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Abstract

We show that the MULTICUT, SPARSEST-CUT and MIN-2CNF � DELETION problems are hard to
approximate, assuming the Unique Games Conjecture of Khot [Kho02]. In particular, we obtain an
arbitrarily large constant factor hardness for these problems, and show that a quantitatively stronger
version of the conjecture implies a hardness factor of �����
	��
��	������ .

1 Introduction

In the MULTICUT problem the input is an undirected graph ����������� � on !"�$#%�&# vertices and ' pairs
of vertices (�)�*+�-,.*./�0*�1
2 , called demand pairs, and the goal is to find a smallest subset of the edges 3 45�
whose removal disconnects all the demand pairs, i.e., in the subgraph ���6���87935� every ):* is disconnected
from its corresponding vertex ,�* . In the weighted version of this problem, the input also specifies a positive
cost ;<�>=?� for each edge = @A� and the goal is to find a multicut 3 whose total cost ;B�C3D���FEHG�IBJK;<�>=?� is
minimal. This problem is known to be APX-hard [DJP L 94].

We prove that if a strong version of the Unique Games Conjecture of Khot [Kho02] is true, then MUL-
TICUT is NP-hard to approximate to within a factor of MN�COQPBRSOQPBRT!
� . Under the original version of this
conjecture, our reduction shows that for every constant UWVWX , it is NP-hard to approximate MULTICUT to
within factor U .

Our methods also yield similar bounds for SPARSEST-CUT and for MIN-2CNF Y DELETION. The
SPARSEST-CUT problem has the same input as MULTICUT, but the goal is to find a subset of the edges
3 4Z� that minimizes the ratio of # 3[# (in the weighted version, the total cost of 3 ) to the number
of demand pairs that are disconnected in �������\7N35� . Since SPARSEST-CUT is not known to be APX-
hard, our result gives the first indication that this problem might be hard to approximate. In the MIN-
2CNF Y DELETION problem the input is a weighted set of clauses on ! variables, each clause of the form] �_^ , where ] and ^ are literals, and the goal is to find an assignment to the variables minimizing the
total weight of unsatisfied clauses. Our results also extend to the CORRELATION CLUSTERING problem
[BBC04, CGW03, DI03, EF03] of minimizing disagreements in a weighted graph, because this problem is
known to be equivalent to the MULTICUT problem on weighted graphs.
`
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1.1 Some known results on MULTICUT, SPARSEST-CUT, and MIN-2CNF � DELETION

MULTICUT and SPARSEST-CUT are fundamental combinatorial problems, with connections to multicom-
modity flow, expansion, and metric embeddings. Both problems can be approximated to within an

� �COQPBR ' �
factor through linear programming relaxations [LR88, GVY96, AR98, LLR95]. These bounds match the
lower bounds on the integrality gaps up to constant factors [LR88, GVY96]. MIN-2CNF Y DELETION can
also be approximated to within an

� �COQPBR !
� factor, as implied by the results of Klein et al. [KARR90], who
give an approximation-preserving reduction from this problem to MULTICUT. Recently, starting with the
ground-breaking

� ��� OQPBR�!
� -approximation for the uniform demands case [ARV04], improved approxima-
tion algorithms have been developed for the SPARSEST-CUT problem using a semidefinite programming
relaxation [ARV04, CGR05, ALN04]. The best approximation factor currently known for general demands
is
� � � O�PBRS'�OQPBRTO�PBRS' � [ALN04]. The obvious modification of the semidefinite program used for SPARSEST-

CUT to solve MULTICUT was recently shown to have an integrality ratio of MN�CO�PBRS' � [ACMM04], which
matches the approximation factor and integrality gap of previously analyzed linear programming relaxations
for this problem.

On the hardness side, it is known that MULTICUT is APX-hard [DJP L 94], i.e., there exists a constant
; V�� , such that it is NP-hard to approximate MULTICUT to within a factor smaller than ; . It should be noted
that this hardness of approximation holds even for ' ��� , and that the value of ; is not specified therein, but
it is certainly much smaller than � . Also MIN-2CNF Y DELETION problem is known to be APX-hard, as
follows, e.g., from [Hås01].

Assuming the Unique Games Conjecture, Khot [Kho02, Theorem 3] essentially obtained an arbitrarily
large constant-factor hardness for MIN-2CNF Y DELETION, and this implies, using the aforementioned re-
duction of [KARR90], a similar hardness factor for MULTICUT. These results are not noted in [Kho02],
and are weaker than our results in several respects. First, our quantitative bounds are better, and thus if a
stronger, yet almost as plausible, version of this conjecture is true, then our lower bound on the approxi-
mation factor improves to U\�_MN�COQPBRSOQPBR�!
� , compared with the roughly MN�-�COQPBR O�PBRT!
� 2
	�� � hardness that
follows from [Kho02]; this can be viewed as progress towards proving tight inapproximability results for
MULTICUT. Second, by qualitatively strengthening our MULTICUT result to a bicriteria version of the prob-
lem, we extend our hardness results to the SPARSEST-CUT problem. It is unclear whether Khot’s reduction
similarly leads to a hardness result for SPARSEST-CUT. Finally, our proof is simpler (both the reduction and
its analysis), and makes direct connections to cuts (in a hypercube), and thus may prove useful in further
investigation of such questions.

For SPARSEST-CUT, no hardness of approximation result was previously known. Independent of our
work, Khot and Vishnoi [KV04] have recently used a different construction to show an arbitrarily large
constant factor hardness for SPARSEST-CUT assuming the Unique Games Conjecture; their hardness factor
could, in principle, be pushed to �COQPBRSOQPBR�!
�
� , for some constant ; V X , assuming a stronger quantitative
version of the conjecture. Additionally, they prove an integrality ratio lower bound of M �-�COQPBR OQPBRSOQPBR�!
� � � ,
for some fixed ; V"X , for the semidefinite program relaxations used in the recent SPARSEST-CUT results.

1.2 The Unique Games Conjecture

Unique � -prover game is the following problem. The input is a bipartite graph �F� ��� �����T� , where each
side � ���<��� contains ! � #�� #���� vertices denoted ��� 2 ���������
���� , and represents ! possible questions to prover
� . In addition, the input contains for each edge ��� 2* �
�! " �S@ �#� a non-negative weight $ ��� 2* �
�� " � . These edges
will be called question edges, to distinguish them from edges in the MULTICUT instance. Each question is
associated with a set of % distinct answers, denoted by & %(' � ()�<��*�*�*?�
% / . The input also contains, for every
edge ��� 2* �
�  " �S@ �+� , a bijection , * ".- & %/'102& %/' , which maps every answer of question � 2* to a distinct answer
for �  " .
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A solution � to the � -prover game consists of an answer � � * @ & %/' for each question ��� * (i.e., a sequence
(�� � * / over all �H@�&�� ' and � @�& ! ' ). The solution is said to satisfy an edge ��� 2* �
�  " � @ �+� if the answers� 2* and �+ " agree, i.e., �  " � , * " ��� 2* � . We assume that the total weight of all the edges in � � is � (by
normalization). The value of a solution is the total weight of all the edges satisfied by the solution. The
value of the game is the maximum value achievable by any solution to the game.

Conjecture 1.1 (Unique Games [Kho02]). For every fixed � ��� VWX there exists % � % ��� ���?� such that it is
NP-hard to determine whether a unique � -prover game with answer set size % has value at least � �	�
� � or
at most � .

We will also consider stronger versions of the Unique Games Conjecture in which � , � , and % are
functions of ! . Specifically, we will consider versions with �
��� (�� ���B/���� � �COQPBRS!
����� 2�� and % � % ��� ���?���� �CO�PBRT!
� . We denote the size of an input instance by � . Notice that �$�5� ! % ��� � 2�� , and is thus polynomial
in ! as long as %�� � � !
� , and in particular for fixed % .

Plausibility of the conjecture and its stronger version. The Unique Games Conjecture has been used to
show optimal inapproximability results for VERTEX COVER [KR03] and MAX-CUT [KKMO04]. Proving
the conjecture using current techniques appears quite hard. In particular, the asserted NP-hardness is much
stronger than what we can obtain via standard constructions using the PCP theorem [AS98, ALM L 98] and
the parallel repetition theorem [Raz98], two deep results in computational complexity.

Although the conjecture seems difficult to prove in general, some special cases are well-understood. In
particular, if at all the Unique Games Conjecture is true, then necessarily %�� ����� ()� �!� 2
	 2#" ��� �$� / . This
follows from a semidefinite programming algorithm presented in [Kho02]. Our MN�COQPBR O�PBR�!
� hardness result
(see Corollary 1.4 below) requires the existence of a constant ; V"X , such that �
��� (�� ��� /%� � � �COQPBR !
� � and
%&� � �CO�PBRT!
� , which is not excluded by the above. Feige and Reichman [FR04] recently showed that for
every constant UHV X there exists a constant � VWX , such that it is NP-hard to distinguish whether a unique
2-prover game (with % � % �CU ���<� ) has value at least U'� or at most � ; this result falls short of the Unique
Games Conjecture in that U'� is bounded away from � .

1.3 Our results

We prove the following hardness of approximation for MULTICUT, SPARSEST-CUT, and MIN-2CNF Y
DELETION based on the Unique Games Conjecture.

Theorem 1.2. Suppose that for �D�(� � !
� , � �)� � !
� , and % � % ��� ���?�*� � �COQPBRT!
� , it is NP-hard to
determine whether a unique � -prover game with #�� #:� �?! vertices and answer set size % has value at least

�+�,� � !
� or at most � � !
� . Then there exists U � !
� � M
-
OQPBR 2. � �0/214365 � L879� �$/21:365 ��; such that it is NP-hard to

approximate MULTICUT, SPARSEST-CUT, and MIN-2CNF Y DELETION to within factor U � !
� .
This theorem immediately implies the following two specific hardness results.

Corollary 1.3. The Unique Games Conjecture implies that, for every constant U V$X , it is NP-hard to
approximate MULTICUT, SPARSEST-CUT, and MIN-2CNF Y DELETION to within factor U .

Corollary 1.4. The stronger version of the Unique Games Conjecture in which �
��� (�� ��� /%� � � �COQPBR !
� ��� 2�� ,
and % ��% ��� ���<�<� � �CO�PBRT!
� , implies that for some fixed ; VDX , it is NP-hard to approximate MULTICUT,
SPARSEST-CUT, and MIN-2CNF Y DELETION to within factor ; OQPBR�OQPBR�! .

For SPARSEST-CUT our hardness results hold only for the search version (in which the algorithm needs
to produce a cutset and not only its value), since our proof employs a Cook reduction.
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1.4 Preliminaries

Regular Unique Games. A unique � -prover game is called regular if the total weight of question edges
incident at any single vertex is the same, i.e., � ��! , for every vertex in � . We now show that we can assume
without loss of generality that the graph in the Unique Games Conjecture is regular. For simplicity, we state
this only for fixed � and � . A similar result holds when they depend on ! , because we increase the input size
by no more than a polynomial factor, and increase � and � by no more than a constant factor.

Lemma 1.5. The Unique Games Conjecture implies that for every fixed � ���&V X , there exists % ��% ��� ���<�
such that it is NP-hard to decide if a regular unique � -prover game has value at least � � � � � or at most � .

The proof is given in Appendix A, and is based on an argument of Khot and Regev [KR03, Lemma 3.3].

Bicriteria MULTICUT. Our proof for the hardness of approximating SPARSEST-CUT relies on a general-
ization of MULTICUT, where the solution 3 is required to cut only a certain fraction of the demand pairs.
For a given graph �8�5������� � , a subset of the edges 3 4"� will be called throughout a cutset of the graph.
A cutset whose removal disconnects all the demand pairs is called a multicut.

An algorithm is called an � � � � � -bicriteria approximation for MULTICUT if, for every input instance, the
algorithm outputs a cutset 3 that disconnects at least an � fraction of the demands and has cost at most

�

times the weight of the optimum multicut. In other words, if 3 � is the least cost cutset that disconnects all
the ' demand pairs, then 3 disconnects at least � ' demand pairs and ;B�C35� � � ��;<�C3 � � .
Hypercubes, dimension cuts, and antipodal vertices. As usual, the % -dimensional hypercube (in short
a % -cube) is the graph ��� �����S������� which has the vertex set ��� ��(�X ���?/�� , and an edge �
	
��� � @W�
�
for every two vertices 	 ��� @ (�X ���?/�� which differ in exactly one dimension (coordinate). An edge �
	
��� � is
called a dimension- � edge, for � @ & %(' , if 	 and � differ in dimension � , i.e., 	���� � ��� where ��� is a unit
vector along dimension � . The set of all the dimension- � edges in a hypercube is called the dimension- � cut
in the hypercube. The antipodal of a vertex 	 is the (unique) vertex 	 all of whose coordinates are different
from those of 	 , i.e., the vertex 	���� where � is the vector with � in every coordinate. Notice that � is the
antipodal of 	 if and only if 	 is the antipodal of � , and that every single dimension cut disconnects every
antipodal pair.

Organization. In Section 2 we prove the part of Theorem 1.2 regarding the MULTICUT problem; our
proof will actually hold for bicriteria approximation for MULTICUT. We will then show in Section 3 that
this stronger result yields a similar hardness of approximation for SPARSEST-CUT. Finally, in Section 4, we
modify the reduction to obtain a hardness of approximation for MIN-2CNF Y DELETION.

2 Hardness of bicriteria approximation for MULTICUT

In this section we prove the part of Theorem 1.2 regarding the MULTICUT problem, namely, that the Unique
Games Conjecture implies that it is NP-hard to approximate MULTICUT within a certain factor U . Our
proof will actually show a stronger result—for every � ���/��� it is NP-hard to obtain an � � ��U�� -bicriteria
approximation for MULTICUT.

We start by describing a reduction from unique � -prover game to MULTICUT (Section 2.1), and then
proceed to analyze the YES instance (Section 2.2) and the NO instance (Sections 2.3 and 2.4). Finally, we
discuss the gap that is created for a bicriteria approximation of MULTICUT (Section 2.5).
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2.1 The reduction

Given a unique � -prover game instance ���A� ��� ���#��� with ! � #�� #���� and the corresponding edge weights
$ �>=?� and bijections , * " - & %(' 0 & %/' , we construct a MULTICUT instance �5� ������� � with demand pairs, as
follows. For every vertex (i.e., question) � � * @ � , construct a % -dimensional hypercube �#�" . The dimensions
in this cube correspond to answers for the question �!�" . We let the edges insides these �?! cubes have cost � ,
and call them hypercube edges.

For each question edge ��� 2* �
�  " � @ �#� , we extend , * " to a bijection from the vertices of � 2* (subsets of
the answers for � 2* ) to the vertices of �  " (subsets of the answers for �  " ), and denote the resulting bijection
by ,��* " - (�X ���?/�� 0 (�X ���?/�� . Formally, for every 	5@\(�X ���?/�� (vertex in � 2* ) and every � @ & %(' , the � -
th coordinate of , �* " �
	 � is given by � , �* " �
	 �-� � � 	���� 3� � � ��� . Then, we connect every vertex � @ � 2* to the

corresponding vertex , �* " �
	 �S@ �. " using an edge of cost $9* "	� , where � � � . is a scaling factor. These edges
are called cross edges.

Denote the resulting graph by �F�����6��� � . Notice that � is simply the union of the vertex sets of the
hypercubes � �* , for all � @ &�� ' and � @ & ! ' , and that the edge set � contains two types of edges, hypercube
edges and cross edges.

To complete the reduction, it remains to define the demand pairs. For a vertex 	 @ � , the antipodal of
	 in � , denoted 	 , is defined to be the antipodal vertex of 	 in the hypercube � �* that contains 	 . The set 

of demand pairs then contains every pair of antipodal vertices in � , and hence ' � # 
A# �H! � ��� 2 . Note that
every vertex of � belong to exactly one demand pair.

2.2 The YES instance

Lemma 2.1. If there is a solution � for the unique � -prover game � � such that the total weight of the
satisfied questions is at least � � � , then there exists a multicut 3 4 � for the MULTICUT instance � such
that ;B�C35� � ��� L 2 ! .

Proof. Let � be such a solution for � � . Construct 3 by taking the following edges. For every question
��� * @ � and the corresponding answer � � * (of prover � ), take the dimension- � � * cut in cube � �* . In addition,
for every edge ��� 2* �
�  " � @ � � that the solution � does not satisfy, take all the cross edges between the
corresponding cubes � 2* and �. " .

We first claim that removing 3 from � disconnects all the demand pairs. To see this, we define a
Boolean function 
 - � 0 (�X ���?/ on the graph vertices. For every cube � �* , consider the dimension- � � *
cut; it disconnects the cube into two connected components, one containing the all zeros vector X and one
containing the all ones vector � . For every � @ � �* , let 
6�
� � � X if � is in the same side as X , and 
6�
� �T� �
otherwise. This is exactly the � � * -th bit in � , i.e., 
6�
� � � ������ . Now consider any demand pair �
��� � � ,
and note that 
6�
� � � � ��
6� � � . We will show below that every edge �
	 ��� � �@83 satisfies the property

6�
	 �6��
6�
� � . This clearly proves the claim.

Consider first a hypercube edge �
	 ��� � in � �* that is not a dimension- � � * edge. Then 
6�
	 � � 	�� � � �
� � � � ��
6�
� � , by the definition of 
 . Next consider a cross edge �
	 ��� � �@ 3 . Then this edge lies between

cubes � 2* and �  " , such that the question edge ��� 2* �
�  " � satisfied by the unique � -prover game solution � .
Therefore, , * " ��� 2* ��� �  " . Then, 
6�
	 �6� 	 � 3� � � � � � � � 3� � � � ���� ��
6�
� � .

Finally, we bound the cost of the solution. Let � be the set of question edges not satisfied by the solution� . The total cost of the multicut solution is thus ;B�C3D�����?! � ��� 2�� ��� � E � � 3��� � �� � I�� $ * " � ��� ! � ��� � . � �
��� L 2 ! .
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2.3 Hypercube cuts and influences

We will analyze the NO instance shortly, but first we set up some notation and present two crucial technical
lemmas regarding hypercubes. Let ���5����� ����� � be a % -dimensional hypercube. For a function 
 - ��� 0�

, the influence of dimension � @ & %/' (a.k.a. the influence of the � -th variable) on the function, denoted �
�
� , is

defined to be the fraction of dimension- � edges �
	 ��� ��@ � � for which 
6�
	 �����
6�
� � . For a cutset 3 4 � � ,
the influence of dimension � @ & %/' on the cutset, denoted � J� , is defined as the fraction of dimension- � edges
that belong to 3 . Observe that # 3[# � � ��� 2 E � I	� ��
 �

J
� .

Proposition 2.2. Let 3 4 ��� be a cutset in a hypercube �$�5���
�N����� � . Define � - ��� 0�� by labeling
the connected components of � 7 3 by distinct integers, and letting � �
� � for � @H��� be the label of the
connected component containing � . Then � J� ������ .

Proof. Observe that the cutset 3 must contain every edge �
	 ��� � @ ��� for which � �
	 ������ �
� � .
The first lemma shows that if a cutset 3 has few edges but its removal disconnects a large fraction of

the antipodal pairs in the hypercube � , then there must be a dimension � @ & %(' with large influence.

Lemma 2.3. Let 3 be a cutset in a % -dimensional hypercube � , and suppose that removing 3 disconnects
at least a

�
fraction of the antipodal pairs in � . For every ] V_X , if E � � J� � � ] then �
��� ��� J� �

� ����� ��� � .
We will make use of the following lemma, due to Kahn, Kalai and Linial [KKL98] (see also [Ste00,

Section 1.5]). We note the proof is based on Fourier analysis of Boolean functions, and that our statement
below follows from the proofs therein.

Lemma 2.4 (Kahn, Kalai, and Linial [KKL98]). Let 
 be a Boolean function defined on a hypercube, and
suppose the fraction of inputs ] for which 
6� ] �6��� is � ��� ��� . Then for all � V"X ,

�
�
�
*
�
�
* �

�
*
���
�
* � ��	�� � � � O�PBR �� *

Proof of Lemma 2.3. We first convert the cutset 3 into a two-sided cut. Observe that each connected com-
ponent of �87 3 must have size at most � � � � ����� 2 �5� � � � ��� � #%� � # . If there is a component of size larger
than #%��� #���� , we combine the rest of the components into a single component. Otherwise, we split the set of
components into two parts such that the total size of the components in each part is at most  � #%� � # . Call the
resulting cutset 3 � . Note that 3 � 4"3 and thus, for every � @ & %(' , the influence of every dimension in 3 �
is no larger than its counterpart in 3 , i.e., � J! � ��� J� . Hence, E � � J! � �KE � � J� � � ] . This two-sided cut
defines a Boolean function 
 - �
� 0 (�X ���?/ with balance � � � ��� satisfying �
� �#"%$ ( � ��� ��� ��� / � � ���
and � J  & �'�

�
* . Using Lemma 2.4 with � � �  � , we have

� ]
�  �

� �
� I(� ��


��� J! � � ��	�� � � � � � ]
�  �

We thus get E � ��� J  � � ��	�� �*)� � ��+ . Now set ^ � ����� � I(� ��
 � J  � . Then, E � ��� J  � � ��	�� �[^ 2
	�� E � � J  � �� ] ^ 2
	�� . Therefore, we have ^ 2
	�� � 2� � �  � , or, ^ � � ����� ��� � .
The second lemma shows that if two functions 
 ��� - ��� 0 �

are close in the sense that they agree on
most of the inputs � @ �
� , then their influences are quite similar.
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Lemma 2.5. Let ��� ��� � ����� � be a hypercube. If for two functions 
 ��� - ��� 0 �
we have 
6�
� ����� �
� �

for all but a � fraction of inputs � @ � � , then for every dimension � we have # �
�
� � � �� # � � � .

Proof. Suppose that � is a % -dimensional hypercube, and consider a dimension- � edge �
	 ��� � @ �!� . By
our assumption, for all but at most � � � such edges, we must have 
6�
	 � � � �
	 � and 
6�
� � � � �
� � , and
in particular 
6�
	 �'� 
6�
� � � � �
	 � � � �
� � . Recalling that there are exactly � ��� 2 dimension- � edges, and
that �

�
� is the fraction of those edges for which 
6�
	 � � 
6�
� � ��[X (and similarly for � ), we conclude that


6�
	 ��� 
6�
� �6��� �
	 � � � �
� � for at most � � fraction of the dimension- � edges, and thus # �
�
� � � �� # � � � .

2.4 The NO instance

Lemma 2.6. There exists U � MN�COQPBR � � ��� � �?�-� such that if the MULTICUT instance � has a cutset of cost
at most ��� !�U whose removal disconnects � � �/��� fraction of the demand pairs, then there exists a solution� for the unique � -prover game � � whose value is larger than � .
Proof. Let U �H; OQPBR+� � ��� � �<� where ; V"X is a constant to be determined later, and let 3 4"� be a cutset
of cost ;<�C35� � ��� !�U whose removal disconnects � � �/��� fraction of the demand pairs. Using 3 , we will
construct for the unique � -prover game ��� a randomized solution � whose expected value is larger than� , thereby proving the existence of a solution of value larger than � . Without loss of generality, we may
assume that 3 is minimal with respect to containment, namely, for every subset 3 � 4"3 , 3 � ��K3 (since
removing 3 � from � disconnects fewer demand pairs than removing 3 would). Given such a minimal
cutset 3 , for each cube �#�* in � , consider the cutset 3 induces in this cube, and let �)� � *� be the influence of
dimension � @ & %/' on this cutset. The randomized solution � (i.e., a strategy for the two provers) is defined
as follows. For each vertex (question) � � * @ � , we choose � � * to be the answer (dimension) � @�& %/' with

probability
� ��� �&� & � ��� �& .

We proceed to analyze the expected value of this randomized solution � . Recall that the value of a
solution corresponds to the probability that, for a question edge ��� 2* �
�� " � chosen at random with probability
proportional to its weight, we have �  " ��, * " � � 2* � . Notice that although � 2* and �  " are correlated, each one is
uniformly distributed because � is regular. Without loss of generality, we assume removing 3 disconnects
at least as many demand pairs inside the cubes (�� 2� / � I	� � 
 as inside the cubes (��  � / � I	� � 
 . We will upper bound
the probability of the following four “bad” events (for a choice of a question edge ��� 2* �
�� * � ):
� 2 = fewer than half the demand pairs in � 2* are disconnected in �"7S3 .
�
 = 3 contains more than ��� L  U hypercube edges in � 2* .
� � = 3 contains more than � � L  U hypercube edges in �  " .
� � = 3 contains more than ���!���
	 ��� L�
 cross edges between � 2* and �  " .

First, by our assumption above, removing 3 disconnects at least an � � �/��� fraction of the demand pairs
inside the cubes (�� 2� / � I	� � 
 , and thus by Markov’s inequality, ��� & � 2 ' � � ��� . Next, the cutset 3 contains
at most � � !�U hypercube edges, thus the expected number of edges in � 2*�� �. " that are contained in 3
is at most ��� U , and ��� & �  �

� � '%� � ��� . Finally, if ; V_X is sufficiently small, ��� & � � ' � � U �
	 ��� L�

�� 2
	  ��� ��� , as otherwise the total cost along the corresponding question-edges ��� 2* �
�  " � (i.e., those for which
the cutset 3 contains more than � � ��� 	 ��� L�
 cross edges between � 2* and �  " ) is more than ��� U � 	 ��� L�
 � �
� � � ��� 	 ��� L�
 � ��� ! �!� � � ! � � U �[;B�C3D� . Taking a union bound, the probability that any of the above bad
events

� 2 � �  �
� ��� � � occurs is less than 
� . In particular, if neither

�
 nor

� � occurs, then E � I	� ��
 �
2 � *� � �<U

and E � I(� ��
 �  
� "� � �<U .
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In order to lower bound the expected value of the randomized solution � , we would like to show that
if none of the above bad events happens, then there exists a dimension � � @ & %/' , such that in cube � 2* this
dimension � � has large influence, � 2 � *� ` , and in cube �  " dimension , * " � � � � has large influence, �  �

"
� � � � � ` � . For

the cube � 2* , if the events
� 2 � �  do not occur, then we can use Lemma 2.3 (with

� � � ��� , ] � ���<U ) and
conclude that there exists a dimension � � @ & %(' such that

� 2 � *� ` � � � 	 ��� ��� � *
For the sake of analysis, label the connected components of �"7 3 with distinct integer values. Define


 - � 2* 0 � by letting 
6�
� � for 	 @ � 2* be the label of the connected component of 	 , and define � - �� " 0 �
similarly. For every 	5@ � 2* , if 
6�
	 � �� � � ,��* " �
	 �-� then the cross edge �
	 ��,��* " �
	 �-� must be contained in
the cutset 3 , and because we assumed the event

� � happens, this occurs for at most � � ��� 	 ��� L�
 vertices

	 @ � 2* . Applying Lemma 2.5 to the functions 
 and ��� , �* " , we conclude that # �
�
� � � ��� �  � �� # � � � 	 ��� ��� for

all dimensions � @ & %/' . Notice that for every edge �
	 ��� � in the cube � 2* , we have 
6�
	 ��� 
6�
� � if and only
if �
	 ��� � �@ 3 , and for � in the cube �  " , and thus for all � @ & %/' we have � 2 � *� �'�

�
� and �  �

"
� �'� �� . Since , * "

is just a permutation of the coordinates, for all we have � @ & %/' , � ���
�  � �

� � ���� � � � ��� . Altogether, we obtain

�  �
"
� � � � � ` � ��� 2 � *� ` � � � 	 ��� ��� � � � 	 ��� ��� � �

and thus

��� & �  " ��, * " ��� 2* � ' � ��� & � 2* � �
� �9�  " � , * " � � � � '

� �
� �

� 2 � *� `
E � I(� ��
 �

2 � *� � �  �
"
� `

E � I	� ��
 �  
� "�

� MN�CU �  � � 	 ��� �
We conclude that the expected value of the randomized solution � is

�

� * � " � I	��

$ ��� 2* �
�  " � ���!& �  " � , * " ��� 2* � ' � MN�CU �  � � 	 ��� �SV � �

where the last inequality holds if ; V"X is sufficiently small, and this completes the proof of Lemma 2.6.

2.5 Putting it all together

The above reduction from unique � -prover game to MULTICUT produces a gap of U � !
�6�WMN�COQPBR+� � ��� � !
� �� � !
�-�-� . We assumed % ��� ���<� � � �COQPBR !
� , and thus the resulting MULTICUT instance � has size � �
� ! � � �
� � 2�� �K! � � 2�� . It follows that in terms of the instance size � , the gap is U ��� ���WMN�CO�PBR � � ��� ���*� � 2�� � �� ��� � � 2�� �-�-� .

This completes the proof of the part of Theorem 1.2 regarding the MULTICUT problem, namely, that
the Unique Games Conjecture implies that it is NP-hard to approximate MULTICUT within the above factor
U ��� � . In fact, the above proof shows that it is even NP-hard to obtain a � �/��� ��U ���A�-� -bicriteria approxima-
tion. Note that the number of demand pairs is 'A� ! � � �\! � � 2�� , and thus the hardness of approximation
factor is similar when expressed in terms of ' as well.
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3 Hardness of approximating SPARSEST-CUT

In this section we prove the part of Theorem 1.2 regarding the Sparsest-Cut problem. The proof follows im-
mediately from the next lemma in conjunction with the hardness of bicriteria approximation of MULTICUT

(from the previous section).

Lemma 3.1. Let X�� � � � be a constant. If there exists an algorithm for SPARSEST-CUT that produces
in polynomial time a cut whose value is within factor ����� of the minimum, then there is a polynomial time
algorithm that computes an � � �  ��2 ��� � -bicriteria approximation for MULTICUT.

Proof. Fix X�� � � � , and suppose � is an algorithm for SPARSEST-CUT that produces in polynomial
time a cut whose value is within factor � � � of the minimum. Now suppose we are given an input graph
� � ���6��� � and ' demand pairs (�)�*+�-,.*+/�� *Q1
2 . We may assume without loss of generality that every )B* is
connected (in � ) to its corresponding ,�* . Let ;
	���
 and ;
	���� be the smallest and largest edge costs in � , and
let ! � #%�&# .

We now describe the bicriteria approximation algorithm for MULTICUT. For every value � @ & ;�	���
 �
!  ; 	���� ' which is a power of � , execute a procedure that we will describe momentarily to compute a cutset
3���4�� , and report, from all these cutsets 3 � whose removal disconnects at least � ' demand pairs,
the one of least cost. For a given value �ZV�X , the procedure starts with 3 � ��� , and then iteratively
3�� is “augmented” as follows: Take a connected component � of � 7 3 � , apply algorithm � to � & � '
(the subgraph induced on � and all the demand pairs that lie inside � ), and if the resulting cutset � � has
value (in � & � ' ) at most �2 ��� �

�
0 , then add the edges � � to 3�� . Here, the value (ratio of cost to demands

cut) of � � is defined as , � � ;B�C� � � � # 
 � # , where 
 � is the collection of demand pairs that lie in � & � '
and get disconnected (in � & � ' ) when � � is removed. Proceed with the iterations until for every connected
component � in �"7S3 � we have , � V �2 ���

�
0 , at which point the procedure returns the cutset 3 � .

This algorithm clearly runs in polynomial time, so let us analyze its performance. We first claim that
for every value � , the cutset 3 � returned by the above procedure has sparsest-cut value (ratio of cost to
demand disconnected, in � ) is at most �2 ���

�
0 . Indeed, suppose the procedure performs , augmentation

iterations. Denote by � * the connected component � that is cut at iteration � @ & , ' , by � � � the corresponding
cutset output by � , and by 
 � � the corresponding set of demand pairs that get disconnected. Clearly, 3 �
is the disjoint union � 2 � ����� � ��� , and it is easy to verify that the collection 
 � of demand pairs cut by the
cutset 3 � is the disjoint union 
 � 3 � ����� � 
 ��� . Thus,

;<�C3 � ���
��
*�1
2
;B�C� � � �'� �

� � � � � '
��
*�1
2
# 
 � � #B� �

� � � � � ' # 
 � #��

which proves the claim.
For the sake of analysis, fix an optimal multicut 3 � 4"� , i.e., a cutset of � whose removal disconnects

all the demand pairs and has the least cost. The sparsest-cut value of 3 � is , � � ;B�C3 � � �<' . We will show
that if � @ & ;B�C3 � � ���<;B�C3 � � ' , then the above procedure produces a cutset 3 � whose removal disconnects
a collection 
�� containing # 
�� # � � ' demand pairs; this will complete the proof of the lemma, because it
immediately follows that

;B�C3���� � �
� � � � � ' # 
 ��# � �

� � � � �<;B�C3 � � �

and clearly ;<�C3 � �S@ & ; 	���
 ��� �  
� � ; 	���� ' . So suppose now �5@ & ;B�C3 � � ���<;<�C3 � � ' and assume for contradiction

that # 
 � #�� � ' . Denote by ��2 ��*�*�* � � � 4 � the connected components of �"7 3 � , and let 
 " contain the
demand pairs that lie inside � " . It is easy to see that E � " 1
2 # 
 " # �Z' �5# 
 � #9V � �<� � � ' . Similarly,
let 3 �" be the collection of edges in 3 � that lie inside � " . Then ;B�C3 � �%� E � " 1
2 ;B�C3 �" � . Notice that, in
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every induced graph � & � " ' , the edges of 3 �" form a cutset (of � & � " ' ) that cuts all the demand pairs in 
 " .
Using the stopping condition of the procedure, and since � provides an approximation within factor � , we
have ;<�C3 �" � � 22 ���

�
0 # 


" # (the inequality is not strict because 
 " might be empty). We thus derive the
contradiction

;<�C3 � � � ��
" 1
2

;<�C3 �" � � �
� � � � � '

��
" 1
2

# 
 " # V";B�C3 � � *

This shows that when �D@ & ;<�C3 � � ���<;B�C3 � � ' , the procedure stops with a cutset 3 � whose removal discon-
nects # 
�� # � � ' demand pairs, and concludes the proof of the lemma.

4 Hardness of approximating MIN-2CNF � DELETION

In this section, we modify the reduction in Section 2.1 to obtain a hardness of approximation for MIN-
2CNF Y DELETION. In particular, we reduce the MULTICUT instance obtained in Section 2.1 to MIN-
2CNF Y DELETION, such that a solution to the latter gives a MULTICUT of the same cost in the former.

The MIN-2CNF Y DELETION instance contains � ��� 2 ! variables, one for each demand pair �
	 � 	 � . In
particular, for every demand pair �
	 � 	��N@ 
 , we associate the literal ]�� with 	 and the literal ] � ��� ]��
with 	 . There is a clause for every edge �
	 ��� � in the graph � — � ]�� � ]�� � —with weight equal to $ G .

The following lemma is immediate from the construction and implies an analogue of Lemma 2.6 for
MIN-2CNF Y DELETION.

Lemma 4.1. Given an assignment � of cost � to the above instance of MIN-2CNF Y DELETION, we can
construct a solution of cost � to the MULTICUT instance � .

Proof. Let 3 be the set of edges �
	
��� � for which � � ]	� � �� � � ]
� � . Then 3 corresponds to the clauses
that are not satisfied by � and has weight � . The lemma follows from observing that 3 is indeed a
multicut—for any demand pair �
	
� 	 � , � � ]�� ������ � ] � � .

We now give an analog of Lemma 2.1.

Lemma 4.2. If there is a solution � for the unique � -prover game � � such that the total weight of the
satisfied questions is at least � � � , then there exists an assignment � for the above MIN-2CNF Y DELETION

instance such that ;B� ��� � � � L 2 ! .

Proof. Given the solution � for � � , we construct an assignment � as follows. For every question �!� * and for
every vertex 	 in the corresponding hypercube � �* , define � � ]
� � to be the � � * -th bit of 	 , i.e., � � ]�� �6� 	����� .
Note that this is a valid assignment, i.e., � � ] � �6� � � � � ] � � for all vertices 	 , as 	 � � � � � � 	 � � � .

We bound the cost of the solution by first analyzing the clauses corresponding to hypercube edges in
the corresponding MULTICUT instance. Consider unsatisfied clauses containing both variables in the same
hypercube � �* , and note that the hypercube edges corresponding to these clauses for a dimension- � � * cut in
the cube � �* . Therefore, the total weight of these clauses is at most � � � � 2 � � �?!
�T� ��� ! .

Finally, consider an unsatisfied clause ] � � ] � corresponding to vertices in different hypercubes � 2*
and �. " . Then � � ]
� � �� � � ]�� � implies that 	 � 3� � � � � � � � 3� � ���� ���� , or, , * " ��� 2* � �� �# " . There are at most

��� such clauses for each question pair not satisfied by the solution � . Therefore, the total weight of such
clauses is at most � � � . � � � � ! .

The lemma follows from adding the two costs.

Lemmas 4.1 and 4.2 along with Lemma 2.6 imply the part of Theorem 1.2 regarding MIN-2CNF Y
DELETION.
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5 Concluding remarks

The main bottleneck to improving the hardness factor lies in the in Lemma 2.3, which in turn crucially
depends on Lemma 2.4, due to [KKL98]. These bounds are tight in general, as shown by the tribes function.
But in our context, one may additionally assume that 
 is odd, that is, 
6� ] ���� 
6� ] � for all inputs ] .
Even with this additional assumption, this bound cannot be improved substantially, as demonstrated by
the following variant of the tribes function: Partition the variables ] 2 ��*�*�*�� ] � into subsets of size OQPBR %
�
� OQPBRSOQPBR % each; the output is the value of the first unanimous subset, or ] 2 if no unanimous tribe exists. This

function is clearly odd, yet all variables have influence at most
� �

����� � �
� � and the total influence is

� �COQPBR % � .
For Lemma 2.3, this function leads to a cutset 3 with

� � � , such that for ] � E � � J� � � �COQPBR % � we
have �
��� ��� J� � � � �8� � � .
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A Regularity of the Unique Games instance

Proof of Lemma 1.5. Given a unique 2-prover game � , we describe how to convert it to a regular game
while preserving its completeness and soundness. First we claim that we can assume that the ratio between
the max weight �
��� G $ G and the min weight �#"%$ G $ G is bounded by ! � . This is because we can remove
all edges with weight less than 2��� �
��� G $ G from the graph, changing the soundness and completeness
parameters by at most 2� . By a similar argument, we can assume that all weights in the graph are integral
multiples of ,6� 2� � �#" $ G $ G .

Now we convert � to a regular graph � � as follows. For each prover � @ ()�<��� / and question � � * , form
�F� � � �.� ��, vertices ��� * � ��� �������?�
� � * � �F� � � � � ��,-� , where �F� � � �.� is the total weight of all the edges incident on
��� * . For every pair of vertices ��� 2* �
�� " � , connected by an edge = in � , we form an edge between � 2* � ] � and
�  " � ^ � , for all possible values of ] and ^ , with weight $ G �� � 2 � * � �� �  � " � .
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Note that the total weight of all the edges remains the same as before. Each new node � 2* � ] � has total

weight EKG $ G �� � 2 � * � �� �  � " �
� �  � " �� ��, , where the sum is over all edges = incident on � 2* . Therefore, the

graph is regular. Furthermore, the number of vertices increases by a factor of at most ! � .
It only remains to show that the soundness and completeness parameters are preserved. To see this,

note that any solution on the original graph � can be transformed to a solution of the same value on � � , by
picking the same answer for every node � � * � ] � in � � as the answer picked for � � * in � . Likewise, consider a
solution in � � . Note that the answers for the questions � � * � ] � with different values of ] must all be the same,
because all these questions are connected to identical sets of vertices, with the same weights. Therefore, the
solution in � that picks the same answer for � � * as the answer for ��� * � ] � in � � has the same weight as the
given solution in � � .

Thus for every solution in � , there is a solution of the same weight in � � and vice versa. This proves
that the two games have exactly the same soundness and completeness parameters.
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