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Abstract. We present a novel method for exactly solving (in fact, count-
ing solutions to) general constraint satisfaction optimization with at most
two variables per constraint (e.g. MAX-2-CSP and MIN-2-CSP), which
gives the first exponential improvement over the trivial algorithm. More
precisely, the runtime bound is a constant factor improvement in the
base of the exponent: the algorithm can count the number of optima
in MAX-2-SAT and MAX-CUT instances in O(m32ωn/3) time, where
ω < 2.376 is the matrix product exponent over a ring. When constraints
have arbitrary weights, there is a (1+ ε)-approximation with roughly the
same runtime, modulo polynomial factors. Our construction shows that
improvement in the runtime exponent of either k-clique solution (even
when k = 3) or matrix multiplication over GF(2) would improve the
runtime exponent for solving 2-CSP optimization.
Our approach also yields connections between the complexity of some
(polynomial time) high dimensional search problems and some NP-hard
problems. For example, if there are sufficiently faster algorithms for com-
puting the diameter of n points in `1, then there is an (2− ε)n algorithm
for MAX-LIN. These results may be construed as either lower bounds
on the high-dimensional problems, or hope that better algorithms exist
for the corresponding hard problems.

1 Introduction

The extent to which NP-hard problems are indeed hard to solve remains largely
undetermined. For some problems, it intuitively seems that the best one can do
is examine every candidate solution, but this intuition has been shown to fail in
many scenarios. The fledgling development of improved exponential algorithms
in recent times suggests that for many hard problems, something substantially
faster than brute-force search can be done, even in the worst case. However,
some fundamental problems have persistently eluded researchers from better
algorithms. One popular example in the literature is MAX-2-SAT.

There has been notable theoretical interest in discovering a procedure for
MAX-2-SAT running in O((2−ε)n) steps on all instances, for some ε > 0. Unlike
problems such as Vertex Cover and k-SAT, where analysis of branch-and-bound
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techniques (or random choice of assignments) sufficed for improving the näıve
time bounds (e.g. [23, 20]), MAX-SAT has been surprisingly difficult to attack.
Previous work has only been able to show either a (2−ε)m time bound, where m
is the number of clauses, or an approximation scheme running in (2− ε)n [11, 10]
(but ε → 0 as the quality of the approximation goes to 1). Of course, the number
of clauses can in general be far higher than the number of variables, so the
(2− ε)m bounds only improve the trivial bound on some instances. The current
best worst-case bound for MAX-2-SAT explicitly in terms of m is Õ(2m/5) 1,
by [9] (so for m/n > 5, this is no better than 2n). This result followed a line
of previous papers on bounds in terms of m [12, 19, 8, 6, 4, 17]; a similar line
has formed for MAX-CUT [28, 16]. In terms of partial answers to the problem,
[21] showed that when every variable occurs at most three times, MAX-2-SAT
remains NP-complete, but has an O(n3n/2) algorithm. While definite stepping
stones, these results were still distant from an improved exponential algorithm.
Consequently, several researchers (e.g. [21, 1, 10, 29]) explicitly proposed a (2−ε)n

algorithm for MAX-2-SAT (and/or MAX-CUT) as a benchmark open problem
in exact algorithms.

1.1 Outline of our approach: Split and List

Most exact algorithms for NP-hard problems in the literature involve either a
case analysis of a branch-and-bound strategy [9], repeated random choice of
assignments [20], or local search [25]. Our design is a major departure from
these approaches, resembling earlier algorithms from the 70’s [14, 26]. We split
the set of n variables into k partitions (for k ≥ 3) of (roughly) equal size, and list
the 2n/k variable assignments for each partition. From these k2n/k assignments,
we build a graph with weights on its nodes and edges, arguing that a optimum
weight k-clique in the graph corresponds to a optimum solution to the original
instance. The weights are eliminated using a polynomial reduction, and a fast
k-clique algorithm on undirected graphs yields the improvement over 2n. To get
a (1 + ε)-approximation when constraints have arbitrary weights, we can adapt
results concerning approximate all pairs shortest paths [30] for our purposes.

We will also investigate the possibility of efficient split-and-list algorithms
for more general problems such as SAT and MAX-LIN-2 (satisfying a maximum
number of linear equations modulo 2). In particular, we will demonstrate some
connections between this question and problems in high dimensional geometry.
For example, if a furthest pair out of n d-dimensional points in `1 norm can be
found faster than its known solutions (say, in O(poly(d) ·n2−ε) time), then there
exists a (2− ε)n split-and-list algorithm for MAX-LIN-2.

1.2 Notation

Z+ and R+ denote the set of positive integers and the set of positive real numbers,
respectively.
1 The Õ suppresses polynomial factors.



Let V = {x1, . . . , xn} be a set of variables over (finite) domains D1, . . . , Dn,
respectively. A k-constraint on V is defined as a function c : D1 × · · · ×Dn →
{0, 1}, where c only depends on k variables of V (one might say c is a k-junta).
For a k-constraint c, define vars(c) ⊆ V to be this k-set of variables. Partial
assignments a to variables of V are given by a sequence of assignments xi1 :=
v2, xi2 := v2, . . . , xik

:= vk, where ij ∈ [n] and vij
∈ Dij

. A partial assignment a
satisfies a constraint c if vars(c) is a subset of the variables appearing in a, and
c(a) = 1 (the restriction of c to the variables in a evaluates to 1, on the variable
assignments given by a).

Given a set S, Sm×n is the set of m× n matrices with entries taken from S.
Throughout, ω refers to the smallest real number such that for all ε > 0,

matrix multiplication over a ring can be performed in O(nω+ε) time. We will
discuss three types of matrix product in the paper; unless otherwise specified,
the default is matrix product over the ring currently under discussion. The other
two are the distance product (⊗d) on Z∪{−∞,∞}, and Boolean matrix product
(⊗b) on 0-1 matrices. Let A,B ∈ (Z∪ {−∞,∞})n×n. A⊗d B is matrix product
over the (min, +)-semiring; that is, the usual + in matrix product is replaced
with the min operator, and × is replaced with addition. When A and B are 0-1
matrices, the Boolean product ⊗b replaces + with ∨ (OR) and × with ∧ (AND).

2 Fast k-Clique Detecting and Counting

We briefly review an algorithm [18] for detecting if a graph has a k-clique in less
than nk steps.

Theorem 1. ([18]) Let r ∈ Z+. Then 3r-clique on undirected graphs is solvable
in O(nωr) time.

Proof. First consider k = 3. Given G = (V, E) with n = |V |, let A(G) be its
adjacency matrix. Recall that tr(M), the trace of a matrix M , is the sum of the
diagonal entries. tr(A(G)3) is computable in two matrix multiplications, and
it is easy to see that tr(A(G)3) is non-zero if and only if there is a triangle
in G. For 3r-cliques when r > 1, build a graph Gr = (Vr, Er) where Vr is
the collection of all r-cliques in G, and Er = { {c1, c2} : c1, c2 ∈ Vr, c1 ∪
c2 is a 2r-clique in G}. Observe that each triangle in Gr corresponds to a unique
3r-clique in G. Therefore tr(A(Gr)3) 6= 0 if and only if there is a 3r-clique in
G, which is determined in O(nωr) time. Finding an explicit 3r-clique given that
one exists may be done by using an O(nω) algorithm for finding witnesses to
Boolean matrix product [2]; details omitted. 2

In fact, the above approach may be used to count the number of k-cliques as
well. Let Ck(G) be the set of k-cliques in G, and Gr be as defined in the previous
proof.

Proposition 1. tr(A(Gr)3) = 6|C3r(G)|.



Proof. In tr(A(G)3), each triangle {vi, vj , vk} is counted once for each vertex v
(say, vi) in the triangle, times the two paths traversing the triangle starting from
that v (for vi, they are vi → vj → vk → vi and vi → vk → vj → vi). Similar
reasoning shows that each 3r-clique is counted six times in tr(A(Gr)3). 2

3 Algorithm for 2-CSP optimization

Let us explicitly define the problem we will tackle, in its full generality.

Problem COUNT-2-CSP:
Input: A set of m 1-constraints and 2-constraints C on n variables x1, . . . , xn

with domains of size d1, . . . , dn (respectively), and a parameter N ∈ {0, 1, . . . ,m}.
Output: The number A of variable assignments (0 ≤ A ≤ ∏n

i=1 di) such that
exactly N constraints of C are satisfied.

For k, n ∈ Z+ with k ≤ n, let κ(k, n) ∈ R be the smallest real number
such that the number of k-cliques on n-node undirected graphs can be found in
O(nκ(k,n)) time. One may think of κ(k, n) as the “k-clique exponent”, similar
to the matrix multiplication exponent ω. Note that Theorem 1 implies that
κ(k, n) ≤ ω ·k/3, for all constant k. (We include n as a parameter in κ to account
for the possibility that k is a function of n.) For simplicity, let us assume that
|di| is the same for all i = 1, . . . , n, and is equal to d.

Theorem 2. Let k(n) ≥ 3 be monotone non-decreasing and time-constructible.

Then COUNT-2-CSP is in O

((N+(k(n)
2 )−1

(k(n)
2 )−1

)
[k(n)dn/k(n)]κ(k(n),n)

)
time, where

m is the number of constraints, n is the number of variables, and d is the domain
size.

Corollary 1. The number of optima for MAX-2-SAT and MAX-CUT instances
can be determined in O(m31.732n) time, and an optimal assignment can be found
in O(nm31.732n) time.

Proof of Corollary 1. Set d = 2 and k = 3. Search for the largest N ∈ [m]
such that the number of assignments a satisfying N constraints is non-zero and
return a. This incurs an extra O(m) factor. An explicit assignment can be found
using self-reducibility, increasing the runtime by an O(n) factor. 2

Proof of Theorem 2. We reduce the problem to counting k-cliques in a
large graph. Assume w.l.o.g. that n is divisible by k. Let C be a given instance.
Arbitrarily partition the n variables of C into sets P1, P2, . . ., Pk with n/k
variables each. For each Pi, make a list Li of all dn/k assignments to the variables
of Pi.

Step 1: Delegating responsibility.
Certain partitions (or pairs of partitions) will be responsible for satisfying

certain constraints of C. Let [k] = {1, . . . , k}, and
(
k
2

)
denote the collection



of 2-sets from [k]. We define a responsibility map r : C → ([k] ∪ (
k
2

)
) from

constraints to partitions and 2-sets of partitions: r(c) := i ∈ [k], if vars(c) ⊆ Pi,
and r(c) := {i, j} ∈ (

k
2

)
, if vars(c)∩Pi 6= ∅ and vars(c)∩Pj 6= ∅. Observe that r

is well-defined assuming c is dependent on at most two variables (|vars(c)| ≤ 2).
Step 2: Weighting accordingly.
Next, we will consider the L1, . . . , Lk as a weighted k-partite complete graph

G = (V, E), having dn/k nodes per partition. For a vertex v ∈ Li, let av denote
the partial assignment to which v refers. For a partial assignment a, c(a) is the
value of c when a is assigned to its variables. The weight function w for G is on
nodes and edges of G, and is defined:

• w(v) := |{r(c) = i : c ∈ C, v ∈ Li, c(av) = 1}|,
• w({u, v}) := |{r(c) = {i, j} : c ∈ C, u ∈ Li, v ∈ Lj , c(au av) = 1}|.
(Assuming the variables of vars(c) are assigned in a, c(a) is well-defined; this

is the case, by definition of r.) In general, w(t) tells the number of c ∈ C for
which (a) t is in a partition/pair of partitions responsible for c, and (b) the
partial assignment that t denotes satisfies c. 2

Let K = {v1, . . . , vk} be a k-clique in G. Define w(K) :=
∑k

i=1 w(vk) +∑
{i,j}∈(k

2) w({vi, vj}), i.e. the weight of all nodes and edges involved in K. When
k = 3 and d = 2, G resembles the picture below, for 1 ∈ L1, 2 ∈ L2, 3 ∈ L3.

011010101

101100100

000110110
w(1,2)

w(1,3)

w(3)

w(2)w(1)

w(2,3)L3

L2L1

Claim. The number of k-cliques of weight N in G is equal to the number of
assignments satisfying exactly N constraints in C.

Proof. Let a be an assignment to all n variables of C, and suppose a satisfies ex-
actly N constraints of C. Clearly, there exist unique vi ∈ Li for i = 1, . . . , k such
2 Example. For MAX-CUT, the formulation is especially simple: the v ∈ Li denote

all 2n/k possible cuts with a distinct “left” and “right” side, on the subgraph of
n/k vertices Pi, w(v) is the number of edges crossing the “sub-cut” defined by v,
and w({u, v}) is the number of edges crossing from one side (say, “left”) of u to the
opposite side (say, “right”) of v.



that a = av1av2 · · · avk
, i.e. a corresponds to a unique clique Ka = {v1, . . . , vk}

in G. We have that w(Ka) equals
∑k

i=1 |{r(c) = i : v ∈ Li, c(av) = 1}| +∑
{i,j}∈(k

2) |{r(c) = {i, j} : u ∈ Li, v ∈ Lj , c(au av) = 1}|. That is, w(Ka) counts
the number of c ∈ C that are satisfied by a, such that either r(c) = i ∈ [k] for
some i, or r(c) = {i, j} ∈ (

k
2

)
for some i, j. But as we argued above, r(c) is well-

defined over all c ∈ C, therefore w(Ka) is precisely the number of constraints
satisfied by a. As there is a 1-to-1 correspondence between k-cliques in G and
assignments to C, and as k-cliques with N weight correspond to assignments
satisfying N constraints, the claim is proven. 2

Step 3: Reduction from weighted to unweighted graphs.
There is a slight problem: we want to count k-cliques in the above, but the

above method for counting only works on unweighted graphs. We can remove this
difficulty and tack on a multiplicative factor that is polynomial in N ≤ m but
exponential in k. Consider the

(
k
2

)
-tuples (i1,2, i1,3, . . . , ik−1,k) where ij,l ∈ [N ],

and i1,2 + i1,3 + · · ·+ ik−1,k = N . For each tuple, construct a unweighted graph
G(i1,2,i1,3,...,ik−1,k) where edges are placed according to the rules:
• If j = 1 and l = 2, put {v1, v2} in G(i1,2,i1,3,...,ik−1,k) iff w(v1) + w(v2) +
w({v1, v2}) = i1,2,
• If j = 1 and l > 2, put {v1, vl} in G(i1,2,i1,3,...,ik−1,k) iff w(vl)+w({vj , vl}) = i1,l,
• If j > 1, put {vj , vl} in G(i1,2,i1,3,...,ik−1,k) iff w({vj , vl}) = ij,l.

(Note w(vj), w({vj , vl}) ∈ [m]; this bounds the possible ij,l values.) Then, for
each k-clique K = {v1, . . . , vk} in G(i1,2,i1,3,...,ik−1,k) (it takes O([kdn/k]κ(k)) time
to count them), a short verification shows that N equals w(K). That is, each
k-clique counted in G(i1,2,i1,3,...,ik−1,k) is a k-clique of weight N in G. Moreover,
each distinct G(i1,2,...,ik−1,k) represents a distinct collection of weight-N cliques in
G. Hence the total sum of k-clique counts over all G(i1,2,...,ik−1,k) is the number of
weight-N k-cliques in G. The possible

(
k
2

)
-tuples correspond to all non-negative

integral solutions to x1 +x2 + · · ·+x(k
2) = N , which is

(N+(k
2)−1

(k
2)−1

)
. A list of these

solutions may be formed in such a way that each solution appears exactly once,
with O(1) (amortized) time to generate each one [24]. 2

4 General Remarks

4.1 On triangles and matrix multiplication

The current O(n3−ε) matrix multiplication algorithms only begin to outperform
Gaussian elimination (in practice) for very large cases. This coincides nicely with
the fact that the size of our matrices are exponential in n. Still, it would be quite
desirable to find a more practical algorithm for detecting triangles in O(n3−ε)
time, but this has been an open problem since the 70’s [15]. We can in fact show
that if one only wishes to detect a k-clique quickly, it suffices to matrix multiply
quickly over GF(2). To us, this gives some hope that triangles can be found more



quickly, as GF(2) is the “simplest” possible field and matrix multiplication could
potentially be easier over it. We prove the result for triangles; the generalization
to k-clique follows from the reduction in Theorem 1.

Theorem 3. If n×n matrices can be multiplied over GF(2) in O(nc) time, then
there is a randomized algorithm for detecting if a graph has a triangle, running
in O(nc log n) time and succeeding with high probability.

Proof. Adi Shamir (unpublished) proposed a method for reducing Boolean ma-
trix product (⊗b) to GF(2) matrix product (⊗2). Given two 0-1 matrices A and
B to be Boolean-multiplied, randomly change each 1 in A to 0 with probability
1/2, getting a matrix A′. Then compute A′⊗2B; it turns out that (A′⊗2B)[i, j] =
(A ⊗b B)[i, j] with probability 1/2, for all i, j. Creating k ≥ log(n2/ε) different
A′s (call them A′1, . . . , A

′
k), we have that with probability 1− ε

(A′1 ⊗2 B)[i, j] ∨ (A′2 ⊗2 B)[i, j] ∨ · · · ∨ (A′k ⊗2 B)[i, j] = (A⊗b B)[i, j]

holds for all i, j.
This motivates the following. Similar to [3], randomly color each vertex of

G with an element from {1, 2, 3}, removing all edges connecting nodes with the
same color. There is still a triangle in this graph with constant probability, if
G has one. (Observe in our split-and-list algorithm, the graph already has this
tripartite structure when k = 3, so we need not perform this step there.) Say
a vertex v is in the i-partition if its color is i. Now orient the edges between
the 1-partition and 2-partition to point from the 1-partition to the 2-partition;
do similarly for edges from 2 to 3, and edges from 3 to 1. Make matrices Ai,j

representing connections between nodes from the i-partition to the j-partition:
Ai,j [x, y] = 1 if there is an edge from the xth node in the i-partition to the yth
node in the jth partition; Ai,j [x, y] = 0 otherwise. The theorem follows from
the fact that (with constant probability) there is an i such that (A1,3⊗b A2,3⊗b

A3,1)[i, i] = 1 if and only if there is a triangle in G. 2

4.2 The arbitrary weight case

We may also employ our main algorithm to get a (1 + ε)-approximation to
MAX-2-CSP and MIN-2-CSP with arbitrary weights on the constraints. The
approximation will have similar runtime to the exact algorithm in the unweighted
case. Formally, the arbitrary weight problem is:

Problem OPT-WEIGHT-2-CSP:
Input: A 2-CSP instance with C = {c1, . . . , cm}, n variables, and weight func-
tion w : C → Z+.
Output: An assignment a such that

∑
i∈{j : cj(a)=1} w(ci) is minimal/maximal.

If the constraints have weights describable in O(log m) bits, we could simply
modify the above algorithm (where the weight of an assignment node is now the
sum of weights of clauses) and get runtime O(poly(m)·1.732n). When weights are



independent of m and n, it is possible to use an approximate all-pairs shortest
paths algorithm of [30] to get a (1 + ε)-approximation in roughly O(nm31.732n)
time (setting k = 3 in Theorem 2). Recall ⊗d (defined earlier) is the distance
product on matrices. If A is the adjacency matrix of a weighted (on edges) graph
G, then minn

i=1(A ⊗d A ⊗d A)[i, i] gives the length of a smallest triangle in G
(and is 0 if there is no triangle in G). Say that C is an a-approximation to D
iff for all i, j, C[i, j] ≤ D[i, j] ≤ aC[i, j]. Then the following theorem of Zwick
implies an efficient (1 + ε)-approximation to OPT-WEIGHT-2-CSP.

Theorem 4. ([30]) Let A,B ∈ (Z ∪ {−∞,∞})n×n. A ⊗d B has a (1 + ε)-
approximation computable in O((nω/ε) log(W/ε)) time, where

W = max{A[i, j], B[i, j] : i, j ∈ [n]}.
(The minimum case is obvious; to get the maximum case, just negate all

constraints.)

5 Further Directions

Is it possible to solve general problems like SAT much faster than the trivial
algorithm, using a “split-and-list” method akin to the above? Depending on one’s
outlook, the results below may be viewed as lower bounds on solving certain
high-dimensional problems, or they may be promising signs that much better
algorithms exist for general NP-complete problems, using split-and-list methods.

5.1 Cooperative subset queries and SAT

Usually in query problems, one considers a database D of objects, and an ad-
versarial list of queries q1, . . . , qk about D. Such a model often leads to very
difficult problems, in particular the subset query problem: given a database D of
sets S1, . . . , Sk over a universe U , build a space-efficient data structure to answer
(time-efficiently) queries of the form “is q ∈ 2U a subset of some Sj ∈ D?”. This
problem is a special case of the partial matching problem; that is, supporting
queries with wildcards (e.g. “S**RCH”) in a database of strings. Non-trivial
algorithms exist [22, 5], but all known solutions for the problem require either
Ω(|D|) query time (search the whole database) or 2Ω(|U |) space (store all possi-
ble subsets) in general. Our cooperative version of the subset query problem is
the following:

Given two databases D1 and D2 of subsets over U , find s1 ∈ D1 and s2 ∈ D2

such that s1 ⊆ s2.
That is, we merely want to determine if one of the given queries has a yes

answer. Intuitively, the cooperative version ought to be significantly easier than
the general one. Of course, it admits a trivial O(|U | · |D1| · |D2|) time algorithm,
but if this solution can be significantly improved, then SAT in conjunctive nor-
mal form can be solved faster than the 2n bound. Note the current best SAT
algorithm is randomized, and runs in 2n−Ω(n/ log n) time [27].



Theorem 5. Let f be time constructible. If the cooperative subset query problem
with d = |U | and k = max{|D1|, |D2|} is solvable in Õ(f(d)k2−ε) time, then
CNF-SAT is in Õ(f(m)2(1−ε/2)n) time, where m is the number of clauses and
n is the number of variables.

Proof. Without loss of generality, assume n is divisible by 2. Recall CNF-SAT
is a constraint satisfaction problem where constraints are arbitrary clauses, i.e.
OR’s of negated and non-negated variables. Suppose the clauses are indexed
c1, . . . , cm. Arbitrarily partition the n variables into two sets P1, P2 of size n/2
each, and build respective lists L1, L2 of 2n/2 assignments for the Pi. Next, we
build two collection of sets C1 and C2. Associate with each p ∈ L1 a set Sp ∈ C1,
defined by the condition

cj ∈ Sp if and only if p does not satisfy cj .
For p′ ∈ L2, make a set Sp′ ∈ C2, defined by

cj ∈ Sp′ if and only if p′ satisfies cj .
Now, suppose we determine if there is Sp ∈ C1 and Sp′ ∈ C2 whereby Sp ⊆

Sp′ . It is easy to see that the collection of clauses {c1, . . . , cm} is satisfiable if
and only if this cooperative subset query instance has a “yes” answer. 2

5.2 Furthest pair of points in `1 and MAX-LIN

Recall that the `1 distance between two d-dimensional points (x1, . . . , xd) and
(y1, . . . , yd) is |x − y|1 =

∑d
i=1 |xi − yi|. A classic high dimensional geometry

problem is `1-Furthest-Pair, or `1-Diameter: given a set S ⊆ Rd of n points, find
a pair x, y ∈ S for which |x− y|1 is maximized. (It may be seen as a cooperative
version of a problem where, given a query, one reports points furthest from
it.) Beyond the näıve O(dn2) solution, an isometric embedding from `1 in d
dimensions to `∞ in 2d dimensions yields a O(2dn) time algorithm. We will
prove if `1-Furthest-Pair can be solved in (for example) O(2o(d)n2−ε), then there
is a better algorithm for MAX-LIN-2. Recall the MAX-LIN-2 problem is, given
a system of m linear equations over n variables in GF(2), to find a variable
assignment that maximizes the number of equations satisfied.

Theorem 6. If `1-Furthest-Pair (of n points in d-dimensions) is in O(f(d)n2−ε)
time, then MAX-LIN-2 is in O(f(m + 1)2(1−ε/2)n) time.

Proof. Rewrite each GF(2) linear equation as a constraint: an equation
∑

i aixi =
d becomes

c(x1, . . . , xn) = (
∑

i

aixi + d + 1) mod 2,

so that c(a) = 1 if and only if a satisfies the corresponding equation. Let
c1, . . . , cm be the resulting constraints.

As before, split the variables into two n/2 sets P1, P2, and have two lists
of assignments L1 and L2. For each cj , let cj |Pi be the restriction of cj to
the variables of Pi. In the case where +1 appears in cj , add +1 to cj |P1 . For



example, suppose we had the partitions P1 = {x1, x2} and P2 = {x3, x4}; if
c =

∑4
i=1 xi +1, then c|P1 = x1+x2+1, c|P2 = x3+x4. Clearly, cj(x1, . . . , xn) =

cj |P1(x1, . . . , xn/2)+cj |P2(xn/2+1, . . . , xn). For i ∈ {1, 2} and for all assignments
a ∈ Li, make an (m + 1)-dimensional point

va = ( c1|Pi
(a), . . . , cm|Pi

(a), (m + 1) · (i− 1) ).

Let va and va′ be a furthest pair of points out of these, with respect to `1
distance.

First, we claim that any furthest pair of points is of the form {va, va′}, where
a ∈ L1 and a′ ∈ L2. Let d1(u, v) denote the `1 distance between u and v. For any
va and va′ with a, a′ ∈ Li (for some i ∈ {1, 2}), we have that d1(va, va′) ≤ m,
since the last components of va and va′ are the same, and the other m components
of va and va′ are Boolean-valued. For any va and va′ with a ∈ L1 and a′ ∈ L2,
d1(va, va′) ≥ m + 1 (the last component of va is 0, and the last component of va

is m + 1). Therefore our claim follows.
Secondly, let {va, v′a} be a furthest pair of points with a ∈ L1 and a′ ∈ L2.

We claim that the assignment (x1, . . . , xn) = (a, a′) satisfies a maximum number
of constraints in the original instance. Over GF(2), addition is equivalent to
subtraction, hence

max
a∈L1, a′∈L2

d1(va, va′) = (m + 1) + max
m∑

i=1

| ci|P1(a)− ci|P2(a) |

= (m + 1) + max
m∑

i=1

ci|P1(a) + ci|P2(a)

= (m + 1) + max
a∈L1, a′∈L2

m∑

i=1

ci(x1, . . . , xn).

2

6 Conclusion

We have presented the first improved exponential algorithm (in n) for solving
and counting solutions to 2-constraint optimization. The techniques employed
here are general enough to be possibly employed on a variety of problems. We
have also established interesting connections between the complexity of some
efficiently solvable problems and some hard problems (matrix multiplication and
counting 2-CSP optima, furthest pair of points and MAX-LIN-2, subset queries
and SAT). Several interesting questions are left open by our work.
• How does one extend our results for k-CSPs, when k ≥ 3? A straightforward
generalization to 3-CSPs results in a weighted hypergraph of edges and 3-edges.
It is conjectured that matrix multiplication can be done in O(n2+o(1)) time, and
in our investigation of 3-CSPs, it appears a 23n/4 bound might be possible. We
therefore conjecture that for all k ≥ 2, MAX-k-SAT is in Õ(2n(1− 1

k+1 )) time.



• Are there fast algorithms for 2-CSP optimization using only polynomial space?
• Is there a randomized k-clique detection algorithm running in O(n3−ε)? (Is
there merely a good one that doesn’t use matrix multiplication?)
• What other problems are amenable to the split-and-list approach?
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