decreasing in its
first argument, increasing in the second, and α(m,n) ≤ α(cm, cn), for c ≥ 1.)

As the cost of each delete operation is O(pq(n)), the cost of all unhang opera-
tions with x, p[x] ∈ HIGH is at most O(f ·pq(n) ·α(n, n/pq(n)), as required. ut
5 Bounds in terms of the maximal key value

In this section we describe a simple transformation, independent of the transfor-
mation of Section 3, that speeds up the operation of a meldable priority queue
data structure when the keys of the elements are integers taken from the range
[1, N ], where N is small relative to n, the number of elements. More specifically,
we show that if P is a meldable priority queue data structure that supports
delete operations in O(pq(n)) amortized time, and all other operations in O(1)
amortized time, where n is the number of elements in the priority queue, then it
is possible to transform it into a meldable priority queue data structure T ′(P)
that supports delete operations in O(pq(min{n,N})) amortized time, and all
other operations in O(1) time. To implement this transformation we need ran-
dom access capabilities, so it cannot be implemented on a pointer machine.

To simplify the presentation of the transformation, we assume here that a
delete operation receives a reference to the element x to be deleted and to the
priority queue containing it. This is a fairly standard assumption.5 Note, how-
5 A reference to the appropriate priority queue can be obtained using a separate union-

find data structure. The amortized cost of finding a reference is then O(α(n, n)). This
is not good enough for us here as we are after bounds that are independent of n.



ever, that the delete operation obtained by our first transformation is stronger as
it only requires a reference to the element, and not to the priority queue. In the
full version of the paper we show that this assumption is not really necessary, so
the delete operations obtained using the transformation T ′ again require only a
reference to the element to be deleted.

The new data structure T ′(P) uses two different representations of priority
queues. The first representation, called the original, or non-compressed repre-
sentation is simply the representation used by P. The second representation,
called the compressed representation, is composed of an array of size N contain-
ing for each integer k ∈ [1, N ] a pointer to a doubly linked list of the elements
with key k contained in the priority queue. (Some of the lists may, of course,
be empty.) In addition to that, the compressed representation uses an original
representation of a priority queue that holds the up to N distinct keys belonging
to the elements of the priority queue.

Initially, all priority queues are held using the original representation. When,
as a result of an insert or a meld operation, a priority queue contains more
than N elements, we convert it to compressed representation. This can be easily
carried out in O(N) time. When, as a result of a delete operation, the size of a
priority queue drops below N/2, we revert back to the original representation.
This again takes O(N) time. The original representation is therefore used to
maintain small priority queues, i.e., priority queues containing up to N elements.
The compressed representation is used to represent large priority queues, i.e.,
priority queues containing at least N/2 elements. (Priority queues containing
between N/2 and N elements are both small and large.)

By definition, we can insert elements to non-compressed priority queues in
O(1) amortized time, and delete elements from then in O(pq(n)) = O(pq(N))
amortized time. We can also insert an element into a compressed priority queue
in O(1) amortized time. We simply add the element into the appropriate linked
list, and if the added element is the first element of the list, we also add the
key of the element to the priority queue. Similarly, we can delete an element
from a compressed priority queue in O(pq(N)) amortized time. We delete the
element from the corresponding linked list. If that list is now empty, we delete the
key from the non-compressed priority queue. As the compressed priority queue
contained at most N keys, that can be done in O(pq(N)) amortized time. Since
insert and delete operations are supplied with a reference to the priority queue to
which an element should be inserted, or from which it should be deleted, we can
keep a count of the number of elements contained in the priority queue. This can
be done for both representations. (Here is where we use the assumption made
earlier. As mentioned, we will explain later why this assumption is not really
necessary.) These counts tell us when the representation of a priority queue
should be changed.

A small priority queue and a large priority queue can be melded simply be
inserting each element of the small priority queue into the large one. Even though
this takes O(n) time, where n is the number of elements in the small priority
queue, we show below that the amortized cost of this operation is only O(1).



Two large priority queues can be easily melded in O(N) time. We simply
concatenate the corresponding linked lists and add the keys that are found, say,
in the second priority queue, but not in the first, into the priority queue that
holds the keys of the first priority queue. The second priority queue is then
destroyed. We also update the size of the obtained queue. Again, we show below
that the amortized cost of this is only O(1).

Theorem 2. If P is a priority queue data structure that supports insert, find-min
and meld operations in O(1) (expected) amortized time and delete operations in
O(pq(n)) (expected) amortized time, then T ′(P) is a priority queue data struc-
ture that supports insert, find-min and meld operations in O(1) (expected) amor-
tized time and delete operations in O(pq(min{n,N})) (expected) amortized time.

Proof. We use a simple potential based argument. The potential of a priority
queue held in original, non-compressed, representation is defined to be 1.5n,
where n the number of elements contained in it. The potential of a compressed
priority queue is N , no matter how many elements it contain. The potential of
the whole data structure is the sum of the potentials of all the priority queues.

The operations insert, delete and find-min have a constant actual cost and
they change the potential of the data structure by at most an additive constant.
Thus, their amortized cost is constant.

Compressing a priority queue containing N ≤ n ≤ 2N elements requires
O(N) operations but it reduces the potential of the priority queue from 1.5n
to N , a drop of at least N/2, so with proper scaling the amortized cost of
this operation may be taken to be 0. Similarly, when a compressed priority
queue containing n ≤ N/2 elements is converted to original representation, the
potential of the priority queue drops from N to 1.5n, a drop of at least N/4, so
the amortized cost of this operation is again 0.

Melding two original priority queues has a constant actual cost. As the poten-
tial of the data structure does not change, the amortized cost is also constant.
Melding two compressed priority queues has an actual cost of O(N), but the
potential of the data structure is decreased by N , so the amortized cost of such
meld operations is 0. Finally, merging a small priority queue of size n ≤ N , in
original representation, and a compressed priority queue has an actual cost of
O(n) but the potential decreases by 1.5n, giving again an amortized cost of 0.
This completes the proof. ut

6 Further work

By combining the transformation of Section 3 with the atomic heaps of Fredman
and Willard [7], we can obtain a transformation T A that converts a non-meldable
priority queue date structure P with operation time O(pq(n)) into a meldable
priority queue date structure T A(P) that supports insert, meld and find-min
operations in O(1) amortized time, and delete operations in O(pq(n) + α(n, n))
amortized time. This is done by using an atomic heap, instead of a P priority
queue, in nodes of the union-find data structure whose size is at most log n. The
details will be given in the full version of the paper. This transformation uses,
however, a stronger model in which atomic heaps can be realized (see [21]).
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