
Covert Two-Party Computation

Luis von Ahn1, Nicholas J. Hopper1, and John Langford2

1 Carnegie Mellon University
2 Toyota Technological Institute

Abstract. We introduce the novel concept of covert two-party computation. Whereas ordinary secure
two-party computation only guarantees that no more knowledge is leaked about the inputs of the indi-
vidual parties than the result of the computation, covert two-party computation employs steganography
to yield the following additional guarantees: (A) no outside eavesdropper can determine whether the
two parties are performing the computation or simply communicating as they normally do; (B) before
learning f(xA, xB), neither party can tell whether the other is running the protocol; (C) after the
protocol concludes, each party can only determine if the other ran the protocol insofar as they can dis-
tinguish f(xA, xB) from uniformly chosen random bits. Covert two-party computation thus allows the
construction of protocols that return f(xA, xB) only when it equals a certain value of interest (such as
“Yes, we are romantically interested in each other”) but for which neither party can determine whether
the other even ran the protocol whenever f(xA, xB) does not equal the value of interest. We introduce
security definitions for covert two-party computation and we construct protocols with provable security
based on the Decisional Diffie-Hellman assumption.

Keywords: Secure two-party computation, Steganography, Fairness.

1 Introduction

Secure two-party computation allows Alice and Bob to evaluate a function of their secret inputs so
that neither learns anything other than the output of the function. A real-world example that is
often used to illustrate the applications of this primitive is when Alice and Bob wish to determine if
they are romantically interested in each other. Secure two-party computation allows them to do so
without revealing their true feelings unless they are both attracted. By securely evaluating the AND
of the bits representing whether each is attracted to the other, both parties can learn if there is a
match without risking embarrassment: if Bob is not interested in Alice, for instance, the protocol
does not reveal whether Alice is interested in him. So goes the example.

However, though often used to illustrate the concept, this example is not entirely logical. The
very use of two-party computation already reveals possible interest from one party: “would you like
to determine if we are both attracted to each other?”

A similar limitation occurs in a variety of other applications where the very use of the primitive
raises enough suspicion to defeat its purpose. To overcome this limitation we introduce covert two-
party computation, which guarantees the following (in addition to leaking no additional knowledge
about the individual inputs): (A) no outside eavesdropper can determine whether the two parties
are performing the computation or simply communicating as they normally do; (B) before learning
f(xA, xB), neither party can tell whether the other is running the protocol; (C) after the protocol
concludes, each party can only determine if the other ran the protocol insofar as they can distinguish
f(xA, xB) from uniformly chosen random bits. By defining a functionality g(xA, xB) such that
g(xA, xB) = f(xA, xB) whenever f(xA, xB) ∈ Y and g(xA, xB) is pseudorandom otherwise, covert
two-party computation allows the construction of protocols that return f(xA, xB) only when it is
in a certain set of interesting values Y but for which neither party can determine whether the other
even ran the protocol whenever f(xA, xB) /∈ Y . Among the many important potential applications
of covert two-party computation we mention the following:

– Dating. As hinted above, covert two-party computation can be used to properly determine if
two people are romantically interested in each other. It allows a person to approach another

and perform a computation hidden in their normal-looking messages such that: (1) if both are
romantically interested in each other, they both find out; (2) if none or only one of them is
interested in the other, neither will be able to determine that a computation even took place.
In case both parties are romantically interested in each other, it is important to guarantee that
both obtain the result. If one of the parties can get the result while ensuring that the other one
doesn’t, this party would be able to learn the other’s input by pretending he is romantically
interested; there would be no harm for him in doing so since the other would never see the
result. However, if the protocol is fair (either both obtain the result or neither of them does),
parties have a deterrence from lying.

– Cheating in card games. Suppose two parties playing a card game want to determine whether
they should cheat. Each of them is self-interested, so cheating should not occur unless both
players can benefit from it. Using covert two-party computation with both players’ hands as
input allows them to compute if they have an opportunity to benefit from cheating while
guaranteeing that: (1) neither player finds out whether the other attempted to cheat unless
they can both benefit from it; (2) none of the other players can determine if the two are secretly
planning to collude.

– Bribes. Deciding whether to bribe an official can be a difficult problem. If the official is corrupt,
bribery can be extremely helpful and sometimes necessary. However, if the official abides by
the law, attempting to bribe them can have extremely negative consequences. Covert two-party
computation allows individuals to approach officials and negotiate a bribe with the following
guarantees: (1) if the official is willing to accept bribes and the individual is willing to give them,
the bribe is agreed to; (2) if at least one of them is not willing to participate in the bribe, neither
of them will be able to determine if the other attempted or understood the attempt of bribery;
(3) the official’s supervisor, even after seeing the entire sequence of messages exchanged, will
not be able to determine if the parties performed or attempted bribery.

Our protocols make use of provably secure steganography [12, 2, 3, 16] to hide the computation
in innocent-looking communications. Steganography alone, however, is not enough. Combining
steganography with two-party computation in the obvious black-box manner (i.e., forcing all the
parties participating in an ordinary two-party protocol to communicate steganographically) yields
protocols that are undetectable to an outside observer but does not guarantee that the participants
will fail to determine if the computation took place. Depending on the output of the function, we
wish to hide that the computation took place even from the participants themselves.

Who Knows What? Given the guarantees that covert-two party computation offers, it is impor-
tant to clarify what the parties know and what they don’t. We assume that both parties know a
common circuit for the function that they wish to evaluate, that they know which role they will
play in the evaluation, and that they know when to start evaluating the circuit if the computation
is going to occur. An example of such “synchronization” information could be: “if we will determine
whether we both like each other, the computation will start with the first message exchanged after
5pm.” We assume adversarial parties know all such details of the protocols we construct.

Roadmap. The high-level view of our presentation is as follows. First, we define “ordinary” or
“innocent-looking” communications. Our protocols will generate messages that are indistinguish-
able from “ordinary” communications — so nobody can tell if the parties are performing a com-
putation or just communicating innocently. The first protocol we present will be a modification of
Yao’s “garbled circuit” two-party protocol in which, except for the oblivious transfer, all messages
generated are indistinguishable from uniform random bits. We construct a protocol for oblivious
transfer that generates messages that are indistinguishable from uniform random bits (under the
Decisional Diffie-Hellman assumption) to yield a complete protocol for two-party secure function
evaluation that generates messages indistinguishable from random bits. We then use steganography
to transform this into a protocol that generates messages indistinguishable from “ordinary” com-
munications. The protocol thus constructed, however, is not secure against malicious adversaries

nor is it fair (since neither is Yao’s protocol by itself). We therefore construct another protocol,
which uses our modification of Yao’s protocol as a subroutine, that satisfies fairness and is secure
against malicious adversaries, in the Random Oracle Model. The major difficulty in doing so is that
the standard zero-knowledge-based techniques for converting a protocol in the honest-but-curious
model into a protocol secure against malicious adversaries cannot be applied in our case, since they
reveal that that the other party is running the protocol.

Related Work. Secure two-party computation was introduced by Yao [17]. Since then, there have
been several papers on the topic and we refer the reader to a survey by Goldreich [8] for further
references. Constructions that yield fairness for two-party computation were introduced by Yao
[18], Galil et al. [7], Brickell et al. [5], and many others (see [15] for a more complete list of such
references). The notion of covert two-party computation, however, appears to be completely new.

Notation. We say a function µ : N→ [0, 1] is negligible if for every c > 0, for all sufficiently large
k, µ(k) < 1/kc. We denote the length (in bits) of a string or integer s by |s| and the concatenation
of string s1 and string s2 by s1||s2. We let Uk denote the uniform distribution on k bit strings.
If D is a distribution with finite support X, we define the minimum entropy of D as H∞(D) =
minx∈X{log2(1/PrD[x])}. The statistical distance between two distributions C and D with joint
support X is defined by ∆(C,D) = (1/2)

∑
x∈X |PrD[x]− PrC [x]|. Two sequences of distributions,

{Ck}k and {Dk}k, are called computationally indistinguishable, written C ≈ D, if for any probabilistic
polynomial-time A, AdvA

C,D(k) = |Pr[A(Ck) = 1]− Pr[A(Dk) = 1]| is negligible in k.

2 Bidirectional Channels.

We hide the communication patterns of two-party computation protocols in “ordinary” or “innocent-
looking” messages. We define ordinary communication patterns and messages in a manner similar
to the channels used by [12, 2, 16]. The main difference is that our channel is shared among two
participants and messages sent by each participant might depend on previous messages sent by
either one of them. To emphasize this difference, we use the term bidirectional channel.

Messages are drawn from a set D of documents. For simplicity we assume that time proceeds in
discrete timesteps. Each party P ∈ {P0, P1} maintains a history hP , which represents a timestep-
ordered list of all documents sent and received by P . We call the set of well-formed histories H.
We associate to each party P a family of probability distributions BP =

{
BPh
}
h∈H on D.

The communication over a bidirectional channel B = (D,H,BP0 ,BP1) proceeds as follows. At
each timestep, each party P receives messages sent to them in the previous timestep, updates hP
accordingly, and draws a document d ← BPhP (the draw could result in the empty message ⊥,
signifying that no action should be taken that timestep). The document d is then sent to the other
party and hP is updated. We assume for simplicity that all messages sent at a given timestep are
received at the next one. Denote by BPhP 6=⊥ the distribution BPhP conditioned on not drawing ⊥.
We will consider families of bidirectional channels {Bk}k≥0 such that: (1) the length of elements
in Dk is polynomially-bounded in k; (2) for each h ∈ Hk and party P , either Pr[BPh =⊥] = 1 or
Pr[BPh =⊥] ≤ 1− δ, for constant δ; and (3) there exists a function `(k) = ω(log k) so that for each
h ∈ Hk, H∞((BPh)k 6=⊥) ≥ `(k) (that is, there is some variability in the communications).

We assume that party P can draw from BPh for any history h, and that the adversary can
draw from BPh for every party P and history h. We assume that the ability to draw from these
distributions does not contradict the cryptographic assumptions that our results are based on. In
the rest of the paper, all communications will be assumed to conform to the bidirectional channel
structure: parties only communicate by sending documents from D to each other and parties not
running a protocol communicate according to the distributions specified by B. Parties running a
protocol strive to communicate using sequences of documents that appear to come from B. As a

convention, when B is compared to another random variable, we mean a random variable which
draws from the process B the same number of documents as the variable we are comparing it to.

Bidirectional channels provide a model of the distribution of communications between two
parties and are general enough to express almost any form of communication between the parties.

3 Covert Two-Party Computation Against Honest-but-Curious Adversaries

We now present a protocol for covert two-party computation that is secure against honest-but-
curious adversaries in the standard model (no Random Oracles) and assumes that the decisional
Diffie-Hellman problem is hard. The protocol is based on Yao’s well-known function evaluation
protocol [17].

We first define covert two-party computation formally, following standard definitions for secure
two-party computation, and we then describe Yao’s protocol and the necessary modifications to
turn it into a covert computation protocol. The definition presented in this section is only against
honest-but-curious adversaries and is unfair in that only one of the parties obtains the result. In
Section 4 we will define covert two-party computation against malicious adversaries and present a
protocol that is fair: either both parties obtain the result or neither of them does. The protocol in
Section 4 uses the honest-but-curious protocol presented in this section as a subroutine.

3.1 Definitions

Formally, a two-party, n-round protocol is a pair Π = (P0, P1) of programs. The computation of Π
proceeds as follows: at each round, P0 is run on its input x0, the security parameter 1k, a state s0,
and the (initially empty) history of messages exchanged so far, to produce a new message m and an
internal state s0. The message m is sent to P1, which is run on its input x1, the security parameter
1k, a state s1, and the history of messages exchanged so far to produce a message that is sent back
to P0, and a state s1 to be used in the next round. Denote by 〈P0(x0), P1(x1)〉 the transcript of
the interaction of P0 with input x0 and P1 with input x1. This transcript includes all messages
exchanged between P0 and P1 along with the timestep in which they were sent. After n rounds,
each party P ∈ {P0, P1} halts with an output, denoted by ΠP (x0, x1) = ΠP (x̄). We say that Π
correctly realizes the functionality f if for at least one P ∈ {P0, P1}, Pr[ΠP (x̄) = f(x̄)] ≥ 1− ν(k),
where ν is negligible.

For σ ∈ {0, 1}, we denote by V Pσ
Π (x0, x1) the view of party Pσ on input xσ when interacting

with P1−σ on input x1−σ. The view includes Pσ’s input xσ, private random bits, and all messages
sent by P0 and P1. We say Π securely realizes the functionality f if Π correctly realizes f and, for
any P ′σ and x1−σ, there is a simulator P ′′σ and an xσ such that P ′′σ (f(x0, x1)) ≈ V P ′σ

Π (x0, x1). Notice
that given f(x0, x1), P ′σ could just use P ′′σ to simulate his interaction with P1−σ without actually
running Π. Thus if Π securely implements f , neither party learns more from the interaction than
could be learned from just f(x0, x1).

Define the view of party P interacting in protocol Π up through round j by V P
Π,j(x̄). When

party Pσ is not executing Π but is drawing from B instead, we denote this “protocol” by Π : Bσ.

Definition 1. (Covert two-party protocol against honest-but-curious adversaries) We say an n-
round, two-party protocol (P0, P1) covertly realizes the functionality f for bidirectional channel B
if it securely realizes f and if it has the following additional properties:

1. (External covertness): For any input x̄, 〈P0(x0), P1(x1)〉 ≈ B.
2. (Internal covertness): For any input x̄, V P0

Π,n(x̄) ≈ V P0
Π:B1,n

(x̄) and V P1
Π,n−1(x̄) ≈ V P1

Π:B0,n−1(x̄).
3. (Final Covertness): For every PPT D there exists a PPT D′ and a negligible ν such that for

any x1 and any distribution X0, AdvD
V
P1
Π (X0,x1),V

P1
Π:B0

(X0,x1)
(k) ≤ AdvD

′

f(X0,x1),Ul
(k) + ν(k).

In other words, until the final round, neither party can distinguish between the case that the other
is running the protocol or just drawing from B; and after the final message, P0 still cannot tell,
while P1 can only distinguish the cases if f(x0, x1) and Um are distinguishable. Note that property
2 implies property 1, since P0 could apply the distinguisher to his view (less the random bits).

We will slightly abuse notation and say that a protocol which has messages indistinguishable
from random bits (even given one party’s view) is covert for the uniform channel U .

3.2 Yao’s Protocol For Two-Party Secure Function Evaluation

Yao’s protocol [17] securely (not covertly) realizes any functionality f that is expressed as a com-
binatorial circuit. Our description is based on [14]. The protocol is run between two parties, the
Input Owner A and the Program Owner B. The input of A is a value x, and the input of B is a
description of a function f . At the end of the protocol, B learns f(x) (and nothing else about x),
and A learns nothing about f . The protocol requires two cryptographic primitives, pseudorandom
functions and oblivious transfer, which we describe here for completeness.

Pseudorandom Functions. Let {F : {0, 1}k × {0, 1}L(k) → {0, 1}l(k)}k denote a sequence of
function families. Let A be an oracle probabilistic adversary. We define the prf-advantage of A
over F as Advprf

F,A(k) = |PrK [AFK(·)(1k) = 1] − Prg[Ag(1k) = 1]|, where K ← Uk and g is a

uniformly chosen function from L(k) bits to l(k) bits. Then F is pseudorandom if Advprf
F,A(k) is

negligible in k for all polynomial-time A. We will write FK(·) as shorthand for F|K|(K, ·) when |K|
is known.

Oblivious Transfer. 1-out-of-2 oblivious transfer (OT2
1) allows two parties, the sender who knows

the values m0 and m1, and the chooser whose input is σ ∈ {0, 1}, to communicate in such a way
that at the end of the protocol the chooser learns mσ, while learning nothing about m1−σ, and the
sender learns nothing about σ. Formally, let O = (S,C) be a pair of interactive PPT programs.
We say that O is correct if Pr[OC((m0,m1), σ) = mσ] ≥ 1 − ε(k) for negligible ε. We say that O
has chooser privacy if for any PPT S′ and any m0,m1,

∣∣Pr[S′(〈S′(m0,m1), C(σ)〉) = σ]− 1
2

∣∣ ≤ ε(k)
and O has sender privacy if for any PPT C ′ there exists a σ and a PPT C ′′ such that C ′′(mσ) ≈
V C′
Π ((m0,m1), σ). We say that O securely realizes the functionality OT2

1 if O is correct and has
chooser and sender privacy.

Yao’s Protocol. Yao’s protocol is based on expressing f as a combinatorial circuit. Starting
with the circuit, the program owner B assigns to each wire i two random k-bit values (W 0

i ,W
1
i)

corresponding to the 0 and 1 values of the wire. It also assigns a random permutation πi over {0, 1}
to the wire. If a wire has value bi we say it has “garbled” value (W bi

i , πi(bi)). To each gate g, B
assigns a unique identifier Ig and a table Tg which enables computation of the garbled output of the
gate given the garbled inputs. Given the garbled inputs to g, Tg does not disclose any information
about the garbled output of g for any other inputs, nor does it reveal the actual values of the input
bits or the output bit.

Assume g has two input wires (i, j) and one output wire out (gates with higher fan in or
fan out can be accommodated with straightforward modifications). The construction of Tg uses a
pseudorandom function F whose output length is k + 1. The table Tg is as follows:

πi(bi) πj(bj) value

0 0 (W
g(bi,bj)
out , πo(bout))⊕ F

W
bj
j

(Ig, 0)⊕ F
W
bi
i

(Ig, 0)

0 1 (W
g(bi,bj)
out , πo(bout))⊕ F

W
bj
j

(Ig, 0)⊕ F
W
bi
i

(Ig, 1)

1 0 (W
g(bi,bj)
out , πo(bout))⊕ F

W
bj
j

(Ig, 1)⊕ F
W
bi
i

(Ig, 0)

1 1 (W
g(bi,bj)
out , πo(bout))⊕ F

W
bj
j

(Ig, 1)⊕ F
W
bi
i

(Ig, 1)

To compute f(x), B computes garbled tables Tg for each gate g, and sends the tables to A. Then,
for each circuit input wire i, A and B perform an oblivious transfer, where A plays the role of the
chooser (with σ = bi) and B plays the role of the sender, with m0 = W 0

i ‖πi(0) and m1 = W 1
i ‖πi(1).

A computes πj(bj) for each output wire j of the circuit (by trickling down the garbled inputs using
the garbled tables) and sends these values to B, who applies π−1

j to learn bj . Alternatively, B can
send the values πj (for each circuit output wire j) to A, who then learns the result. Notice that the
first two columns of Tg can be implicitly represented, leaving a “table” which is indistinguishable
from uniformly chosen bits.

3.3 Steganographic Encoding

We use provably secure steganography to transform Yao’s protocol into a covert two-party proto-
col; we also use it as a building block for all other covert protocols presented in this paper. For
completeness we state a construction that has appeared in various forms in [6, 12, 2]. Let HASH
denote a family of hash functions H : D → {0, 1}c which is pairwise independent, that is, for any
x1 6= x2 ∈ D, for any y1, y2 ∈ {0, 1}m, PrH [H(x1) = y1 ∧ H(x2) = y2] = 1/22m. Let D denote
an arbitrary probability distribution on D satisfying H∞(D) = `(k) where k is the security pa-
rameter. The following constructions hide and recover m uniformly-chosen bits in a distribution
indistinguishable from D when `(k)−m = ω(log k).

Protocol 1 (Basic steganographic encoding/decoding routines)

Procedure Basic EncodeD:
Input: H ∈ HASH, c ∈ {0, 1}m
Let j = 0
repeat:

sample s← D, increment j
until H(s) = c OR (j > k)
Output: s

Procedure Basic Decode:
Input: H ∈ HASH, s ∈ D
set c = H(s)
Output: c

Proposition 1. Let H ← HASH. Then ∆((H, Basic EncodeD(H,Um)), (H,D)) ≤ 2−(`(k)−m)/2+1.

The result follows from the Leftover Hash Lemma ([11], Lemma 4.8). Intuitively, it guarantees
that Basic Encode(c) will be (statistically) indistinguishable from the messages exchanged in a
bidirectional channel whenever c is a uniformly chosen bit string. (When we refer to Basic Encode
with only a single argument, we implicitly assume that an appropriate h has been chosen and is
publicly accessible to all parties.)

Thus, to guarantee covertness for channel B, we will ensure that all our protocols generate
messages that are indistinguishable from uniformly chosen random bits and then encode these
messages with Basic Encode. Formally, suppose Π = (P0, P1) is an arbitrary two-party protocol
which securely realizes the functionality f . We will construct a protocol ΣΠ = (SP0

0 , SP1
1) which

has the property that if V Pb
Π (x̄) is indistinguishable from uniformly chosen bits (that is, Π covertly

realizes f for the uniform channel), then ΣΠ covertly realizes the functionality f for channel B. We
assume that P0, P1 have the property that, given a partial input, they return the string ε, indicating

that more bits of input are needed. Then SPbb has the following round function (which simply uses
Basic Encode and Basic Decode to encode and decode all messages exchanged by P0 and P1):

Protocol 2 (Transformation to a covert protocol)
Procedure SPbb :
Input: history h ∈ H, state, document s ∈ D
draw d← BPbh
if (state.status = “receiving”) then

set state.msg = state.msg‖Basic Decode(s)
set c = Pb(state.msg)
if (c 6= ε) set state.status = “sending”; set state.msg = c

if (state.status = “sending”) then
if (d 6=⊥) then
set c = first m bits of state.msg
set state.msg = state.msg without the first m bits

set d = Basic Encode(BPbh 6=⊥)(c)
if state.msg = “” set state.status = “receiving”

Output: message d, state

Theorem 1. If Π covertly realizes the functionality f for the uniform channel, then ΣΠ covertly
realizes f for the bidirectional channel B.

Proof. Let kc be an upper bound on the number of bits in 〈P0(x0), P1(x1)〉. Then ΣΠ transmits at
most 2kc/m (non-empty) documents. Suppose there is a distinguisher D for V Sb

Σ (x̄) from V Sb
Σ:B1−b

(x̄)

with significant advantage ε. Then D can be used to distinguish V Pb
Π (x̄) from V Pb

Π:U1−b
(x̄), by sim-

ulating each round as in Σ to produce a transcript T ; If the input is uniform, then ∆(T,B) ≤
(kc/m)22−(`(k)−m)/2 = ν(k), and if the input is from Π, then T is identical to V Sb

Σ (x̄). Thus D’s
advantage in distinguishing Π from Π : U1−b is at least ε− ν(k).

IMPORTANT: For the remainder of the paper we will present protocols Π that covertly realize
f for U . It is to be understood that the final protocol is meant to be ΣΠ , and that when we state
that “Π covertly realizes the functionality f” we are referring to ΣΠ .

3.4 Covert Oblivious Transfer

As mentioned above, we guarantee the security of our protocols by ensuring that all the messages
exchanged are indistinguishable from uniformly chosen random bits. To this effect, we present a
modification of the protocol in [4] for oblivious transfer that ensures that all messages exchanged
are indistinguishable from uniform when the input messages m0 and m1 are uniformly chosen. Our
protocol relies on the well-known integer decisional Diffie-Hellman assumption:

Integer Decisional Diffie-Hellman. Let P and Q be primes such that Q divides P − 1,
let Z∗P be the multiplicative group of integers modulo P , and let g ∈ Z∗P have order Q. Let
A be an adversary that takes as input three elements of Z∗P and outputs a single bit. Define
the DDH advantage of A over (g, P,Q) as: Advddh

A (g, P,Q) = |Pra,b,r[Ar(ga, gb, gab, g, P,Q) =
1] − Pra,b,c,r[Ar(ga, gb, gc, g, P,Q) = 1]|, where Ar denotes the adversary A running with random
tape r, a, b, c are chosen uniformly at random from ZQ and all the multiplications are over Z∗P .
The Integer Decisional Diffie-Hellman assumption (DDH) states that for every PPT A, for every
sequence {(Pk, Qk, gk)}k satisfying |Pk| = k and |Qk| = Θ(k), Advddh

A (gk, Pk, Qk) is negligible in k.

Setup. Let p = rq+ 1 where 2k < p < 2k+1, q is a large prime, and gcd(r, q) = 1; let g generate Z∗p
and thus ĝ = gr generates the unique multiplicative subgroup of order q. Assume |m0| = |m1| < k/2.
Let H : {0, 1}2k × Zp → {0, 1}k/2 be a pairwise-independent family of hash functions.

Protocol 3 COT:

S: Input: m0,m1 C: Input: σ
chooses c← Z

∗
p subject to c ≤ 2k.

c
- chooses α ∈ Zp−1 subject to h0 ≤ 2k,

where hσ = gα mod p and
h1−σ = c/gα mod p .

chooses r0, r1 ∈ Zp−1 subject to h0�

gb = grb ≤ 2k, for b ∈ {0, 1}.
chooses y0, y1 ← U2k.
sets Cb = H(yb, h

rbr
b)⊕mb, b ∈ {0, 1}.

g0‖y0‖C0‖g1‖y1‖C1

- computes mσ = H(yσ, grασ)⊕ Cσ.

Lemma 1. S cannot distinguish between the case that C is following the COT protocol and the
case that C is drawing from Uk; that is, V S

COT(m0,m1, σ) ≈ V S
COT:UC (m0,m1, σ).

Proof. This follows because the message sent by C is uniformly chosen.

Lemma 2. When m0,m1 ← Uk/2, C cannot distinguish between the case that S is following the
COT protocol and the case that S is sending uniformly chosen strings. That is, V C

COT(m0,m1, σ) ≈
V C

COT:US (m0,m1, σ).

Proof. When m0,m1 are uniform, all of the messages generated by S are uniformly distributed.

Lemma 3. The COT protocol securely realizes the OT2
1 functionality.

Proof. Clearly, S learns nothing about the value σ, since h0 is identically distributed in both
cases C(c, 0) and C(c, 1). Now, suppose without loss of generality that σ = 0. We will argue
that for any (m0,m1,m

′
1), the messages generated by S(m0,m1, h0) and S(m0,m

′
1, h0) are in-

distinguishable to C, thus proving that C learns nothing about m1. Consider two hybrid COT
protocols: COT1 uniformly chooses a value r2 ∈ Zq and replaces hr1r1 with ĝr2 , while COT2 re-
places the value H(y1, h

r1r
1) with a uniformly chosen k/2-bit string. Clearly, SCOT2(m0,m1, h0) and

SCOT2(m0,m
′
1, h0) are indistinguishable. But the Leftover-Hash lemma implies that SCOT2(x) and

SCOT1(x) are indistinguishable. The Decisional Diffie-Hellman assumption implies that SCOT1(x)
and S(x) are indistinguishable, since a distinguisher between SCOT1(x) and S(x) with advantage
ε can be used to distinguish between (ĝa, ĝb, ĝab) and (ĝa, ĝb, ĝc) with advantage at least ε/4. This
can be done using the technique from [2] of converting elements of the subgroup of order Q into
elements of Z∗p using the Chinese Remainder Theorem in the exponent, and aborting if either con-
version results in an element greater than 2k (which happens with probability at most 3

4). Thus it
must be that S(m0,m1, h0) and S(m0,m

′
1, h0) are indistinguishable.

Conjoining these three lemmas gives the following theorem:

Theorem 2. Protocol COT covertly realizes the uniform-OT2
1 functionality

3.5 Combining The Pieces

We can combine the components developed up to this point to make a protocol which covertly
realizes any two-party functionality. The final protocol, which we call covert-yao, is simple:
assume that both parties know a circuit Cf computing the functionality f . Bob first uses Yao’s
protocol to create a garbled circuit for f(·, xB). Alice and Bob perform |xA| covert oblivious transfers
for the garbled wire values corresponding to Alice’s inputs. Bob sends the garbled gates to Alice.
Finally, Alice collects the garbled output values and sends them to Bob, who de-garbles these values
to obtain the output.

Theorem 3. The covert-yao protocol covertly realizes the functionality f .

Proof. That (Alice, Bob) securely realize the functionality f follows from the security of Yao’s
protocol. Now consider the distribution of each message sent from Alice to Bob:

– In each execution of COT: each message sent by Alice is uniformly distributed
– Final values: these are masked by the uniformly chosen bits that Bob chose in garbling the

output gates. To an observer, they are uniformly distributed.

Thus Bob’s view, until the last round, is in fact identically distributed when Alice is running the
protocol and when she is drawing from U . Likewise, consider the messages sent by Bob:

– In each execution of COT: because the W b
i from Yao’s protocol are uniformly distributed,

Theorem 2 implies that Bob’s messages are indistinguishable from uniform strings.
– When sending the garbled circuit, the pseudorandomness of F and the uniform choice of the
W b
i imply that each garbled gate, even given one garbled input pair, is indistinguishable from

a random string.

Thus Alice’s view after all rounds of the protocol is indistinguishable from her view when Bob
draws from U .

If Bob can distinguish between Alice running the protocol and drawing from B after the final
round, then he can also be used to distinguish between f(XA, xB) and Ul. The approach is straight-
forward: given a candidate y, use the simulator from Yao’s protocol to generate a view of the “data
layer.” If y ← f(XA, xB), then, by the security of Yao’s protocol, this view is indistinguishable
from Bob’s view when Alice is running the covert protocol. If y ← Ul, then the simulated view
of the final step is distributed identically to Alice drawing from U . Thus Bob’s advantage will be
preserved, up to a negligible additive term.

Notice that as the protocol covert-yao is described, it is not secure against a malicious Bob
who gives Alice a garbled circuit with different operations in the gates, which could actually output
some constant message giving away Alice’s participation even when the value f(x0, x1) would not.
If instead Bob sends Alice the masking values for the garbled output bits, Bob could still prevent
Alice from learning f(x0, x1) but could not detect her participation in the protocol in this way. We
use this version of the protocol in the next section.

4 Fair Covert Two-party Computation Against Malicious Adversaries

The protocol presented in the previous section has two serious weaknesses. First, because Yao’s
construction conceals the function of the circuit, a malicious Bob can garble a circuit that computes
some function other than the result Alice agreed to compute. In particular, the new circuit could
give away Alice’s input or output some distinguished string that allows Bob to determine that Alice
is running the protocol. Additionally, the protocol is unfair: either Alice or Bob does not get the
result.

In this section we present a protocol that avoids these problems. In particular, our solution
has the following properties: (1) If both parties follow the protocol, both get the result; (2) If Bob

cheats by garbling an incorrect circuit, neither party can tell whether the other is running the
protocol, except with negligible advantage; and (3) Except with negligible probability, if one party
terminates early and computes the result in time T , the other party can compute the result in
time at most O(T). Our protocol is secure in the random oracle model, under the Decisional Diffie
Hellman assumption. We show at the end of this section, however, that our protocol can be made
to satisfy a slightly weaker security condition without the use of a random oracle. (We note that
the technique used in this section has some similarities to one that appears in [1].)

4.1 Definitions

We assume the existence of a non-interactive bitwise commitment scheme with commitments which
are indistinguishable from random bits. One example is the (well-known) scheme which commits
to b by commit(b; (r, x)) = r‖π(x)‖(x · r)⊕ b, where π is a one-way permutation on domain {0, 1}k,
x ·y denotes the inner-product of x and y over GF (2), and x, r ← Uk. The integer DDH assumption
implies the existence of such permutations.

Let f denote the functionality we wish to compute. We say that f is fair if for every distinguisher
Dσ distinguishing f(X0, X1) from U given Xσ with advantage at least ε, there is a distinguisher
D1−σ with advantage at least ε − ν(k), for a negligible function ν. (That is, if P0 can distinguish
f(X0, X1) from uniform, so can P1.) We say f is strongly fair if (f(X0, X1), X0) ≈ (f(X0, X1), X1).

A n-round, two-party protocol Π = (P0, P1) to compute functionality f is said to be a strongly
fair covert protocol for the bidirectional channel B if the following conditions hold:
– (External covertness): For any input x̄, 〈P0(x0), P1(x1)〉 ≈ B.
– (Strong Internal Covertness): There exists a PPT E (an extractor) such that if PPT D(V)

distinguishes between V Pσ
Π,i(x̄) and V Pσ

Π:B1−σ ,i
(x̄) with advantage ε, ED(V Pσ

Π (x̄)) computes f(x̄)
with probability at least ε/poly(k)

– (Strong Fairness): If the functionality f is fair, then for any Cσ running in time T such that
Pr[Cσ(V σ

Π,i(x̄)) = f(x̄)] ≥ ε, there exists a C1−σ running in timeO(T) such that Pr[C1−σ(V 1−σ
Π,i (x̄)) =

f(x̄)] = Ω(ε).
– (Final Covertness): For every PPT D there exists a PPT D′ and a negligible ν such that for any
xσ and distribution X1−σ, AdvD

V PσΠ (X1−σ ,xσ),V PσΠ:B1−σ
(X1−σ ,xσ)

(k) ≤ AdvD
′

f(X1−σ ,xσ),Ul
(k) + ν(k).

Intuitively, the Internal Covertness requirement states that “Alice can’t tell if Bob is running the
protocol until she gets the answer,” while Strong Fairness requires that “Alice can’t get the answer
unless Bob can.” Combined, these requirements imply that neither party has an advantage over
the other in predicting whether the other is running the protocol.

4.2 Construction

As before, we have two parties, P0 (Alice) and P1 (Bob), with inputs x0 and x1, respectively, and
the function Alice and Bob wish to compute is f : {0, 1}l0 × {0, 1}l1 → {0, 1}l, presented by the
circuit Cf . The protocol proceeds in 2k + 2 rounds, where each round is a complete execution
of the covert-yao protocol presented in Section 3. At each round, one party creates a circuit
which checks to see if the other party has obeyed the protocol. The difficulty to overcome is that
the result of the check cannot be returned to the party creating the circuit without giving away
that the other party is running the protocol. So instead, the parties take turns giving away one
bit of information each round, and each party’s circuit uses as input some pseudorandom “state”
which was output by the last circuit this party created, carrying forward the information that
the evaluator has not cheated. At the conclusion, each party can use the slowly revealed bits to
compute f(x0, x1). Let the function G : {0, 1}k → {0, 1}l be modeled by a random oracle, and let
FK : {0, 1}k → {0, 1}kK∈{0,1}k be a pseudorandom function. We let commit(t; ρt), verify(κt; t, ρt)
denote the commitment and verification functions, respectively, of a pseudorandom noninteractive
commitment scheme.

Protocol 4 (Fair covert two-party computation)

To begin, each party Pσ chooses random strings rσ,Kσ ← Uk. Pσ’s inputs to the protocol are then
xσ, rσ,Kσ. Each party Pσ computes commitments κσx = commit(xσ; ρσx), κσr = commit(rσ; ρσr), and
κσK = commit(Kσ; ρσK) and sends these commitments to the other party. The computation then
proceeds in 2k+1 rounds, each computing covert-yao. Denote by κσr [j] the commitment to rσ[j],
the jth bit of rσ. Each round reveals one bit of r0 or r1, which conceal the final result.

C0(x0, ρ
0
x) =

if (verify(κ0
x;x0, ρ

0
x) = true)

then set R0 = G(r1)⊕ f(x0, x1)
else draw R0 ← Ul
output R0

C0
1 (x1, ρ

1
x, r1, ρ

1
r) =

Let R = f(x0, x1)
if (verify(κ1

x;x1, ρ
1
x) = true

and verify(κ1
r; r1, ρ

1
r) = true

and G(r1)⊕R = R0)
then set R1 = G(r0)⊕R,

S1
1 = FK0(1),
b1[1] = r0[1].

else draw R1‖S1
1‖b1[1]← Ul+k+1

output R1‖S1
1‖b1[1]

C1
1 (x0, ρ

0
x, r0, ρ

0
r) =

Let R = f(x0, x1)
if (verify(κ0

x;x0, ρ
0
x) = true

and verify(κ0
r; r0, ρ

0
r) = true)

and G(r0)⊕R = R1)
then set S0

1 = FK1(1),
b0[1] = r1[1]

else draw S0
1‖b0[1]← Uk+1

output S0
1‖b0[1]

Cσj (K1−σ, ρ
1−σ
K , ρ1−σ

r [j − 1]) =
if (verify(κ1−σ

r [j − 1]; bσ[j − 1], ρ1−σ
r [j − 1]) = true

and verify(κ1−σ
K ;K1−σ, ρ

1−σ
K) = true

and FK1−σ (j − 1) = Sσj−1)
then set S1−σ

j = FKσ (j),
b1−σ[j] = rσ[j]

else draw S1−σ
j ‖b1−σ[j]← Uk+1

output S1−σ
j ‖b1−σ[j]

Fig. 1. The circuits C0, C0
1 , C1

1 , Cσj .

0. Bob garbles the circuit C0 shown in figure 1, which takes x0, ρ
0
x as input and outputs G(r0)⊕

f(x0, x1) if κ0
x is a commitment to x0. Bob and Alice perform the covert-yao protocol, giving

Alice the result R0. If the check fails, R0 is a uniformly chosen string and has no information
about f(x0, x1).

1. Alice garbles the circuit C0
1 shown in figure 1, which takes x1, ρ

1
x, r1, ρ

1
r as inputs and checks that

κ1
r is a commitment to r1, κ1

x is a commitment to x1, and R0 = G(r1)⊕ f(x0, x1); and outputs
G(r0)⊕ f(x0, x1), a pseudorandom state FK0(1), and the bit r0[1]. Alice and Bob perform the
covert-yao protocol, giving Bob the result R1‖S1

1‖b1[1]. If any of the checks fail, Bob’s result
is a uniformly chosen string which has no information about f(x0, x1), otherwise b1[1] = r0[1].

2. Bob garbles the circuit C1
1 shown in figure 1, which takes x0, ρ

0
x, r0, ρ

0
r as inputs and checks that

κ0
r is a commitment to r0, κ0

x is a commitment to x0, and R1 = G(r0)⊕f(x0, x1); and outputs a
pseudorandom state FK1(1) and the bit r1[1]. Bob and Alice perform the covert-yao protocol,
giving Alice the result S0

1‖b0[1]. (So if both parties are following the protocol, b0[1] = r1[1].)
...

i. Alice garbles the circuit C0
j (where i = 2j−1) which takes K1, ρ

1
K , ρ

1
r [j−1] as inputs and checks

that κ1
r [j− 1] is a commitment to b0[j− 1], κ1

K is a commitment to K1, and S0
j−1 = FK1(j− 1),

and if so outputs FK0(j)‖r0[j]. The covert-yao protocol gives Bob the result S1
j ‖b1[j].

After 2k + 1 such rounds, if Alice and Bob have been following the protocol, we have b1 = r0 and
b0 = r1 and both parties can compute the result. The pseudorandom “states” are what allow Alice

and Bob to check that all previous outputs and key bits (bits of r0 and r1) sent by the other party
have been correct, without ever receiving the results of the checks or revealing that the checks fail
or succeed.

Theorem 4. Construction 4 is a strongly fair covert protocol realizing the functionality f

Proof. The correctness of the protocol follows by inspection. The two-party security follows by the
security of Yao’s protocol. Now suppose that some party, wlog Alice, cheats (by sending a circuit
which computes an incorrect result) in round i = 2j − 1. Then, the key bit r1[j] and state Alice
computes in round i+ 1 will be randomized; and with overwhelming probability every subsequent
result that Alice computes will be useless. Assuming Alice can distinguish f(x0, X1) from uniform,
she can still compute the result in at most 2k−j time by exhaustive search over the remaining key
bits. By successively guessing the round at which Alice began to cheat, Bob can compute the result
in time at most 2k−j+2. If Alice aborts at round i, Bob again can compute the result in time at
most 2k−j+1. If Bob cheats in round i by giving inconsistent inputs, with high probability all of his
remaining outputs are randomized; thus cheating in this way gives him no advantage over aborting
in round i− 1. Thus, the fairness property is satisfied.

Neither Alice nor Bob can distinguish anything in their view from uniformly chosen bits without
querying G at the random string chosen by the other. So given a distinguisher D running in time
p(k) for V P0

Π,i(x̄) with advantage ε, it is simple to write an extractor which runs D, recording its
queries to G, picks one such query (say, q) uniformly, and outputs G(q) ⊕ R0. Since D can only
have an advantage when it queries rB, E will pick q = r1 with probability at least 1/p(k) and in
this case correctly outputs f(x0, x1). Thus the Strong Internal Covertness property is satisfied.

Weakly fair covertness. We can achieve a slightly weaker version of covertness without using
random oracles. Π is said to be a weakly fair covert protocol for the channel B if Π is externally
covert, and has the property that if f is strongly fair, then for every distinguisher Dσ for V Pσ

Π,i(x̄)

with significant advantage ε, there is a distinguisher D1−σ for V P1−σ
Π,i (x̄) with advantage Ω(ε). Thus

in a weakly fair covert protocol, we do not guarantee that both parties get the result, only that if at
some point in the protocol, one party can tell that the other is running the protocol with significant
advantage, the same is true for the other party.

We note that in the above protocols, if the function G is assumed to be a pseudorandom
generator (rather than a random oracle), then the resulting protocol exhibits weakly fair covertness.
Suppose Dσ has significant advantage ε after round i = 2j, as in the hypothesis of weak covertness.
Notice that given r1−σ[1 . . . j−1], G(r1−σ) ⊕ f(x̄), the remainder of Pσ’s view can be simulated
efficiently. Then Dσ must be a distinguisher for G(r) given the first j − 1 bits of r. But since f is
strongly fair, P1−σ can apply Dσ to G(rσ) ⊕ f(x̄) by guessing at most 1 bit of rσ and simulating
Pσ’s view with his own inputs. Thus P1−σ has advantage at least ε/2− ν(k) = Ω(ε).

5 Conclusions and Future Work
We have presented protocols for covert two-party computation that combine steganography with
cryptographic protocols whose messages are all indistinguishable from uniformly chosen random
bits. Covert two-party computation can be applied whenever the use of ordinary two-party com-
putation raises enough suspicion to defeat its intended purpose. Our protocols are secure assuming
the decisional Diffie-Hellman problem is hard.

Our work leaves room for improvement and open problems. For example, can fair covert two-
party computation secure against malicious adversaries be satisfied without random oracles? It
seems at least plausible that constructions based on concrete assumptions such as the “knowledge-
of-exponent” assumption or the “generalized BBS” assumption may allow construction of such
protocols, yet the obvious applications always destroy the final covertness property. More interest-
ingly, can the notion of covert two-party computation be extended in some natural way to multiple
parties?

References

1. G. Aggarwal, N. Mishra and B. Pinkas. Secure computation of the k’th-ranked element To appear in Advances
in Cryptology – Proceedings of Eurocrypt ’04, 2004.

2. L. von Ahn and N. Hopper. Public-Key Steganography. To appear in Advances in Cryptology – Proceedings of
Eurocrypt ’04, 2004.

3. M. Backes and C. Cachin. Public-Key Steganography with Active Attacks. IACR e-print archive report 2003/231,
2003.

4. M. Bellare and S. Micali. Non-interactive oblivious transfer and applications. Advances in Cryptology – Proceedings
of CRYPTO ’89, pages 547-557, 1990.

5. E. Brickell, D. Chaum, I. Damgärd, J. van de Graaf: Gradual and Verifiable Release of a Secret. Advances in
Cryptology – Proceedings of CRYPTO ’87, pages 156-166, 1987.

6. C. Cachin. An Information-Theoretic Model for Steganography. Information Hiding, 2nd International Workshop,
pages 306-318, 1998.

7. Z. Galil, S. Haber, M. Yung. Cryptographic Computation: Secure Fault-Tolerant Protocols and the Public-Key
Model. Advances in Cryptology – Proceedings of CRYPTO ’87, pages 135-155, 1987.

8. O. Goldreich. Secure Multi-Party Computation. Unpublished Manuscript. http://philby.ucsd.edu/books.html,
1998.

9. O. Goldreich, S. Goldwasser and S. Micali. How to construct pseudorandom functions. Journal of the ACM, vol
33, 1998.

10. O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game. Nineteenth Annual ACM Symposium
on Theory of Computing, pages 218-229.

11. J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator from any one-way function. SIAM
Journal on Computing, 28(4), pages 1364-1396, 1999.

12. N. Hopper, J. Langford and L. Von Ahn. Provably Secure Steganography. Advances in Cryptology – Proceedings
of CRYPTO ’02, pages 77-92, 2002.

13. M. Naor. Bit Commitment Using Pseudorandomness. J. Cryptology 4(2): 151-158 (1991)
14. M. Naor, B. Pinkas and R. Sumner. Privacy Preserving Auctions and Mechanism Design. Proceedings, 1999

ACM Conference on Electronic Commerce.
15. B. Pinkas. Fair Secure Two-Party Computation. In: Advances in Cryptology – Eurocrypt ’03, pp 87–105, 2003.
16. L. Reyzin and S. Russell. Simple Stateless Steganography. IACR e-print archive report 2003/093, 2003.
17. A. C. Yao. Protocols for Secure Computation. Proceedings of the 23rd IEEE Symposium on Foundations of

Computer Science, 1982, pages 160–164.
18. A. C. Yao. How to Generate and Exchange Secrets. Proceedings of the 27th IEEE Symposium on Foundations of

Computer Science, 1986, pages 162–167.

