
Alternatives to Non-Malleability:

Definitions, Constructions and Applications

Philip MacKenzie∗ Michael K. Reiter† Ke Yang‡

January 2, 2004

Abstract

We explore whether non-malleability is necessary for the applications typically used to mo-
tivate it, and propose two alternatives. The first we call weak non-malleability (wnm) and show
that it suffices to achieve secure contract bidding (the application for which non-malleability was
initially introduced), despite being strictly weaker than non-malleability. The second we call
tag-based non-malleability (tnm), and show that it suffices to construct an efficient universally-
composable secure message transmission (SMT) protocol, for which the only previous solu-
tion was based on a public key encryption functionality whose security is equivalent to non-
malleability. We also demonstrate constructions for wnm and tnm encryption schemes that are
simpler than known constructions of non-malleable encryption schemes.

1 Introduction

Non-malleability [11] is a security condition for encryption schemes that requires, informally, that an
attacker given a challenge ciphertext be unable to produce another, different ciphertext so that the
plaintexts underlying the two ciphertexts are “meaningfully related” to each other. Non-malleability
is the strongest commonly considered notion of security for encryption, being strictly stronger
than indistinguishability [14] under chosen-plaintext or indifferent chosen-ciphertext (“lunchtime”)
attacks, and being equivalent to indistinguishability under adaptive chosen-ciphertext attacks [1].

In this paper we revisit the definition of non-malleability with an eye toward whether it is nec-
essary for applications commonly used to motivate it. Our contributions in this study are twofold.
First, we identify alternatives to non-malleability that suffice for applications where previously
non-malleability seemed warranted. Second, we identify encryption schemes that implement these
variants and that are conceptually simpler than known non-malleable schemes.

The alternative definitions that we propose deviate from non-malleability in different ways.
The first notion, which we call weak non-malleability (wnm), identifies a point in the space of
definitions strictly between non-malleability and indistinguishability (in those cases where there is
room between them, i.e., under chosen-plaintext and lunchtime attacks). Informally, wnm allows
mauling of a ciphertext c, but such that this mauling does not benefit the adversary. In particular, a
mauling that produces a valid ciphertext c′ would imply that the adversary has successfully guessed
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the plaintext corresponding to c, and thus for many natural applications, this mauling would not
be useful. In other words, in such applications, wnm should suffice in place of non-malleability. As
an example, we show that a wnm encryption scheme suffices to implement a secure contract bidding
auction in the spirit of that originally used to (informally) motivate non-malleability [11]. Still, wnm

does allow an adversary to produce a ciphertext c′ that has a (very restricted) dependence of a given
ciphertext c, and we can in fact show that wnm is a strictly weaker property than non-malleability.
In addition, we show that this weaker property may be satisfied by very simple encryption schemes
similar to those used in Bellare and Rogaway [2] to achieve the (even less stringent) property of
indistinguishability under chosen-plaintext attacks [2].1 These schemes assume p is a prime, H is
a hash function (modeled by a random oracle in our security analyses) with range a group X with
group operation “·”, and f denotes a trapdoor permutation that constitutes the public key (with
the trapdoor being the private key):

Mult-Range scheme The encryption of m is E(m) = <f(r),H(r) ·m> where r is chosen ran-
domly (per encryption) from the domain of f , the plaintext space is an integer range [a, b]
satisfying 0 < a < b < p, a > (b − a)2 and p > 2b2, and X = Z

∗
p with · being multiplication

in Z
∗
p.

Mult-Adjacent scheme The encryption of m is E(m) = <f(r),H(r) · (m,m + 1)> where r is
chosen randomly (per encryption) from the domain of f , the plaintext space is Z

∗
p \ {p − 1},

and X = Z
∗
p × Z

∗
p with group operation · being component-wise multiplication in Z

∗
p, i.e.,

(x0, x1) · (y0, y1) = (x0y0, x1y1).

Add-Square scheme The encryption of m is E(m) = <f(r),H(r)·(m,m2)>, where the plaintext
space is Z

∗
p, and X = Zp × Zp with group operation · being component-wise addition in Zp,

i.e., (x0, x1) · (y0, y1) = (x0 + y0, x1 + y1).

For some intuition behind weak non-malleability, consider the Mult-Range scheme above. With-
out the range restriction on the plaintext space, this scheme would be completely malleable (similar
to the first scheme introduced in [2]). However, simply by restricting the range of plaintexts (as
opposed to, e.g., adding an additional hash for verification/redundancy, as is done in [2] to achieve
non-malleability) we are able to achieve wnm. Informally, this is because any modification of a ci-
phertext (v,w) to (v,w′) implies a multiplying factor w′/w for which there is only a single plaintext
in the range that would be transformed into another plaintext in the range.

The second alternative to non-malleability that we propose is called tag-based non-malleability
(tnm). Here, we structurally modify encryption and decryption to take an additional public string
argument called a tag. Informally, tnm dictates that an adversary be unable to create a (cipher-
text,tag) pair with plaintext related to that of the challenge ciphertext and with the tag being
different from the challenge tag, even though it is able to obtain decryptions of (ciphertext,tag)
pairs with any tag different from the challenge tag.2 We demonstrate the utility of tnm by using

1While there exist efficient encryption systems that implement indistinguishability under adaptive chosen-
ciphertext attacks (and thus non-malleability under these attacks, e.g., [2, 8]), we are unaware of prior constructions
that, like those listed here, so simply implement a property strictly stronger than indistinguishability (in this case,
weak non-malleability) under chosen-plaintext and lunchtime attacks.

2Shoup [21] defines something that looks similar — encryption with labels. However, his security property,
namely indistinguishability against adaptive chosen ciphertext attacks, allows the adversary to obtain decryptions of
(ciphertext,label) pairs as long as either the ciphertext or label is different than the challenge ciphertext or challenge
label. The analog to our definition would require that the label be different. This implies a very different security
property. In particular, our tag-based non-malleable schemes would not be secure according to his definition.
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it to implement the “secure message transmission functionality” in the universal composability
framework of [5], replacing the use of non-malleable encryption there, and arguably providing a
more natural implementation. tnm also admits exceedingly simple implementations, e.g.:

Tag-based scheme The encryption of m with tag t is E(m, t) = <f(r),H(r, t) · m> where r
is chosen randomly (per encryption) from the domain of f . The plaintext space is Z

∗
p, and

X = Z
∗
p with · being multiplication in Z

∗
p.

We also present a tnm construction that is a (simpler) variation of the Cramer-Shoup encryption
scheme [8, 9]. The change in structure for encryption and decryption (specifically due to the tag)
does not permit us to argue that tnm is definitionally weaker than non-malleability. However,
given a non-malleable encryption scheme, it is trivial to implement a tnm scheme using it with no
additional assumptions or loss in security. We also show how to implement a non-malleable scheme
using a tnm scheme and a strong one-time signature scheme.

2 Preliminaries

Trapdoor Permutations [2, 15] A permutation generator G∗ is a probabilistic polynomial time
algorithm that takes as input 1k and outputs three polynomial-time algorithms (f, f−1, d), the first
two being deterministic, and the last being probabilistic. The range of d(1k) is required to be a
subset of {0, 1}k , and f, f−1 are permutations over the range of d(1k), and are inverses of each other.
G∗ is a trapdoor permutation generator if it is a permutation generator such that for all non-uniform
polynomial-time algorithms A, Pr[(f, f−1, d)←G∗(1

k);x← d(1k); y← f(x) : A(f, d, y) = x] is
negligible. It is commonly assumed that, for example, RSA is a trapdoor permutation.

Encryption schemes An encryption scheme Π is a triple (G,E,D) of algorithms, the first two
being probabilistic, and all running in polynomial time. G takes as input 1k and outputs a public
key pair (pk, sk), i.e., (pk, sk)←G(1k). E takes a public key pk and a message m as input and
outputs an encryption c for m; we denote this c←Epk(m). D takes a private key sk and a cipher-
text c as input and returns either a message m such that c is a valid encryption of m, if such an m
exists, and otherwise returns ⊥; we denote this m←Dsk(c).

As discussed in Section 1, indistinguishability [14] is the most commonly studied goal for en-
cryption. Here we adopt definitions ind-cpa, ind-cca1, and ind-cca2 from [1]; see Definition B.1 in
Appendix B. Below we give the definition of non-malleability from Dolev, Dwork and Naor [11], as
written explicitly as the simulator-based non-malleable (snm) definition in Bellare and Sahai [4].3

Definition 2.1 (snm-cpa, snm-cca1, snm-cca2) Let Π = (G,E,D) be an encryption scheme, let
R be a relation, let A = (A1,A2) be an adversary, and let S = (S1,S2) be an algorithm (the
“simulator”). For atk ∈ {cpa, cca1, cca2} and k ∈ N define

Advsnm-atk
A,S,Π (R, k)

def
= Pr[Exptsnm-atk

A,Π (R, k) = 1]− Pr[Exptsnm-atk
S,Π (R, k) = 1],

where

3Actually we slightly modify the definition of [4] so as to not require that every element of y decrypt to a valid
plaintext. This is needed for the equivalences stated in [4] to hold.
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Exptsnm-atk
A,Π (R, k) : Exptsnm-atk

S,Π (R, k) :
(pk, sk)←G(1k) (pk, sk)←G(1k)

(M, s1, s2)←A
O1

1 (pk) (M, s1, s2)←S1(pk)
x←M x←M
y←Epk(x)

y←AO2

2 (s2, y) y←S2(s2)
x←Dsk(y) x←Dsk(y)
Return 1 iff y 6∈ y ∧R(x,x,M, s1) Return 1 iff R(x,x,M, s1)

and

atk = cpa ⇒ O1(·) = ε,O2(·) = ε

atk = cca1 ⇒ O1(·) = Dsk(·),O2(·) = ε

atk = cca2 ⇒ O1(·) = Dsk(·),O2(·) = Dsk(·)

We say that Π is secure in the sense of snm-atk for if for every polynomial q(k), every R computable
in time q(k), every A that runs in time q(k) and outputs a valid message space M samplable in
time q(k), there exists a polynomial-time algorithm S such that Advsnm-atk

A,S,Π (R, k) is negligible.

Technically, for our definitions to hold with respect to random oracles we would need to explicitly
include a random oracle in our experiments. However, this can be done in a standard way, and for
readability it is not included.

3 Weak non-malleability

3.1 Definition

Here we propose a definition for weak non-malleable (wnm) encryption schemes. As in Definition 2.1,
a wnm-secure encryption scheme requires the existence of a simulator S (not given a challenge
ciphertext y) that has roughly the same probability as an adversary A (given y) of generating a
vector y of ciphertexts for which the plaintext vector x bears some relationship R with the plaintext
x of y. In the wnm definition, the adversary experiment will take exactly the same form as that in
Definition 2.1. The difference lies in the simulator experiment and the form of S. Specifically, S is
permitted to make each element yi of y contingent upon a “guess” zi as to the value of x. That is,
relation R tests x against a vector x where each element xi is the plaintext of the corresponding yi

in y if either S guessed x or offered no guess (i.e., guessed ⊥), and where xi is ⊥ otherwise.
It is easy to see that any snm-secure encryption scheme is also wnm-secure, since the wnm-

simulator is simply given more power. It is perhaps not as easy to see that this power is sufficient
to allow a wnm-secure scheme that is not snm-secure, but we will show that in fact this is the case.
For example, the wnm-schemes presented in the introduction are not snm-secure in the random
oracle model.4

The precise definition of wnm security is as follows.

4Actually, it is much easier to see that they are not comparison-based non-malleable (cnm) [4], and then use the
result in [4] that simulation-based non-malleability implies comparison-based non-malleability. Also, note that our
separation result in Lemma 3.4 holds not just in the random oracle model, but in the standard model.
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Definition 3.1 (wnm-cpa, wnm-cca1, wnm-cca2) Let Π = (G,E,D) be an encryption scheme,
let R be a relation, let A = (A1,A2) be an adversary, and let S = (S1,S2) be an algorithm
(“simulator”). For atk ∈ {cpa, cca1, cca2} and k ∈ N define

Advwnm-atk
A,S,Π (R, k)

def
= Pr[Exptwnm-atk

A,Π (R, k) = 1]− Pr[Exptwnm-atk
S,Π (R, k) = 1],

where

Exptwnm-atk
A,Π (R, k) : Exptwnm-atk

S,Π (R, k) :
(pk, sk)←G(1k) (pk, sk)←G(1k)

(M, s1, s2)←A
O1

1 (pk) (M, s1, s2)←S1(pk)
x←M x←M
y← Epk(x)

y←AO2

2 (s2, y) (y, z)←S2(s2)
x←Dsk(y) x←D′

sk(y, z, x)
Return 1 iff (y 6∈ y) ∧R(x,x,M, s1) Return 1 iff R(x,x,M, s1)

and D′
sk(y, z, x) returns the decryption of each yi ∈ y for which zi = x or zi = ⊥, and returns ⊥

for each other index, and

atk = cpa ⇒ O1(·) = ε,O2(·) = ε

atk = cca1 ⇒ O1(·) = Dsk(·),O2(·) = ε

atk = cca2 ⇒ O1(·) = Dsk(·),O2(·) = Dsk(·)

We say that Π is wnm-atk-secure if for every polynomial q(k), and every A that runs in time
q(k) and outputs a valid message space M samplable in time q(k), there exists a polynomial-time
algorithm S such that for every R computable in time q(k), Advwnm-atk

A,S,Π (R, k) is negligible.

Lemma 3.2 For any atk ∈ {cpa, cca1, cca2}, snm-atk⇒ wnm-atk⇒ ind-atk.

The proof of Lemma 3.2 is in Appendix A.1.

Lemma 3.3 (ind-cca1 6⇒ wnm-cpa) If there exists an ind-cca1-secure encryption scheme, then there
exists an ind-cca1-secure encryption scheme that is not wnm-cpa-secure.

The proof of Lemma 3.3 is essentially identical to the proof that ind-cca1 6⇒ snm-cpa in [1].

Lemma 3.4 (wnm-cca1 6⇒ snm-cpa) If there exists an snm-cca1-secure encryption scheme, then
there exists a wnm-cca1-secure encryption system that is not snm-cpa-secure.

The proof of Lemma 3.4 is in Appendix A.2.

3.2 Constructions

In Section 1, we introduced several constructions for wnm-secure encryption, denoted “Mult-
Range”, “Mult-Adjacent”, and “Add-Square”. Our goal in this section will be to prove Lemma 3.5.

Lemma 3.5 The Mult-Range, Mult-Adjacent, and Add-Square schemes are all wnm-atk secure, for
atk ∈ {cpa, cca1}.
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In fact, we prove a more general result. We show a general construction of weakly non-malleable
encryption schemes, of which the three constructions above are special cases. We first introduce a
notion called “uniquely identifiable subset,” which we will use in our general construction.

We say a sequence of sets X = {Xk}k>0, Xk ⊆ {0, 1}
∗, is efficient if there exists a polynomial

p(·) such that membership in Xk can be tested in time p(k). For simplicity, we often abuse notations
by referring to the sequence {Xk} as “the efficient set X” and omitting the subscript k, although
it should be understood that X is a sequence of sets. We extend this notation to groups, too,
i.e., when we say “X is an efficient finite group,” it should be understood that X = {Xk} is in
fact a sequence of finite groups, whose membership can be efficiently determined. Furthermore, for
efficient sets X and S, we use the phrase “S is a subset of X” as shorthand for “for every k, Sk is
a subset of Xk.”

Definition 3.6 (Unique Identifiability) Let X be an efficient finite group with identity element
e, and let S be an efficient subset of X. We say S is a uniquely identifiable subset of X, if for every
λ ∈ X\{e}, there exists at most one xλ ∈ S, such that λ · xλ ∈ S and for any other x ∈ S, x 6= xλ,
λ · x 6∈ S. Here “·” is the group operation. We call xλ the soft spot for λ. If no such xλ exists, we
write this as xλ = ⊥. We denote the soft spot of λ by ss(λ).

Furthermore, we say S is an efficient uniquely identifiable subset of X, if there exists a
polynomial-time algorithm A that outputs xλ on input λ.

Putting the definition in our context, X is the space of all messages and S is the set of all “valid”
messages. The group operation “·” corresponds to a “mauling” function the converts an encryption
of x to an encryption of λ · x, and we call λ the “mauling factor.” The unique identifiability
indicates, therefore, for every mauling factor λ, there is at most one valid message xλ that can
be mauled into another valid one (all other valid messages are mapped to invalid ones). For an
efficient uniquely identifiable subset, one can in fact find xλ efficiently.

Next, we give several examples of efficient uniquely identifiable subsets, which are closely related
to the Mult-Range, Mult-Adjacent, and the Add-Square schemes.

Example 1 (Mult-Adjacent) Let X = Z
∗
p × Z

∗
p with the group operation being component-wise

multiplication in Z
∗
p, i.e., (x0, x1) · (y0, y1) = (x0 · y0, x1 · y1). Let S = {(x, x+ 1) | x ∈ Z

∗
p}.

Example 2 (Add-Square) Let X = Zp × Zp, with the group operation being component-wise
addition in Zp, i.e., (x0, x1) · (y0, y1) = (x0 + y0, x1 + y1). Let S = {(x, x2) | x ∈ Zp}.

Example 3 (Mult-Range) Let X = Z
∗
p with multiplication as the group operation. Let S =

{a, ..., b}, where a > (b− a)2 and p > 2b2.

Lemma 3.7 All three examples above are efficient uniquely identifiable systems.

The proof of Lemma 3.7 is straightforward for Mult-Adjacent and Add-Square; Mult-Range is not
straightforward, however. See Appendix A.3.

Now we present our general construction of wnm encryption schemes.

Construction 1 Let X be an efficient finite group. Let S be an efficient uniquely identifiable subset
of X, and H : {0, 1}∗ → X be a hash function. Let G∗ be a trapdoor permutation generator. We
construct an encryption scheme as follows. G runs G∗ to get (f, f−1, d), and sets pk = <f, d>, and

6



sk = f−1. The plaintext space of Epk is S.5 To encrypt a message m, Epk(m) generates r← d(1k)
and returns <f(r),H(r) · m>, where “·” is the group operation in X. To decrypt a ciphertext
c = (α, β), Dsk(c) computes m = β · (H(f−1(α))−1), returns m if m ∈ S, and ⊥ otherwise.

Lemma 3.8 Following the notation in Construction 1, if H(·) is a random oracle, then Construc-
tion 1 is wnm-atk secure, for atk ∈ {cpa, cca1}.

The proof of this result is in Appendix A.4.

3.3 Applications

In this section we show that weak non-malleability suffices to implement a secure contract bidding
system between two bidders. Intuitively, in an ideal contract bidding system, each of two bidders
would submit its bid to a trusted authority through a secure channel (so that the messages are
both secret and authenticated). In a real contract bidding system, however, it may be the case
that a dishonest bidder may be able to see the encrypted bid from an honest bidder before it
submits its own bid. In either case, we assume there is a public “award” function over these input
bids. Depending on the application, the award function varies. For example, the simplest award
function can be Award((x0, x1)) = (y0, y1), where yi = xi if xi = min{x0, x1} and yi = 0 otherwise.
This indicates the rule that the lowest bidder wins, with the award being his bid, and the other
bidder loses and thus has zero award. (We assume a unique minimum between the bids, otherwise
nobody wins.) Other forms of the award function exist. For example, a “Vickrey” award function
is Award((x0, x1)) = (y0, y1), where yi = x1−i if xi = min{x0, x1} and yi = 0 otherwise.

We specify our contract bidding system as follows:

Setup: A bidding system consisting of two bidders B0, B1 and an award function Award. There is
also a bidding upper bound U > 0, such that the only valid bids are integers between 0 and
U . Both bidders are given U and the award function Award.

Award function: The function Award : {⊥, 0, 1..., U}2 → {0, 1, ..., U}2 takes the bids from the
bidders and computes their awards, respectively.6 We say an award function is fair, if for any
x = (x0, x1) and any i ∈ {0, 1}, Award(x|⊥→[i])[i] ≤ Award(x)[i], and Award(x|x1−i→[i])[i] ≤
Award(x)[i]. Here we use x|y→[i] to indicate the vector obtained by replacing the ith entry of
x by y and we use x[i] to indicate the ith entry of x. Intuitively, the fairness indicates that
a bidder would not gain any advantage in profit by changing his bid to ⊥ or to the other
bidder’s bid. We note that fairness is a reasonable requirement for bidding systems to be
“useful.”

Real Adversary: To model security, we consider an adversary A = (A1,A2) that corrupts bidder
B1. A1 receives the public key pk and U , and outputs a polynomial-time samplable distri-
bution M of bids, from which a bid bid0 is randomly chosen for B0. A2 is then given the
ciphertext of bid0 and outputs encrypted bid ebid1 for B1. The profit of the adversary is the
award of B1.

5More precisely, we assume a one-to-one correspondence between plaintexts and elements of S, and efficient
encoding and decoding functions to map plaintexts to and from elements of S.

6We insist that the award function be a positive function. However, this is entirely arbitrary, since one can always
“shift” the award function by a constant without changing its nature.
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Definition 3.9 (Secure Contract Bidding) Let CBS be a contract bidding system with bidding
upper bound U and encryption scheme Π = (G,E,D). CBS is secure if for every fair award function
Award, every polynomial q(k), every adversary A = (A1,A2) that runs in time q(k), there exists a

polynomial-time simulator S = (S1,S2) such that Adv
profit
A,S,CBS(k) is negligible,7 where

Adv
profit
A,S,CBS(k)

def
= E[ExptrealA,CBS(k)− Exptideal

S,CBS(k)],

and

ExptrealA,CBS(k) : Exptideal
S,CBS(k) :

(pk, sk)←G(1k)
(M, s)←A1(pk, U) (M, s)←S1(U)
bid0←M bid0←M
ebid0← Epk(bid0)
ebid1←A2(ebid0, s) bid1←S2(s)
bid1←Dsk(ebid1)
return Award((bid0, bid1))[1] return Award((bid0, bid1))[1]

It is clear that if the encryption scheme Π is malleable, then the system might not be secure. For
example, consider the scheme where message m is encrypted as <f(r),H(r) + m mod p>, where
f(·) is a trapdoor permutation and H a random oracle. It is an ind-cpa-secure scheme, but the real
bidding system is not secure, since an adversary seeing the bid <α, β> from bidder B0 can submit
bid <α, β − 1>, and underbid B0 by 1. It is also obvious that if Π is snm-cpa-secure, then the
bidding system is secure. The next theorem shows that in fact wnm-cpa-security suffices.

Theorem 3.10 Let Π = (G,E,D) be a wnm-cpa-secure encryption scheme, with a domain that
includes the integer range [0, U ] where U is polynomially bounded by k. Then a contract bidding
system CBS with bidding upper bound U and encryption scheme Π is secure.

The proof of this result is in Appendix A.5. We mention that our result only applies to the case
of a single auction, and specifically does not claim that repeated auctions will be secure if they use
the same encryption scheme. Obviously, for repeated auctions to be secure, we would need some
kind of cca2 security for our encryption scheme.

We also mention that the result does not apply to contract bidding schemes with multiple
bidders that may collude. Intuitively, this is because they may each make guesses which cover the
possible choices of the honest bidder, and a wrong guess for one party does not reduce the award
of the party that guesses correctly. To solve the problem with multiple bidders using a wnm-secure
cryptosystem, one could either allow randomization in the bids (e.g., each bid would be of the
form (bid, r), where r←{0, 1}k , which would ensure that the adversary has a negligible chance of
guessing the full plaintext), or one could change the model to levy penalties for invalid bids.

4 Tag-based non-malleability

In this section, we introduce tag-based non-malleability as an alternative to standard non-malleability.
Informally, in a tag-based encryption system, the encryption and decryption operations take an ad-
ditional “tag.” A tag is simply a binary string of appropriate length (i.e., its length has to be

7It may be negative, in which case we also consider it to be negligible.

8



polynomially bounded by the security parameter), and need not have any particular internal struc-
ture. We define security for tag-based encryption in manners analogous to security for standard
encryption systems. In particular, we define tag-based indistinguishability (Definition B.3) and
tag-based non-malleability (Definition 4.1) with respect to cpa, cca1, and cca2 attacks. The only
changes we make to the definitions for standard encryption are: (i) in a cca2 attack, instead of
requiring that the adversary A not query the decryption oracle with the ciphertext y that A re-
ceives as a challenge, we require that A not query the decryption oracle with a (ciphertext,tag)
pair using the same tag with which y was encrypted; (ii) in the non-malleability definition, instead
of requiring that A2 not output the ciphertext y it receives, we require that A2 not output any
(ciphertext,tag) pair for decryption using the tag with which y was encrypted. Informally, one
simply changes the “equality of two ciphertexts” in the standard definitions to “equality of the tags
of two ciphertexts,” and we have a tag-based definition.

4.1 Definition

Tag-based encryption schemes A tag-based encryption scheme Π is a triple (G,E,D) of al-
gorithms, the first two being probabilistic, and all running in expected polynomial time. G takes
as input 1k and outputs a public key pair (pk, sk), i.e., (pk, sk)←G(1k). E takes a public key pk,
a message m, and a tag t as input and outputs an encryption c for m associated with t; we denote
this c←Epk(m, t). D takes a private key sk, a ciphertext c, and a tag t as input and returns either
a message m such that c is a valid encryption of m associated with t, if such an m exists, and
otherwise returns ⊥; we denote this m←Dsk(c, t).

Definition 4.1 (tnm-cpa, tnm-cca1, tnm-cca2) Let Π = (G,E,D) be an encryption scheme, let
R be a relation, let A = (A1,A2) be an adversary, and let S = (S1,S2) be an algorithm (the
“simulator”). For atk ∈ {cpa, cca1, cca2} and k ∈ N define

Advtnm-atk
A,S,Π (R, k)

def
= Pr[Expttnm-atk

A,Π (R, k) = 1]− Pr[Expttnm-atk
S,Π (R, k) = 1],

where

Expttnm-atk
A,Π (R, k) : Expttnm-atk

S,Π (R, k) :
(pk, sk)←G(1k) (pk, sk)←G(1k)

(M, t, s1, s2)←A
O1

1 (pk) (M, t, s1, s2)←S1(pk)
x←M x←M
y← Epk(x, t)

(y, t)←AO2

2 (s2, y, t) (y, t)←S2(s2, t)
x←Dsk(y, t) x←Dsk(y, t)
Return 1 iff (t 6∈ t) ∧R(x,x,M, s1) Return 1 iff R(x,x,M, s1)

and

atk = cpa ⇒ O1(·) = ε,O2(·) = ε

atk = cca1 ⇒ O1(·) = Dsk(·),O2(·) = ε

atk = cca2 ⇒ O1(·) = Dsk(·),O2(·) = Dsk(·)

We require that O2 not be queried with the t given to A2. We say that Π is secure in the sense of
tnm-atk if for every polynomial q(k), every R computable in time q(k), and every A that runs in
time q(k) and outputs a valid message space M samplable in time q(k), there exists a polynomial-
time algorithm S such that Advtnm-atk

A,S,Π (R, k) is negligible.
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4.2 Constructions

We give two constructions of tag-based encryption schemes, both achieving tnm-cca2-security. The
first one is based one-way trapdoor permutations in the random oracle model. It is similar to the
semantically secure (ind-cpa) encryption scheme from Bellare and Rogaway [2], but enjoys a higher
level of security. The second is a modification of the Cramer-Shoup scheme [8, 9], but simpler.

Construction 2 Let G∗ be a trapdoor permutation generator. Let X be a finite group and H :
{0, 1}∗ → X a hash function. We construct an encryption scheme as follows. G runs G∗ to get
(f, f−1, d), and sets pk = <f, d>, and sk = f−1. All messages are restricted to be elements in X.
To encrypt a message m with tag t, Epk(m) generates r← d(1k) and returns <f(r),H(r, t) ·m>,
where “·” is the group operation in X. To decrypt a ciphertext c = (α, β), Dsk(c) returns m =
β · (H(f−1(α), t)−1).

Lemma 4.2 Let H be a random oracle. If f is a trapdoor permutation, then the scheme in Con-
struction 2 is tnm-cca2-secure.

The proof of Lemma 4.2 is in Appendix A.6.

Construction 3 Let Gq be a finite group in which the DDH assumption holds.8 We define an
encryption scheme as follows.

GCS(Gq): Let g be the generator of Gq (included in the description of Gq). Generate g2
R
←Gq

and a, b, c, d, e
R
← Zq, and set U ← ga(g2)

b, V ← gc(g2)
d, and W ← ge. Let the public key be

<g, g2, U, V,W> and the secret key be <a, b, c, d, e>.

E<g,g2,U,V,W>(m, t): Generate r
R
← Zq and x← gr, y← (g2)

r, w←W rm, and v← U rV rt. Return
<x, y,w, v> as the ciphertext.

D<a,b,c,d,e>(<x, y,w, v>, t): If v 6= xa+ctyb+dt, return ⊥, else return w/xe.

Informally, our construction removes the collision-resistant hash function from the original
Cramer-Shoup construction, and replaces the hash value α = H(x, y,w) by the tag t.9

Lemma 4.3 The encryption scheme in Construction 3 is tnm-cca2-secure.

The proof of this lemma almost directly follows the proof of security for the original Cramer-
Shoup construction; we omit it here.

4.3 Applications

Intuitively, tag-based encryption schemes (and in particular, tnm schemes) are useful in systems that
already have authentication, i.e., in systems where Bob cannot impersonate Alice and send messages
using her identity. We stress that even with authentication, one still needs non-malleability. For
example, in the contract-bidding scenario in both [11] and the previous section, we still need to

8Note that one possible group Gq may be found by generating a large prime p such that q divides p−1, and letting
Gq be the subgroup of order q in Z

∗
p.

9We assume that t ∈ Zq. Otherwise, we would need a collision-resistant hash function to hash the tag.
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make sure that Bob cannot underbid Alice by mauling her message. With a tnm system, we can
use the sender’s identity as the tag to achieve this goal. Suppose Alice sends a encrypted message
c = Epk(m,Alice) to Charlie. A malicious Bob may be able to maul c into another ciphertext
with the same tag, i.e., Alice — this is allowed in the definition — but this would not be useful
for him since he cannot fake Alice’s identity. Bob needs to produce some message with the tag
Bob, but tnm stipulates that Bob will not have any advantage in doing so. To demonstrate this,
we show how to use a tnm-cca2 scheme (in fact, a tind-cca2 scheme) to construct a protocol that
realizes the secure message transmission functionality in the FAUTH-hybrid model, in the universal
composability framework. Previously, this was done using an ind-cca2 encryption scheme [5].

4.3.1 Universal-composability framework

The universal composability framework was proposed by Canetti [5] for defining the security and
composition of protocols. To define security one first specifies an ideal functionality using a trusted
party that describes the desired behavior of the protocol. Then one proves that a particular protocol
operating in a real-life model securely realizes this ideal functionality. Here we briefly summarize
the framework.

A (real-life) protocol π is defined as a set of n interactive Turing Machines P1, . . . , Pn, designat-
ing the n parties in the protocol. It operates in the presence of an environment Z and an adversary
A, both of which are also modeled as interactive Turing Machines. The environment Z provides
inputs and receives outputs from honest parties, and may communicate with A. A controls (and
may view) all communication between the parties. (Note that this models asynchronous commu-
nication on open point-to-point channels.) We will assume that messages are authenticated, and
thus A may not insert or modify messages between honest parties. (This feature could be added to
an unauthenticated model using a message authentication functionality as described in [5].) A also
may corrupt parties, in which case it obtains the internal state of the party. (In the non-erasing
model, the internal state would encompass the complete internal history of the party.)

The ideal process with respect to a functionality F , is defined for n parties P1, . . . , Pn, an
environment Z, and an (ideal-process) adversary S. However, P1, . . . , Pn are now dummy parties
that simply forward (over secure channels) inputs received from Z to F , and forward (again over
secure channels) outputs received from F to Z. Thus the ideal process is a trivially secure protocol
with the input-output behavior of F . More details are given in Appendix E.

4.3.2 UC secure message transmission

The functionality FM−SMT is given in Figure 1. Intuitively, this functionality allows multiple parties
to send messages securely to a single receiver. Both the secrecy and the integrity of the messages
are guaranteed. See [5] for more discussions.

Canetti [5] constructed a protocol that securely realizes this functionality in the (FAUTH,FPKE)-
hybrid model. He also showed that any ind-cca2 encryption scheme can securely realize the FPKE

functionality. Therefore, one can construct a protocol using an ind-cca2 encryption scheme to
securely realize FM−SMT in the FAUTH-hybrid model. Here, we show that one can instead use a
tag-based tind-cca2 encryption scheme.

Given a tind-cca2 encryption scheme Π = (G,E,D), the protocol σ runs as follows. In this
description, we include the identity of the receiver in the session identifier. (i) When a party
Pi receives an input (receiver, id|Pi), it runs (pk, sk)←G(1k), and sends (key, id|Pi, pk) to all

11



FM−SMT proceeds as follows, running with parties P1, . . . , Pn, and an adversary A:

• In the first activation, expect to receive a value (receiver, id) from some party Pi. Then
send (receiver, id, Pi) to the all parties and the adversary. From now on, ignore all
(receiver, id) values.

• Upon receiving a value (send, id,m) from some party Pj , send (id, Pj ,m) to Pi and
(id, Pj , |m|) to the adversary.

Figure 1: Functionality FM−SMT

other parties using FAUTH. Any messages of this type with an identifier not in the correct format
are ignored. (ii) On receiving the first message (Pi′,Pj , (key, id|Pi′ , pk

′)) from FAUTH, Pj records
(Pi′ , id, pk

′) and outputs (receiver, id|Pi′ , Pi′). Any messages of this type with an identifier not in
the correct format are ignored. Subsequent messages of this type with identifier id|Pi′ are ignored.
(iii) After this, when Pj receives an input (send, id|Pi′ ,m), Pj runs c←Epk′(m,Pj), and invokes
FAUTH to send (msg, id|Pi′ , c) to Pi′ . (iv) On receiving a message (Pj , Pi, (msg, id|Pi, c)) from
FAUTH, Pi runs m←Dsk(c, Pj) and if m 6= ⊥, outputs (id|Pi, Pj ,m). Intuitively, the protocol uses
the identity of the senders as the tag for the encryption.

Theorem 4.4 The protocol σ securely realizes the SMT functionality in the FAUTH hybrid model,
assuming static corruptions.

The proof of Theorem 4.4 is in Appendix A.7.

4.4 Relation to standard definitions

We study the relation between the tag-based definitions and the standard ones. First, we note that
they are not directly comparable, due to the structural difference in encryption and decryption.
However, given a standard encryption scheme Π = (G,E,D), it is straightforward to construct
a tag-based scheme Π′ = (G′, E′,D′) with the same security as follows. G′ is the same as G;
E′

pk(m, t) calls Epk(m ◦ t), where x ◦ y denotes a canonical encoding of the concatenation of two
binary strings that can be uniquely parsed; D′

sk(c, t) calls (m, t′)←Dsk(c) to and returns m if
t = t′ and ⊥ otherwise. It is easy to check that Π′ enjoys the same level of security (in the sense of
Definition 4.1) as Π (in the sense of Definition 2.1).

Interestingly, the other direction also holds: given a tag-based scheme, one can construct a
standard scheme, using a strong one-time signature scheme [20] as defined in Appendix D.

Construction 4 Let Π = (G,E,D) be a tag-based encryption scheme. Let SIG = (sig gen, sig sign,
sig verify) be a strong one-time signature scheme. We construct a standard scheme Π′ = (G′, E′,D′)
as follows. G′ = G. To encrypt massage m using pk, generate a signing/verification key pair
(sig vk, sig sk)← sig gen(1k); encrypt m using sig vk as the tag, i.e., c←Epk(m, sig vk); sign c using
sig sk, i.e., s← sig sign(sk, c); and output (sig vk, c, s) as the encryption. To decrypt a ciphertext
(sig vk, c, s), verify that s is a valid signature of c with respect to sig vk; if not, output ⊥; if so,
return Dsk(c, sig vk).
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Theorem 4.5 For atk ∈ {cpa, cca1, cca2}: if Π is tnm-atk secure, then Π′ is snm-atk secure; and
if Π is tind-atk secure, then Π′ is ind-atk secure.

The proof of this result is in Appendix A.8.
Construction 4 is essentially the construction first shown in [11] and later used in [20, 10, 17, 6]

to obtain non-malleable encryption schemes, except that we explicitly separate the underlying
tag-based scheme from the “wrapper” that uses the one-time signature scheme. Thus, in each
of these papers, there is an implicit tag-based non-malleable encryption scheme.10 We illustrate
this with the scheme of Lindell [17], which we denote as ΠL. In ΠL, an encryption of message
m is a tuple <c0, c1, pk0, pk1, r, sig vk, σ, s>. Here c0 and c1 are two encryptions of m using two
ind-cpa systems with public keys pk0 and pk1, respectively; sig vk is a “fresh” verification key of
a strong one-time signature scheme; r is a random string; σ is an NIZK proof that either c0 and
c1 are the encryption of the same message, or r is the commitment of sig vk; s is a signature of
the tuple <c0, c1, pk0, pk1, sig vk, r, σ>. Then in the underlying tag-based encryption scheme Π, an
encryption of message m with tag t is the tuple <c0, c1, pk0, pk1, r, t, σ>, where c0, c1, pk0, pk1, and
r are all the same as before, and σ becomes an NIZK proof that either c0 and c1 are the encryptions
of the same message, or r is the commitment of t. It is easy to verify that Π is tnm-cca2-secure.
In fact, one can prove the security for Π almost exactly the same way as for the security proof
of ΠL, observing that the use of the strong one-time signature in ΠL is solely for enforcing that
an adversary will not make a query to the decryption oracle with a ciphertext having the same
verification key. Since in the tag-based system Π, the verification key is replaced by the tag, by
definition, the adversary cannot query the decryption oracle with a ciphertext having the same tag.
So in fact the proof for the security of Π is even simpler than the proof for for ΠL. Furthermore,
ΠL is exactly the transformed version of protocol Π under Construction 4. Therefore, one could
obtain an alternative proof of security for ΠL by pluggin Π into Theorem 4.5.

In the light of Construction 4, the tag-based definitions are in some sense “equivalent” to
the standard definitions. It is also straightforward to verify that many known relations among
standard security definitions translate to tag-based definitions. In particular, all the results by
Bellare et al. [1] are true for the tag-based definitions, as well as the results by Bellare and Sahai [4],
for appropriately modified definitions. We summarize these results without proof in Appendix C.
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A Proofs

A.1 Proof of Lemma 3.2

In light of the discussion in Section 3.1, it would be obvious that snm-atk⇒ wnm-atk, were it not for
the fact that the order of quantifiers in Definition 3.1 is slightly changed from that in Definition 2.1.
In particular, in wnm-atk, we require the existence of a simulator that works for every relation, i.e.,
∃S∀R, but in snm-atk, security only requires that for every relation there exists a simulator, i.e.,
∀R∃S. However, it is easy to see that either order of quantifiers implies the same security for
snm-atk. This is because in the proof in [1] that a different notion of security, namely cnm-atk
security (see Definition B.2 in Appendix B), implies snm-atk, the simulator in the proof does not
depend on the relation R. Thus the proof actually shows that cnm-atk security implies the stronger
snm-atk security, and since the strong snm-atk security implies the weaker snm-atk security, and the
weaker snm-atk security implies cnm-atk security, the two definitions must be equivalent. Finally,
it is obvious that the stronger snm-atk security implies wnm-atk security.

Now to prove wnm-atk ⇒ ind-atk, let A = (A1,A2) be an ind-atk adversary for encryption
scheme Π. We construct a wnm-atk adversary B = (B1,B2) for Π as follows:

BO1

1 (pk):

m0,m1 ← A
O1

1 (pk)
M ← uniform distribution on {m0,m1}
Return (M,⊥, <pk,m0,m1>)

BO2

2 (<pk,m0,m1>, y):

b← AO2

2 (y)
Return <Epk(mb)>

Now, consider the relation R defined as follows:

Relation R(x,x,M, s)
<x1, . . . , xk>← x
Return 0 if k > 1
Return 1 if x1 = x
Return 0

IfA breaks Π (for property ind-atk) with probability 1
2+ε, then Pr[Exptwnm-atk

B,Π (R, k) = 1] = 1
2+ε.

However, for any simulator S = (S1,S2), Pr[Exptwnm-atk
S,Π (R, k) = 1] ≤ 1

2 because R(x,x,M, s)
outputs 1 only if |x| = 1 and x1 = x, where x is chosen from a uniform distribution of two
elements.

A.2 Proof of Lemma 3.4

As a warm-up, we will show the weaker, but much simpler, result that in the random oracle model,
if trapdoor permutations exist, then there exists a wnm-cca1-secure encryption scheme that is
not snm-cpa-secure. By Lemma 3.5, the Mult-Range scheme is wnm-cca1-secure in the random
oracle model if trapdoor permutations exist. We show that it is not snm-cpa-secure, however.
We do this by showing that it is not cnm-cpa-secure (see Definition B.2), and using the fact that
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snm-cpa ⇒ cnm-cpa [4]. Consider an adversary A = (A1,A2) defined as follows. A1(pk) returns
M equal to the uniform distribution on two distinct elements x0, x1 ∈ [a, b). A2(s, y), where
y = <α, β>, returns y = (<α, (β/x0) · (x0 + 1)>) and R such that R(x,x) = 1 iff x = <x + 1>.

Then, Pr[Expt
cnm-cpa
A,Π (k) = 1] = 1/2 but Pr[Ẽxpt

cnm-cpa

A,Π (k) = 1] = 1/4. Our warm-up result follows.
Now we proceed to the proof of the lemma. Let Π = (G,E,D) be an snm-cca1-secure encryption

scheme. By [4], since Π is snm-cca1-secure, it is also cnm-cca1-secure. Without loss of generality,
we will assume Π has a message space of size s ≥ 5, say with elements {wi : 0 ≤ i < s}. Now let
Π′ = (G′, E′,D′) be defined as follows, with a message space of {0, 1}.

• G′(1k) returns the output of G(1k).

• E′
pk(x) generates a random r

R
←{0, 1, 2} and returns <Epk(wr), x − r mod 3>. We call the

second component the offset of the encryption.

• D′
sk(<y, z>) checks that Dsk(y) = wi for some i ∈ {0, 1, 2}, that z ∈ {0, 1, 2}, and that

z + i mod 3 ∈ {0, 1}. If so, it returns z + i mod 3, and otherwise returns ⊥.

One can show that Π′ is not snm-cpa-secure using a similar argument to our warm-up result. (Have
A2(s, (α, β)) return y = (<α, β + 1 mod 3>) and R such that R(x,x) = 1 iff x = <x+ 1 mod 3>.)

In the remainder of the proof, we will show that Π′ is wnm-cca1-secure. In particular, we will
show that if Π′ is not wnm-cca1-secure, then Π is not cnm-cca1-secure, which is a contradiction.

Let R′ be a relation and A = (A1,A2) be an adversary for Π′. Consider the following adversary
B = (B1,B2) for Π, with Uj defined as the uniform distribution over {wb−j mod 3 : b ∈ {0, 1}}, and
the BConv function defined below.

BO1

1 (pk) : B2((M, s1, s2, j), y) :

(M, s1, s2)←A
O

′

1

1 (pk) v←A2(s2, <y, j>)

j
R

←{0, 1, 2} (R,y)← BConv(pk,M, s1, y, j,v)
Return (Uj , (M, s1, s2, j)) Return (R,y)

Note that for clarity we use the notation O′
1 to denote the decryption oracle for Π′ given to A1. In

this experiment, queries to O′
1 are answered by B1 using O1.

The BConv function takes the vector v of Π′-encryptions given by A2, and returns a vector y
of Π-encryptions and a relation R, such that the real experiments for Π′ (with adversary A and
relation R′) and Π (with adversary B) are basically equivalent. This is possible because even though
encryptions in Π′ can be mauled, it is possible to determine how they are being mauled, and set R
and y appropriately. Essential BConv detects attempted mauling and encodes the mauling factor
into the y encryptions, and then sets R to decode the mauling factors and check the guesses. (Note
that we use a message space of 5 elements so that we have two extra elements to encode attempted
maulings, and these encodings will not interfere with normal encryptions.)
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BConv(pk,M, s1, y, j, (<y
′
1, j1>, . . . , <y

′
`, j`>))

Let L = {1, . . . , `}
Let I = {i : i ∈ L ∧ y′i = y ∧ ji ∈ {0, 1, 2}}
Compute y

/* Pass non-mauled or invalid encryptions through */
For all i ∈ L \ I, yi← y′i
/* Mauled encryptions are marked with the guess plus 3 */
/* The guess is the mauling factor ji − j minus 1 */
For all i ∈ I, yi← Epk(w(ji−j−1 mod 3)+3)

Define R:
R(wx0

, (wx1
, . . . , wx`

)) = 1 iff for some b ∈ {0, 1},
x0 = b− j mod 3 and R′(b, (b1, . . . , b`),M, s1) = 1, where

/* For mauled encryptions, check if guess is correct */
/* (the guess (plus 3) was determined and encrypted above) */
/* If so, the Π′ decryption would return 1− b */
For all i ∈ I, if xi = 3 + b, bi← 1− b else bi←⊥
/* All other encryptions are non-mauled or invalid */
/* so compute the Π′ decryption bi equivalent */
/* to the Π decryption wxi

with offset ji */
For all i ∈ L \ (J ∪ I),

If xi 6∈ {0, 1, 2}, ji 6∈ {0, 1, 2}, or xi + ji mod 3 6∈ {0, 1}, bi←⊥
Else bi← xi + ji mod 3

Return (R, (y1, . . . , y`))

One can verify that Exptcnm-cca1
B,Π (k) performs the same experiment as Exptwnm-cca1

A,Π′ (R′, k), but with
some of the computation involving the offset moved from the Π′-decryption to the relation R after
the Π-decryption. Thus, Pr[Exptcnm-cca1

B,Π (k)] is exactly the same as Pr[Exptwnm-cca1
A,Π′ (R′, k)].

Now we construct a simulator S = (S1,S2) for Π′. The idea is that S will run A on a newly
chosen public key for which it knows the decryption key, then produce encryptions under the given
(challenge) public key so that the simulator experiment for Π′ (with simulator S and relation R′)
and the “simulator” experiment for Π (with adversary B) are basically equivalent. This is possible
because the simulator in wnm has the ability to make its result depend on the ciphertext, thus
matching the ability of B to do the same, based on its view of the offset.

S1(pk) : S2((M, s2, pk, pk
′, sk′)) :

(pk′, sk′)←G′(1k) x̃←M ; <ỹ, j̃>← E′
pk′(x̃)

(M, s1, s2)←A
O

′

1

1 (pk′) ṽ←A2(s2, <ỹ, j̃>)

return (M, s1, (M, s2, pk, pk
′, sk′)) if <ỹ, j̃> ∈ ṽ, abort

(v, z)← Conv(pk, sk′, ỹ, j̃, ṽ)
Return (v, z)

Now we describe Conv.

Conv(pk, sk′, y, j, (<y1, j1>, . . . , <y`, j`>))
Let L = {1, . . . , `}
Let I = {i : i ∈ L ∧ yi = y ∧ ji ∈ {0, 1, 2}}
/* Decrypt non-mauled or invalid encryptions, with no guess */
For all i ∈ L \ I, xi←D′

sk′(<yi, ji>), zi←⊥
/* For mauled encryptions, compute the guess made */
/* and set result of guess (i.e., 1-guess) */
For all i ∈ I, zi← ji − j − 1 mod 3, xi← 1− zi

v←E′
pk(x)

Return (v, z)
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As in [4], we can expand the definition of Exptwnm-cca1
S,Π′ (R, k), substituting in the definition of S

given above, and eliminating superfluous computations, yielding:

Exptwnm-cca1
S,Π′ (R, k) :

(pk′, sk′)←G′(1k)

(M, s1, s2)←A
O

′

1

1 (pk′)

x, x̃←M ; <ỹ, j̃>←E′
pk′(x̃)

ṽ←A2(s2, <ỹ, j̃>)
Say ṽ = (<y1, j1>, . . . , <y`, j`>)
Let L = {1, . . . , `}
Let I = {i : i ∈ L ∧ yi = y ∧ ji ∈ {0, 1, 2}}
For all i ∈ L \ I, xi←D′

sk′(<yi, ji>), zi←⊥
For all i ∈ I, zi← ji − j − 1, xi← 1− zi

For all i ∈ L
If zi = ⊥ or zi = x, x̃i← xi

Else x̃i←⊥
return 1 iff (<ỹ, j̃> 6∈ ṽ) ∧R(x, x̃,M, s1)

Now examine the second cnm experiment for Π with adversary B.

Ẽxpt
cnm-cca1
B,Π (k) :

(pk, sk)←G(1k)

(M, s1, s2)←A
O

′

1

1 (pk′)

j
R

← {0, 1, 2}
w, w̃← Uj

Say w = wx−j mod 3 and w̃ = wx̃−j mod 3

ỹ← Epk(w̃)
v←A2(s2, <ỹ, j>)
Say v = (<y′1, j1>, . . . , <y

′
`, j`>)

Let L = {1, . . . , `}
Let I = {i : i ∈ L ∧ y′i = y ∧ ji ∈ {0, 1, 2}}
Compute y

For all i ∈ L \ I, yi← y′i
For all i ∈ I, yi← Epk(w(ji−j−1 mod 3)+3)

Define R:
R(wx0

, (wx1
, . . . , wx`

)) = 1 iff for some b ∈ {0, 1},
x0 = b− j mod 3 and R′(b, (b1, . . . , b`),M, s1) = 1, where

For all i ∈ I, if xi = 3 + b, bi← 1− b else bi←⊥
For all i ∈ L \ I,

If xi 6∈ {0, 1, 2}, ji 6∈ {0, 1, 2}, or xi + ji mod 3 6∈ {0, 1}, bi←⊥
Else bi← xi + ji mod 3

w←Dsk(y)
Return 1 iff (<ỹ, j> 6∈ v) ∧R(w,w)

Similar to above, one can verify that Ẽxpt
cnm-cca1
B,Π (k) performs the same experiment as Exptwnm-cca1

S,Π′ (k),
but with some notational and name changes, and again with some of the computation involving
the offset moved from the Π′-decryption to the relation R after the Π-decryption. To facilitate a
comparison, we relate the notations in the two experiments here.

• pk′ and sk′ replaced by pk and sk, respectively.
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• Epk′(x̃) is perform explicitly using Epk.

• j̃, ṽ, and {yi} are replaced by j, v, and {y′i}, respectively.

• {xi} and {yi} in Exptwnm-cca1
S,Π′ (k) do not have direct counterparts in Ẽxpt

cnm-cca1
B,Π (k), but x

and {x̃i} in Exptwnm-cca1
S,Π′ (k) are the same as b and {bi}, respectively, computed for R(w,w)

in Ẽxpt
cnm-cca1
B,Π (k).

Thus Pr[Ẽxpt
cnm-cca1
B,Π (k)] is exactly the same as Pr[Exptwnm-cca1

S,Π′ (k)], and it follows that Advwnm-cca1
A,S,Π′ (R, k) =

Advcnm-cca1
B,Π (k).

A.3 Proof of Lemma 3.7

We prove the lemma for the examples one by one.

A.3.1 Mult-Adjacent

Pick an arbitrary λ = (λ0, λ1) ∈ X\{(1, 1)}. We try to find the soft spot for λ. To do this, we
are essentially solving the (linear) equation λ0 · x = y and λ1 · (x + 1) = (y + 1) for unknowns
x, y ∈ Z

∗
p. It is easy to see that it has a unique solution x = 1−λ1

λ1−λ0
, y = λ0−λ0λ1

λ1−λ0
when λ0 6= λ1.

When λ0 = λ1 6= 1, the equation has no solution. In any case, any λ ∈ X\{(1, 1)} has at most one
soft spot that can be easily computed from λ.

A.3.2 Add-Square

Pick an arbitrary λ = (λ0, λ1) ∈ X\{(0, 0)}. We try to find the soft spot for λ. To do this, we are
essentially solving the equation λ0 + x = y and λ1 + x2 = y2 for unknowns x, y ∈ Zp. It is easy

to see that it has a unique solution x =
λ1−λ2

0

2λ0
, y =

λ1+λ2
0

2λ0
when λ0 6= 0. When λ0 = 0 6= λ1, the

equation has no solution. In any case, any λ ∈ X\{(0, 0)} has at most one soft spot that can be
easily computed from λ.

A.3.3 Mult-Range

Pick an arbitrary λ ∈ X\{1}. We try to find the soft spot for λ. Equivalently, we want to find
x ∈ {a, ..., b} and integer y such that

λ · x− y · p ∈ {a, ..., b}. (1)

We shall prove that we can find such (x, y) efficiently and there exists at most one solution.
First, we need to review some some facts about continued fractions. (A good reference can be

found at [19].)
Any positive real number t can be written in the form

t = a0 +
1

a1 + 1
a2+ 1

···

(2)
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where a0, a1, .... are positive integers. This is called the continued fraction of t, and the sequence
{a0, a1, ..., an, ...} is called the partial quotients. One normally writes (2) in a more compact form

t = [a0; a1, a2, ..., an, ...] (3)

This sequence is finite if t is rational, and infinite otherwise.
Consider tk = [a0; a1, a2, ..., ak ] that consists the first (k + 1) terms of the continued fraction of

t. Obviously tk is a rational number and we write it as tk = Ak/Bk, where (Ak, Bk) = 1. In this
way we defined two positive integer sequences {Ak} and {Bk}. The related sequence, {Ak/Bk}, is
known as the convergents of t.

We review several known results about these two sequences that would be useful in the paper
are (the proofs can be found in, for example, [19]):

Theorem A.1 Both {Ak} and {Bk} are strictly increasing sequences, and in particular, Bk >
2bk/2c for all k ≥ 0.

Theorem A.2 For all, k ≥ 0, we have

|Bk · t−Ak| · (Bk +Bk+1) > 1 (4)

Theorem A.3 For positive real number t and positive integers t, α, β, if |α − β · t| < 1/2β, then
there exist integers c and k, such that α = c ·Ak and β = c ·Bk, where {Ak/Bk} is the convergents
of t.

Now, coming back to our problem, notice that for the desired (x, y), we have

0 <
a

p
≤
λ

p
· x− y ≤

b

p
<

1

2b
≤

1

2x
(5)

Therefore, by Theorem A.3, we know that x = c · Bk and y = c · Ak for some k and c, where
{Ak/Bk} is the convergent of t = λ/p.

Next, we need to find k and c. First, we have

Bk ≤ x ≤ b (6)

Second, by Theorem A.2, we have that (setting t = λ/p),

2Bk+1 > Bk +Bk+1 >
1

|Bk · t−Ak|
≥
p

b
> 2b (7)

Thus we know that
Bk ≤ b < Bk+1. (8)

There exists a unique k satisfying this condition, and one can easily find it, since Bk increases
exponentially fast, by Theorem A.1. Now, fixing this k, we need to prove that there exists at most
one c satisfying that

a ≤ c · Bk ≤ b, a ≤ c · (λ · Bk − p · Ak) ≤ b (9)

Assuming otherwise, then there exists a c such that

a ≤ c · Bk < (c+ 1) · Bk ≤ b (10)
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and
a ≤ c · (λ ·Bk − p ·Ak) < (c+ 1) · (λ ·Bk − p ·Ak) < b. (11)

We define T = (λ− 1) ·Bk − p ·Ak. Notice that both (λ− 1) and Bk are between 1 and p− 1 and
thus none of them is divisible by p. Therefore T 6= 0, and |T | ≥ 1. Then (11) becomes

a ≤ c · Bk + c · T < (c+ 1) · Bk + c · T ≤ b (12)

By (10), we know that Bk ≤ (b− a), and thus c ≥ a/Bk ≥ a/(b− a) > (b− a).
Now, by combining (10) with (12), we see that both c ·Bk and c ·Bk + c ·T are within the range

{a, ..., b}, yet the distance between them is |c · T | ≥ c > b− a. This is a contradiction. This proves
that there is at most one c satisfying (1), and therefore the S is uniquely identifiable

It is also easy to see that S is in fact efficient uniquely identifiable. An algorithm on input λ,
first finds the convergent {Ak/Bk} of λ/p by continued fraction, then finds the unique k satisfying
(8), and finally finds the unique c satisfying (9). Clearly such an algorithm runs in polynomial
time.

A.4 Proof of Lemma 3.8

We prove the lemma for atk = cca1, which will imply the case atk = cpa. We use the notation of
Definition 3.1 and Construction 1. Additionally, we define a “filter” function ψ : X → X ∪ {⊥}
as follows.

ψ(x) =

{
x if x ∈ S
⊥ otherwise

For an adversary A = (A1,A2), we construct simulators S = (S1,S2) as follows. The simulator
S1 runs A1 and simulates both the random oracle H(·) and the decryption oracle Dsk in a quite
standard way. More specifically, S1 maintains a “query list” L consisting of pairs (α, t), such that
H(f−1(α)) = t. L is initially ∅. When A1 makes a query r to H, S1 checks if (f(r), t) ∈ L for some
t, and replies with t if so; otherwise, S1 picks a random t←X, adds (f(r), t) to L, and replies with
t. When A1 makes a query y = (α, β) to Dsk, S1 checks if (α, t) ∈ L for some t, and replies with
ψ(β · t−1) if so; otherwise, S1 picks a random t←X, adds (α, t) to L, and replies with ψ(β · t−1).
Finally, when A1 outputs (M,s1, s2), S1 outputs (M,s1, (s2, L)).

Upon invocation, the simulator S2, generates r← d(1k), α← f(r), β←X, y← (α, β). Then S2

invokes A2 with parameters (s2, y), and simulates the random oracle for A2 in the same way as S1

does for A1, using the list L passed from S1. When A2 outputs y←A2(s2, y), S2 aborts if y ∈ y.
Otherwise, we assume that y = (y1, y2, .., y`), where yi = (αi, βi) for i = 1, 2, ..., `. S2 generates z
as follows. For each i, if αi 6= α, then set zi←⊥; otherwise compute λi← βi · (β)−1, compute its
soft spot xi← ss(λi), and then set zi← xi. Finally S2 sets z = (z1, z1, ..., z`), and outputs (y, z).

Next, we prove that Pr[Exptwnm-atk
A,Π (R, k) = 1]− Pr[Exptwnm-atk

S,Π (R, k) = 1] is negligible in k.
In order to do so, we introduce a new experiment called Mix, defined as follows.
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Mixwnm-atk
A,S,Π (R, k):

(pk, sk)←G(1k), (M,s1, (s2, L))←S1(pk)
x←M , r← d(1k), α← f(r), t←X, β← x · t, L← L ∪ {(α, t)}
y← (α, β)

y←AHL

2 (s2, y)
For every yi = (αi, βi):

if (f(ri), ti) ∈ L then xi← βi · t
−1
i

else xi←X
x← (ψ(x1), ψ(x2), ..., ψ(x`))
Return 1 iff (y 6∈ y) ∧R(x,x,M, s1)

In the experiment above, HL is the random oracle for A2 is simulated by S2 as in experiment
Exptwnm-atk

S,Π (R, k).

Informally, Mixwnm-atk
A,S,Π (R, k) is the same as Exptwnm-atk

A,Π (R, k), except using the simulator S to
simulate the random oracle and the decryption.

We define the following three probabilities.

pA = Pr[Exptwnm-atk
A,Π (R, k) = 1]

pS = Pr[Exptwnm-atk
S,Π (R, k) = 1]

pMix = Pr[Mixwnm-atk
A,S,Π (R, k) = 1]

We shall prove that both pA − pMix and pMix − pS are negligible k.

1. That pA − pMix is negligible.

The places that Mixwnm-atk
A,S,Π (R, k) differs from Exptwnm-atk

A,Π (R, k) are: (1) Mix replaces A1 by
S1, which in turn runs A1 while simulating both the random oracle and the decryption oracle,
and (2) the Mix replaces the random oracle for A2 by the one simulated by S2, as well as the
final decryption. It is easy to verify that the simulation of both oracles is valid, except in the
case where A1 has queried H with r or Dsk with (α, β′) for some β′ (in which case L should
already contain a pair (α, t′) for some t′ and the added pair would not be consistent) we call
this an “unlucky event.”

However, since r is randomly chosen, the probability that an unlucky event happens is negli-
gible. Therefore pA − pMix is negligible.

2. That pMix − pS is negligible.

We can in fact re-write the experiments Mixwnm-atk
A,S,Π (R, k) and Exptwnm-atk

S,Π (R, k) so that we
can compare them side by side.
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Mixwnm-atk
A,S,Π (R, k): Exptwnm-atk

S,Π (R, k):

(pk, sk)←G(1k) (pk, sk)←G(1k)
(M,s1, (s2, L))←S1(pk) (M,s1, (s2, L))←S1(pk)
x←M x←M
r← d(1k), α← f(r), t←X, β← x · t r← d(1k), α← f(r), β←X
L← L ∪ {(α, t)}
y← (α, β) y← (α, β)

y←AHL

2 (s2, y) y←AHL

2 (s2, y)
For every yi = (αi, βi): For every yi = (αi, βi):

if αi = α, then
λi← βi · β

−1

if x = ss(λi) then xi = βi · β
−1 · x

else xi←⊥
if (αi, ti) ∈ L then xi← βi · t

−1
i else if (αi, ti) ∈ L then xi← βi · t

−1
i

else xi←X else xi←X
x← (ψ(x1), ψ(x2), ..., ψ(x`)) x← (ψ(x1), ψ(x2), ..., ψ(x`))
Return 1 iff (y 6∈ y) ∧R(x,x,M, s1) Return 1 iff (y 6∈ y) ∧R(x,x,M, s1)

The two experiments differ at H(r). In Mix, H(r) is explicitly defined to be t, and L is set
accordingly; in ExptS,Π, H(r) is implicitly defined to be x−1 ·β (since the simulator S2 does not
know x), but L is not updated. Notice that in both cases y has the same distribution. Since
r is a random element, A2 never queries H(·) with value r except with negligible probability,
because otherwise we can use it to invert f(·). Now assume that A2 never makes a query
with input r. Under this assumption, A2 behaves identically in the two experiments.

Then the only possible differences between the two experiments are at the decryption of
yi = (αi, βi) where αi = α. In experiment Mix, we have xi = βi · t

−1 = βi · β
−1 · x and yi

decrypts to message mi = ψ(xi). Thus, setting λi = βi · β
−1, we know that if x is the soft

spot for λi, then yi decrypts to xi = βi · β
−1 · x, and otherwise to ⊥. This is exactly what

happens in experiment ExptS . Therefore the two experiments have the same outcome.

Putting things together, we see that pA − pS is negligible in k, and thus S is a valid simulator.
This proves the lemma.

A.5 Proof of Theorem 3.10

First the intuition. If CBS were not secure, then there would be an adversary A that breaks it,
meaning that for some fair Award, no simulator could achieve an expected award negligibly less
than A. But we will construct an adversary B for Π out of A, and by the wnm-security of Π, there
is a simulator S ′ that approximates B for any relation. Then we will use S ′ to build a simulator S
for CBS that does achieve an expected award negligibly less than A, which is a contradiction.

Now the details. Assume CBS is not secure. Then for some q(k) there exists an adversary A
that runs in time q(k) and such that for every simulator S, there exists a non-negligible r(k) and

an infinite number of k’s in which Adv
profit
A,S,CBS(k) ≥ r(k). Let

EdgeA,S,CBS(k, c)
def
= Pr[ExptrealA,CBS(k) ≥ c]− Pr[Exptideal

S,CBS(k) ≥ c].
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Then using the definition of expectation, there is a c such that for an infinite number of k’s,
EdgeA,S,CBS(k, c) ≥ r(k)/U . Without loss of generality, we may assume that A2 never outputs
ebid0, since by the fairness of the Award function, this cannot increase its advantage.

Define relation Rc(x,x,M, s1) to return 1 iff |x| = 1 and Award(x,x[0])[1] ≥ c. Consider the
following adversary B for the wnm-cpa-security of Π.

B1(pk) : B2(s, y) :
(M, s)←A1(pk, U) ebid1 ← A2(y, s)
return (M,⊥, s) return ebid1

Since Π is wnm-cpa-secure, there exists a simulator S ′ = (S ′1,S
′
2) such that Adv

wnm-cpa
B,S′,Π (Rc, k) is

negligible for all c. Because Rc(x,x,M, s1) returns 1 only if |x| = 1, we assume without loss of
generality that S ′2 returns one-element vectors y and z, i.e., values y and z. Now let a simulator
S ′′ = (S ′′1 ,S

′′
2 ) for the contract bidding system be defined as follows.

S′′1 (U): S′′2 (s):
(pk, sk)←G(1k)
(M, s1, s2)←S′1(pk) (y, z)←S′2(s)
return (M, s2) return Dsk(y)

Note that by the fairness of Award, the award can never decrease when bid1 is changed from
⊥ to a valid bid, and so it is easy to see that Pr[Exptideal

S′′,CBS(k) ≥ c] ≥ Pr[Exptwnm-atk
S′,Π (Rc, k) = 1].

Using this fact, one can see that for all c, EdgeA,S′′,CBS(k, c) ≤ Adv
wnm-cpa
B,S′,Π (Rc, k), and thus by the

discussion above, for all c, EdgeA,S′′,CBS(k, c) is negligible. This is a contradiction, so CBS must be
secure.

A.6 Proof of Lemma 4.2

Let A = (A1,A2) be an adversary. Informally, the required simulator S = (S1,S2) will work by
invoking A and answering A’s (and E’s) oracle queries. Specifically, when H(r, t) is queried, S
first searches a query list that it maintains for (<f(r), t>, z) for some z. If such a pair exists,

S returns z; otherwise, it generates z
R
← Zp, stores (<f(r), t>, z) on its query list, and returns z.

When A queries Dsk(<y1, y2>, t) (i.e., atk ∈ {cca1, cca2}), S first searches the query list to see if
(<y1, t>, z) appears for some z. If so, S takes the corresponding z and returns y2 · z

−1 mod p; if

not, S generates z
R
← Zp, stores (<y1, t>, z) on the query list, and returns y2 · z

−1 mod p.
To complete the definition of S, we define S1 and S2 as follows. S1(pk) performs (M,s1, s2, t)←

A1(pk) and returns (M,s1, <s2, pk,M, t>). S2(<s2, pk,M, t>) generates x←M and y ← Epk(x, t),
and then returns (y, t)← A2(s2, y, t).

We now show that if f is a trapdoor permutation, then Advtnm-atk
A,S,Π (R, k) is negligible. To

see this, suppose Advtnm-atk
A,S,Π (R, k) is non-negligible. Since A2(s2, <y1, y2>, t) is not permitted to

query Dsk(<y1, y2>, t), it must query H(f−1(y1), t) with non-negligible probability. Consider a
simulator S ′ = (S1,S

′
2) that takes as input some ŷ in the range of f and is challenged to return

f−1(ŷ). S ′ behaves as S except that S ′2(<s2, pk,M, t>) instead invokes A2(s2, <ŷ, r>, t) where

r
R
← Zp. Whenever A2(s2, <ŷ, r>, t) queries H(f−1(ŷ), t), S ′2 captures f−1(ŷ) and returns it. Thus,
S ′ inverts f with non-negligible probability.
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A.7 Proof of Theorem 4.4

Let A be an adversary that interacts with parties running σ in the FAUTH-hybrid model. We
will construct an adversary S in the ideal process for FM−SMT such that no environment Z can
distinguish whether it is interacting with A and σ in the FAUTH-hybrid model, or with S and
FM−SMT in the ideal process. For simplicity, we assume there exists only one instance of FM−SMT

with identifier id|Pi for some Pi. It is straightforward to extend the behavior of S to the case of
multiple instances. S runs a simulated copy of A and maintains a tuple (pk∗, sk∗, owner), where pk∗

is the “session public key”, sk∗ is the corresponding secret key, and owner is the index of the party
who “owns” it. 11 The session key pair (pk∗, sk∗) is initialized to ⊥. Then S forwards messages
from Z to A, as well as messages from A to Z. Furthermore, S also sees the public part (also
known as “header” [7]) of all the messages from uncorrupted parties to FM−SMT and may decide
when and if to forward these messages. We refer the readers to [7] for more detailed discussions.
In the case of FM−SMT, all messages to FM−SMT are public, except the “payload message” m in
(send, id,m). S also simulates the ideal functionality FAUTH.

Next, we describe the behavior of S in more detail. Note that S simulates FAUTH as normal
except as detailed below.

Simulating Communication with Z: S directly forwards any messages between Z and A.

Key Generation: If Pi is uncorrupted and S sees a message (receiver, id|Pi) from Pi to FM−SMT,
S forwards this message to FM−SMT. If pk∗ 6= ⊥ it does nothing else. Otherwise S generates
(pk, sk)←G(1k), sets (pk∗, sk∗)← (pk, sk), and owner← i, and simulates FAUTH to send
(key, id|Pi, pk) to all other parties.

If Pi is corrupted and S sees Pi send a message (key, id|Pi, pk) to FAUTH, S simulates FAUTH.
Furthermore, if pk∗ = ⊥ and pk 6= ⊥, then S sends message (receiver, id) to FM−SMT on
behalf of Pi and sets owner← i and (pk∗, sk∗)← (pk, ?). Here “sk∗ =?” indicates that S does
not know the corresponding secret key.

Delivery of the public key: When A delivers a message (Pi, Pj , (key, id|Pi, pk)) from FAUTH to
an uncorrupted party Pj that has not received such a message previously, S records the tuple
(Pj , (Pi, pk)) and delivers (receiver, id|Pi, Pi) from FM−SMT to Pj .

Message transfer from an uncorrupted party: If S sees an uncorrupted party Pj send a mes-
sage (send, id|Pi,−) to FM−SMT, where “−” indicates the “private” part of the message that
S does not see, and if S has stored a tuple (Pi, (Pj , pk

′)), S does the following. First S
forwards the send message to FM−SMT, and receives the length `. Next, if Pi is corrupted,
then S receives the message (id,m,Pi) from FM−SMT to the ideal Pi, sets c←Epk′(m,Pi). If

Pi is uncorrupted, then S sets c← Epk∗(0l, Pi). Finally, S simulates FAUTH to send (id|Pi, c)
to Pi.

Message transfer from a corrupted party If S sees a corrupted party Pj (controlled by A)
send message (id|Pi, c) to Pi through FAUTH, we may assume that Pi is uncorrupted, since
otherwise S does not need to do anything. In this case, S sets m←Dsk∗(c, Pj) and if m 6= ⊥,
sends message (send, id,m) to FM−SMT, forwarding the message (id, Pj ,m) to the ideal Pi

when A forwards the corresponding message to Pi from FAUTH.

11Since we assume there is only one instance of FM−SMT ideal functionality, there is only one instance of protocol
σ, and thus there is only one key. Also, in the case of identifier id|Pi, owner = i.
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Now we show that if any Z can distinguish whether it is interacting with A and σ in the FAUTH-
hybrid model, or with S and FM−SMT in the ideal process, then this can be used to construct an
adversary B = (B1,B2) that breaks the tind-cca2-security of Π.

Intuitively, this is true because the only possible difference between the ideal process and the
real world is in the case when an uncorrupted party Pj sends a message m to another uncorrupted
party Pi. In the real world, an encryption of m is sent through FAUTH; in the ideal process, S
simulates this message using a encryption of 0`, since S does not know m. Notice that the tag for
this encryption is always Pj, the identity of an uncorrupted party. S also performs decryptions,
but only for messages from corrupted parties. Therefore, S only decrypts messages with corrupted
parties’ identities as tags, and in particular, no ciphertexts with tag Pj are decrypted by S. Then,
by the tind-cca2-security of Π, the simulation of S is indistinguishable from the real world.

We now describe the proof more formally. B takes a public key pk and decryption oracle, plays
the role of FM−SMT and runs S with the following changes. Assume that l messages are sent using

FM−SMT. B1 choose h
R
←{1, . . . , l}. If an uncorrupted party Pi needs to generate a key pair, pk

is used as the public key. Let id|Pi be the associated identifier. Then for the first h− 1 messages
to Pi with id from uncorrupted parties, B has S encrypt the actual messages, instead of the all
zeros message. On the hth message to Pi with id|Pi, say from an uncorrupted Pj , B1 outputs the
all zeros message, the real message, the tag Pj , and its internal state. Then B2 uses the challenge
ciphertext in the message to Pi, and continues to run S as normal, encrypting all zeros messages
again. B1 and B2 both call the decryption oracle on messages to Pi from a corrupted Pj . Note that
the tag in this case is always different from the tag returned by B1. Finally, B2 outputs whatever Z
outputs. Note that if h = 0 and the bit chosen in the tind-cca2 experiment is 0, B runs like S, and
if h = ` and the bit chosen in the tind-cca2 experiment is 1, B runs like A in the real protocol. Then
by a standard hybrid argument, if Z distinguishes whether it is interacting with A and σ in the
FAUTH-hybrid model, or with S and FM−SMT in the ideal process, B breaks the tind-cca2-security
of Π.

A.8 Proof of Theorem 4.5

We first consider the case where Π is tnm-cca2 secure, and we shall prove that Π′ is snm-cca2 secure.
All other cases are similar (and simpler).

Given an adversary A′ = (A′
1,A

′
2) for Π′, we shall construct a simulator S ′ = (S ′1,S

′
2) for it.

We first construct an adversary A = (A1,A2) for Π, then since Π is secure, A has a simulator S.
Finally we construct the simulator S ′ from S.

Now we describe A. A1 runs a copy of A′
1 and simulates the decryption oracle Dsk in Π.

When A′
1 submits a query (sig vk, c, s), A1 checks if sig verify(sig vk, c, s) = 1 and returns ⊥ if

not; otherwise, A1 forwards (c, sig vk) to the decryption oracle Dsk for Π, and forwards the re-
ply of Dsk back to A′

1. When A′
1 outputs (M,s1, s2), A1 generates a new signature key pair

(sig vk, sig sk)← sig gen(1k), sets t = sig vk, and outputs (M, sig vk, s1, (sig sk, s2)).
A2((sig sk, s2), y, t) first produces a ciphertext for A2 by generating a signature for y, s =

sig sign(sig sk, y). Then A2 invokes A′
2 with input (s2, y

′), where y′ = (t, y, s). A2 also simulates
the decryption oracle for A′

2. When A′
2 submits a query c′ = (sig vk, c, s′), A2 first checks if c′ = y

and returns ⊥ if does. Next A2 checks if s′ is a valid signature, and returns ⊥ if not. Then A2

checks if sig vk′ = t. If so, the A′
2 manages to forge a signature for the verification key sig vk′, in

which case A2 aborts and report ‘‘SIGNATURE BROKEN.’’ Otherwise A2 forwards (c, sig vk) to the
decryption oracle Dsk for Π, and then forward the reply from Dsk to A′

2. Finally, when A′
2 outputs
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y′ = (y1, y2, ..., y`), where we write yi = (sig vki, ci, si), A2 checks if sig vki = t and ci 6= c for any
i. If so then aborts and report ‘‘SIGNATURE BROKEN.’’ Otherwise A2 outputs y = (c1, c2, ..., c`).

It is easy to verify that if the signature scheme SIG is strongly one-time unforgeable, then the
probability A2 aborts is negligible. Furthermore, conditioned on A2 does not abort, it has the same
success probability as A′

2. In other words, Pr[Exptsnm-atk
A′,Π′ (R, k)]−Pr[Expttnm-atk

A,Π (R, k)] is negligible.

Since Π is tnm-cca2 secure, there exists a simulator S = (S1,S2) such that Pr[Expttnm-atk
A,Π (R, k)]−

Pr[Expttnm-atk
S,Π (R, k)] is negligible. We can the easily modify S into a simulator S ′ = (S ′1,S

′
2) for Π′.

Basically S ′1 runs S1, and when S1 outputs (M, t, s1, s1), S
′
1 outputs (M,s1, (s2, t)). S

′
2 on input

(s2, t) simply runs S2(s2, t). It is easy to see that Pr[Expttnm-atk
S,Π (R, k)] = Pr[Exptsnm-atk

S′,Π′ (R, k)].

Therefore, we have Pr[Exptsnm-atk
A′,Π′ (R, k)] − Pr[Exptsnm-atk

S′,Π′ (R, k)] is negligible, and thus S ′ is a valid
simulator for A′.

B Other Definitions for Encryption and Tag-Based Encryption

Definition B.1 ([1]; ind-cpa, ind-cca1, ind-cca2) Let Π = (G,E,D) be an encryption scheme,
and let A = (A1,A2) be an adversary. For atk ∈ {cpa, cca1, cca2} and k ∈ N define

Advind-atk
A,Π (k)

def
= 2 · Pr[Exptind-atk

A,Π (k) = 1]− 1

where

Exptind-atk
A,Π (k) :

(pk, sk)←G(1k)

(x0, x1, s)← A
O1

1 (pk)

b
R

←{0, 1}
y ← Epk(xb)

b′ ← AO2

2 (x0, x1, s, y)
Return 1 iff b = b′

and

atk = cpa ⇒ O1(·) = ε,O2(·) = ε

atk = cca1 ⇒ O1(·) = Dsk(·),O2(·) = ε

atk = cca2 ⇒ O1(·) = Dsk(·),O2(·) = Dsk(·)

We require that |x0| = |x1| and that O2 is not queried with y. We say that Π is secure in the sense
of ind-atk if for every polynomial q(k) and every A that runs in time q(k), Advind-atk

A,Π (k) is negligible
in k.

Definition B.2 ([4]; cnm-cpa, cnm-cca1, cnm-cca2) Let Π = (G,E,D) be an encryption scheme,
and let A = (A1,A2) be an adversary. For atk ∈ {cpa, cca1, cca2} and k ∈ N define

Advcnm-atk
A,Π (k)

def
= Pr[Exptcnm-atk

A,Π (k) = 1]− Pr[Ẽxpt
cnm-atk
A,Π (k) = 1],

where
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Exptcnm-atk
A,Π (k) : Ẽxpt

cnm-atk
A,Π (k) :

(pk, sk)←G(1k) (pk, sk)←G(1k)

(M, s)←AO1

1 (pk) (M, s)←AO1

1 (pk)
x←M x, x̃←M
y← Epk(x) ỹ←Epk(x̃)

(R,y)←AO2

2 (s, y) (R, ỹ)←AO2

2 (s, ỹ)
x←Dsk(y) x̃←Dsk(ỹ)
Return 1 iff (y 6∈ y) ∧R(x,x) Return 1 iff (ỹ 6∈ ỹ) ∧R(x, x̃)

and

atk = cpa ⇒ O1(·) = ε,O2(·) = ε

atk = cca1 ⇒ O1(·) = Dsk(·),O2(·) = ε

atk = cca2 ⇒ O1(·) = Dsk(·),O2(·) = Dsk(·)

We require that O2 not be queried with the y given to A2. We say that Π is secure in the sense
of cnm-atk if for every polynomial q(k): if A runs in time q(k), outputs a valid message space M
samplable in time q(k), and outputs a relation R computable in time q(k), then Advcnm-atk

A,Π (k) is
negligible.

Definition B.3 (tind-cpa,tind-cca1,tind-cca2) Let Π = (G,E,D) be a tag-based encryption scheme,
and let A = (A1,A2) be an adversary. For atk ∈ {cpa, cca1, cca2} and k ∈ N define

Advtind-atk
A,Π (k)

def
= 2 · Pr[Exptind-atk

A,Π (k) = 1]− 1

where

Expttind-atk
A,Π (k) :

(pk, sk)←G(1k)

(x0, x1, t, s)← A
O1

1 (pk)

b
R

← {0, 1}
y ← Epk(xb, t)

b′ ← AO2

2 (x0, x1, t, s, y)
Return 1 iff b = b′

and

atk = cpa ⇒ O1(·) = ε,O2(·) = ε

atk = cca1 ⇒ O1(·) = Dsk(·),O2(·) = ε

atk = cca2 ⇒ O1(·) = Dsk(·),O2(·) = Dsk(·)

We require that |x0| = |x1|, and that O2 is not queried with tag t. We say that Π is secure in
the sense of tind-atk if for every polynomial q(k) and every adversary A that runs in time q(k),
Advtind-atk

A,Π (k) is negligible.

Below we introduce tag-based analogs of two alternative definitions of non-malleability from [4].

Definition B.4 (tcnm-cpa, tcnm-cca1, tcnm-cca2) Let Π = (G,E,D) be a tag-based encryption
scheme, and let A = (A1,A2) be an adversary. For atk ∈ {cpa, cca1, cca2} and k ∈ N define

Advtcnm-atk
A,Π (k)

def
= Pr[Expttcnm-atk

A,Π (k) = 1]− Pr[Ẽxpt
tcnm-atk
S,Π (k) = 1],

where
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Expttcnm-atk
A,Π (k) : Ẽxpt

tcnm-atk
A,Π (k) :

(pk, sk)←G(1k) (pk, sk)←G(1k)

(M, t, s)←AO1

1 (pk) (M, t, s)←AO1

1 (pk)
x←M x, x̃←M
y←Epk(x, t) ỹ←Epk(x̃, t)

(R,y, t)←AO2

2 (s, y, t) (R, ỹ, t)←AO2

2 (s, ỹ, t)
x←Dsk(y, t) x̃←Dsk(ỹ, t)
Return 1 iff (t 6∈ t) ∧R(x,x) Return 1 iff (t 6∈ t) ∧R(x, x̃)

where

atk = cpa ⇒ O1(·) = ε,O2(·) = ε

atk = cca1 ⇒ O1(·) = Dsk(·),O2(·) = ε

atk = cca2 ⇒ O1(·) = Dsk(·),O2(·) = Dsk(·)

We require that O2 not be queried with the t given to A2. We say that Π is secure in the sense
of tcnm-atk if for every polynomial q(k): if A runs in time q(k), outputs a valid message space M
samplable in time q(k), and outputs a relation R computable in time q(k), then Advtcnm-atk

A,Π (k) is
negligible.

Below, we consider additional types of attack called parallel query atacks pa0, pa1, and pa2 [4].
In these attacks, a decryption oracle can be queried only once, but in that one invocation will
accept and decrypt any polynomial number (in k) of inputs.

Definition B.5 (tind-pa0, tind-pa1, tind-pa2) Let Π = (G,E,D) be a tag-based encryption scheme
and A = (A1,A2) be an adversary. For atk ∈ {pa0, pa1, pa2}, and k ∈ N, let

Advtind-atk
A,Π (k)

def
= 2 · Pr[Expttind-atk

A,Π (k) = 1]− 1

where

Expttind-atk
A,Π (R, k) :

(pk, sk)←G(1k)

(x0, x1, t, s1)←A
O1

1 (pk)

b
R

← {0, 1}
y← Epk(xb, t)

(y, t, s2)←A
O2

2,q(x0, x1, t, s1, y)
x←Dsk(y, t)

g←AO2

2,g(x, s2)
Return 1 iff (t 6∈ t) ∧ (g = b)

and

atk = pa0 ⇒ O1(·) = ε,O2(·) = ε

atk = pa1 ⇒ O1(·) = Dsk(·),O2(·) = ε

atk = pa2 ⇒ O1(·) = Dsk(·),O2(·) = Dsk(·)

We require that |x0| = |x1| and that O2 not be queried with tag t. We say that Π is secure in the sense
of tind-atk if for any polynomial q(k) and any adversary A that runs in time q(k), Advtind-atk

A,Π (k) is
negligible.

29



C Relations among Tag-based Encryption Schemes

We state a relations among notions of tag-based encryption security. These results parallel those
from [1, 4] and are proved using similar techniques. We omit the proofs here.

Theorem C.1 (tind-cca1 6⇒ tnm-cpa) If there exists an tind-cca1-secure encryption scheme, then
there exists an tind-cca1-secure encryption scheme that is not tnm-cpa-secure.

Theorem C.2 (tnm-cpa 6⇒ tind-cca1) If there exists an tnm-cpa-secure encryption scheme, then
there exists an tnm-cpa-secure encryption scheme that is not tind-cca1-secure.

Theorem C.3 (tnm-cca1 6⇒ tnm-cca2) If there exists an tnm-cca1-secure encryption scheme, then
there exists an tnm-cca1-secure encryption scheme that is not tnm-cca2-secure.

Theorem C.4 (tnm-atk⇒ tind-atk) If an encryption scheme is tnm-atk-secure, then it is tind-
atk-secure, for atk ∈ {cpa, cca1, cca2}.

Theorem C.5 (tind-cca2⇒ tnm-cca2) If an encryption scheme is tind-cca2-secure, then it is tnm-
cca2-secure.

Theorem C.6 (tcnm-atk⇒ tnm-atk) If an encryption scheme is tcnm-atk-secure, then it is tnm-
atk-secure, for atk ∈ {cpa, cca1, cca2}.

Theorem C.7 (tnm-atk⇒ tind-pxx) For any atk ∈ {cpa, cca1, cca2}, if an encryption scheme is
tnm-atk-secure, then it is tind-pxx-secure, where

atk = cpa ⇒ pxx = pa0

atk = cca1 ⇒ pxx = pa1

atk = cca2 ⇒ pxx = pa2

Theorem C.8 (tind-pxx⇒ tcnm-atk) For any pxx ∈ {pa0, pa1, pa2}, if an encryption scheme is
tind-pxx-secure, then it is tcnm-atk-secure, where

pxx = pa0 ⇒ atk = cpa

pxx = pa1 ⇒ atk = cca1

pxx = pa2 ⇒ atk = cca2

D Digital Signature Schemes

A signature scheme SIG is a triple (sig gen, sig sign, sig verify) of algorithms, the first two being
probabilistic, and all running in polynomial time (with a negligible probability of failing). sig gen

takes as input 1k and outputs a public key pair (sig vk, sig sk), i.e., (sig vk, sig sk) ← sig gen(1k).
sig sign takes a message m and a secret key sk as input and outputs a signature σ for m, i.e.,
σ ← sig sign(sig sk,m). sig verify takes a message m, a public key sig vk, and a candidate signature
σ′ for m as input and returns the bit b = 1 if σ′ is a valid signature for m for the corresponding
private key, and otherwise returns the bit b = 0. That is, b← sig verify(sig vk,m, σ′). Naturally, if
σ ← sig sign(sig sk,m), then sig verify(sig vk,m, σ) = 1.
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Security for signature schemes We specify existential unforgeability against adaptive chosen-
message attacks [15] for a signature scheme SIG = (sig gen, sig sign, sig verify). A forger is given
sig vk, where (sig vk, sig sk) ← sig gen(1k), and tries to forge signatures with respect to sig vk. It
is allowed to query a signature oracle (with respect to sig sk) on messages of its choice. It succeeds
if after this it can output a valid forgery (m,σ), where sig verify(sig vk,m, σ) = 1, but m was not
one of the messages signed by the signature oracle. We say a forger (t, q, ε)-breaks a scheme if the
forger runs in time t(k) makes q(k) queries to the signature oracle, and succeeds with probability
at least ε(k). A signature scheme SIG is existentially unforgeable against adaptive chosen-message
attacks if for all t and q polynomial in k, if a forger (t, q, ε)-breaks SIG, then ε is negligible in k.

In a one-time signature scheme, security is formulated as above except that the adversary may
only query the signature oracle once, and we call it “existential unforgeability against chosen-
message attacks,” since the term “adaptive” only makes sense with multiple queries. We note that
one-time signatures scheme can be made very efficient since they don’t need public-key crypto-
graphic operations [13]. In a strong one-time signature scheme [20], we require that a forger is
not even able to produce a different valid signature on a message that was signed by the signature
oracle. A strong one-time signature scheme can be constructed from any one-way function [20].

E The Universal Composability Framework

In more detail, the execution in the real-life model and the ideal process proceeds basically as
follows. The environment Z drives the execution. It can provide input to a party Pi or to the
adversary, A or S. If Pi is given an input, Pi is activated. In the ideal process Pi simply forwards
the input directly to F (this is the “direct forwarding” that we discussed in the introduction),
which is then activated, possibly writing messages on its outgoing communication tape, and then
handing activation back to Pi. In the real-life model, Pi follows its protocol, either writing messages
on its outgoing communication tape or giving an output to Z. Once Pi is finished, Z is activated
again. If the adversary is activated, it follows its protocol, possibly giving output to Z, and also
either corrupting a party, or performing one of the following activities. If the adversary is A in
the real-life model, it may deliver a message from the output communication tape of one honest
party to another, or send a message on behalf of a corrupted party. If the adversary is S in the
ideal process, it may deliver a message from F to a party, or send a message to F . If a party or F
receives a message, it is activated, and once it finishes, Z is activated

At the beginning of the execution, all participating entities are given the security parameter
k ∈ N and random bits. The environment is also given an auxiliary input z ∈ {0, 1}∗. At the
end of the execution, the environment outputs a single bit. Let REALπ,A,Z denote the distribution
ensemble of random variables describing Z’s output when interacting in the real-life model with
adversary A and players running protocol π, with input z, security parameter k, and uniformly-
chosen random tapes for all participating entities. Let IDEALF ,S,Z denote the distribution ensemble
of random variables describing Z’s output after interacting with adversary S and ideal functionality
F , with input z, security parameter k, and uniformly-chosen random tapes for all participating
entities.

A protocol π securely realizes an ideal functionality F if for any real-life adversary A there exists
an ideal-process adversary S such that no environment Z, on any auxiliary input, can tell with non-
negligible advantage whether it is interacting with A and players running π in the real-life model,

or with S and F in the ideal-process. More precisely, REALπ,A,Z
c
≈ IDEALF ,S,Z , where

c
≈ denotes
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computational indistinguishability. (In particular, this means that for any d ∈ N there exists k0 ∈ N

such that for all k > k0 and for all inputs z, |Pr REALπ,A,Z(k, z)− Pr IDEALF ,S,Z(k, z)| < k−d).
To formulate the composition theorem, one must introduce a hybrid model, a real-life model

with access to an ideal functionality F . In particular, this F-hybrid model functions like the real-life
model, but where the parties may also exchange messages with an unbounded number of copies of
F , each copy identified via a unique session identifier (sid). The communication between the parties
and each one of these copies mimics the ideal process, and in particular the hybrid adversary does
not have access to the contents of the messages. Let HYBF

π,A,Z denote the distribution ensemble of
random variables describing the output of Z, after interacting in the F-hybrid model with protocol
π. Let π be a protocol in the F-hybrid model, and ρ a protocol that secures realizes F . The
composed protocol πρ is now constructed by replacing the first message to F in π by an invocation
of a new copy of ρ, with fresh random input, the same sid, and with the contents of that message as
input; each subsequent message to that copy of F is replaced with an activation of the corresponding
copy of ρ, with the contents of that message as new input to ρ.

Canetti [5] proves the following composition theorem.

Theorem E.1 ([5]) Let F , G be ideal functionalities. Let π be an n-party protocol that securely
realizes G in the F-hybrid model, and let ρ be an n-party protocol that securely realizes F . Then
protocol πρ securely realizes G.
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