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Abstract

Large scale gene duplication is a major force driving the evolution ofgenetic functional innovation.

Whole genome duplications are widely believed to have played an important role in the evolution of

the maize, yeast and vertebrate genomes. The use of evolutionary trees to analyze the history of gene

duplication and estimate duplication times provides a powerful tool for studying this process. Many

studies in the molecular evolution literature have used this approach on small data sets, using analyses

performed by hand. The rapid growth of genetic sequence data will soon allow similar studies on a

genomic scale, but such studies will be limited unless the analysis can be automated. Even existing data

sets admit alternative hypotheses that would be too tedious to consider without automation.

In this paper, we describe a program called NOTUNG that facilitates large scale analysis, using both

rooted and unrooted trees. When tested on trees analyzed in the literature, NOTUNG consistently yielded

results that agree with the assessments in the original publications. Thus, NOTUNG provides a basic

building block for inferring duplication dates from gene trees automatically and can also be used as an

exploratory analysis tool for evaluating alternative hypotheses.
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1 Introduction

Yeast is a single cell organism with 6000 genes (Goffeau et al. 1996), while mice have an estimated 50,000

- 100,000 genes (Silver 1995). How did this order-of-magnitude increase in gene number, with its concomi-

tant increase in functional complexity, arise? Gene duplication followed by mutation leads to new function

and is considered a principal force driving developmental innovation in vertebrates (Ohno 1970).

The availability of sequence data has catalyzed the study ofthe impact of duplication, especially whole

genome duplication, on the evolution of genomic structure (see (Skrabanek and Wolfe 1998) for a survey),

as well as the specialization of function through the evolution of gene families. An important tool in the

study of both questions is the construction and analysis of trees based on the sequences of duplicated genes,

so called gene family trees.

Until recently, such studies involved a small number of genefamilies, each represented by ten or twenty

sequences, and the analysis could be carried out by visual inspection of the trees (Endo et al. 1997; Hughes

1998; Hughes 1999; Kasahara 1997; Martin 1999; Pebusque et al. 1998; Ruvinsky and Silver 1997).

However, as genomic sequence data grows, the number of gene families to be considered in a single genome

will grow, and so will the number of trees to be analyzed. For example, in their analysis of duplications in

the yeast genome, (Wolfe and Shields 1997) identified 446 duplicated genes. This data set is an order of

magnitude larger than the gene duplication studies currently being carried out by hand.

In this paper, we formalize the analytic methods described anecdotally in the molecular evolution studies

and cast them into a unified framework. Using this framework,we develop computational methods for

analyzing duplication histories and determining duplication dates in rooted trees, as well as exploring two

kinds of alternative hypotheses: local rearrangements when the evidence supporting an edge is weak and

alternate rootings for unrooted trees. These methods were implemented in a set of tools called NOTUNG that
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hornworm*rxr

15 [100]

7

5 [99]
3 [100] clawed frog*rxrb1

clawed frog*rxrb2
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6 [64] zebrafish*rxre
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9 [92]

8 [99] human*rxra
mouse*rxra

zebrafish*rxra

13 [71] zebrafish*rxrg

12 [99] clawed frog*rxrg
11 [100] chicken*rxrg

10 [99] mouse*rxrg
human*rxrg

Figure 1: A rooted Neighbor Joining tree for the RXR family reproduced from (Hughes 1998). Interior
nodes are labeled numerically. Labels in square brackets represent the percentage of bootstrap samples
supporting that branch leading from the label to the root. Values≤ 50% are not shown.

can be used for exploring alternative hypotheses about duplication events and is a step towards the automated

analysis of duplications in large genomic data sets.

An Example of Duplication Analysis. A gene family is “a set of genes descended by duplication and

variation from some ancestral gene” (King and Stansfield 1990), typically exhibiting related sequence and

function. A gene family tree (GFT)is a phylogeny constructed from the sequences of family members,

including representatives of the same gene in different species (orthologs) and duplicate genes in the same

species (paralogs). A GFT differs from a species tree in thata species may appear more than once.

We begin by considering a typical analysis of gene duplication using a gene family tree. (Hughes

1998) analyzed the evolution of the RXR family, using the rooted tree reproduced in Figure 1, which was

constructed using the Neighbor Joining heuristic. Confidence in clustering patterns was assessed using

bootstrapping, a statistical resampling method (Efron andGong 1983).

Summarizing the history of the RXR family that can be inferred from the tree, Hughes states “RXR genes

from three insects fell outside of all the vertebrate RXRA, RXRB and RXRG genes. The phylogeny suggests

that RXRB diverged first followed by RXRA and RXRG.. . . Zebrafish genes were found to cluster with
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mammalian RXRB, RXRA and RXRG, but bootstrap support for these clustering patterns was not strong.

Frog RXRB and RXRG genes cluster with their mammalian counterparts and, in each of these cases, there is

strong (99%) bootstrap support. The tree thus suggests thatRXRA, RXRB and RXRG diverged before the

divergence of amphibians and amniotes and probably before the divergence of tetrapods and bony fishes.”

Hughes’ description makes the following technical points:

• Every node in the tree represents either a speciation or a duplication event. It is possible to find the

set of duplication nodes by comparing the gene family tree toa species tree such as the cartoon of the

Tree of Life shown in Figure 2. Hughes identified two duplication nodes (14 and 15). There are two

more duplication nodes in the RXRB clade (3 and 6) that he doesnot mention.

• Bounds on the time of duplication, given in terms of major speciation events, can be inferred for each

duplication node from the relative positions of speciationand duplication nodes in the tree. According

to the topology shown in Figure 1, duplications 14 and 15 are both bounded above by the divergence

of vertebrates and insects, and bounded below by the divergence of tetrapods and bony fishes. The

upper bound can be inferred from the clustering of insect genes outside the gene family clades and the

lower bound from the presence of a fish gene in each subfamily clade.

• When a duplication hypothesis depends on a node with weak support in the sequence data, alternative

hypotheses should be considered. Because the bootstrap values associated with the zebrafish branches

in Figure 1 are low, topologies in which zebrafish genes do notcluster within the subfamilies should

also be considered. For this reason, the divergence of the amphibian lineage may be a more reliable

lower bound for duplications 14 and 15.
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Figure 2: A species tree showing major speciation events in the eukaryote lineage.

Our Results. Hughes’ analysis is typical of many studies in the biology literature of gene duplication

using ad hoc analysis of gene family trees (Endo et al. 1997; Hughes 1998; Hughes 1999; Kasahara 1997;

Pebusque et al. 1998; Ruvinsky and Silver 1997). These analyses are based on the assumption that a rooted

GFT is a hypothesis concerning the evolution of a gene family. The duplication history of the family can be

inferred from a GFT, where we define the duplication history to be a list of the duplications that occurred

and a time range for each. If the topology of the tree is unambiguous and the tree is rooted, then the inferred

history is unique.

However, as Hughes’ discussion of weak bootstrap values illustrates, in many instances it is not possible

to infer the tree topology unambiguously from the sequencesand, in this case, alternate histories must be

considered. Alternate histories must also be considered ifthe tree is unrooted. While a rooted GFT is a

hypothesis concerning the evolutionary history of a gene family, an unrooted gene family tree represents a

set of such hypotheses, one for each possible rooting. Unlike the RXR example, many of the trees reported

in the literature are unrooted because it is frequently not possible to find a sequence from the gene family in

a suitable outgroup species.

These considerations suggest two computational problems.The solution to the first problem is used as

a subroutine in the solution of the second.
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1. When the correct, rooted gene family tree is known, the problem is to infer the duplication history

from the tree.

2. When the correct rooted GFT is not known, the problem is to find the rooted gene family tree that best

represents the evolutionary history of the gene family.

The most general approach to the second question is to consider all rooted binary trees with respect to an

optimization criterion based on a model of gene family evolution. That is, givenG, a set of orthologous and

paralogous gene sequences from a gene family andTS , a binary species tree containing exactly the species

in G, find the rooted binary tree,TG, whose leaf set isG, that optimizes a given optimization criterion. The

forces that govern the evolution of gene families involve gene duplication and loss as well as the evolution

of the gene sequences themselves, as we discuss at greater length in Section 4. The optimization criterion

should therefore take all three processes into account. However, it is not obvious how to determine the

relative importance of macroscopic mutations like gene duplication and loss with microscopic mutations

like point mutations in a single optimization criterion. Instead, our approach is to start with a gene family

tree inferred from sequence alone. When the sequence data isnot sufficient to reconstruct an unambiguous,

rooted GFT, we use optimization criteria based on gene duplication and loss to consider alternate hypotheses.

We review previous work involving the relationship betweengene family trees and species trees in

Section 2. In Section 3, we present a linear time algorithm for inferring the duplication history of a gene

family from a rooted GFT. We address the problem of finding theoptimal alternate hypothesis, when the

correct rooted GFT is not known, in Section 4. After introducing two optimization criteria for GFTs based on

duplication and loss in Section 4.1, we discuss how to use them to select the optimal rooting of an unrooted

tree in Section 4.2. In Section 4.3, we present an algorithm for finding the optimal gene duplication history

given a rooted GFT with weak branches. Although in the general case, the number alternate hypotheses is
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superexponential in the number of taxa, we show that with respect to the criteria introduced in Section 4.1

it is possible to vastly reduce the search space if the weak branches are sparse, by identifying sets of weak

branches that can be evaluated independently.

We implemented these algorithms and tested them on gene family trees published in the molecular

evolution literature (Hughes 1998; Pebusque et al. 1998; Ruvinsky and Silver 1997). As summarized in

Section 5, the gene family histories generated by our program are consistent with the assessments presented

in the original papers. For unrooted trees and nodes with lowbootstrap values, our program generates and

scores alternate hypotheses, providing an exploratory analysis tool. In addition, an explicit statement of all

hypotheses helps mitigate any biased expectations of the data the user might have.
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2 Related Work

The problem of disagreement between gene trees and species trees was first raised by (Goodman et al. 1979)

in the context of inferring a species tree from a gene tree that may contain paralogies. They introduced the

notion of a map between a gene tree and a species tree and suggested a cost function for evaluating a species

tree with respect to a gene tree based on edit distance, gene duplication and gene loss.

These concepts were further developed and formalized in (Guigo et al. 1996; Hallett and Lagergren

2000; Ma et al. 1998; Ma et al. 2000; Mirkin et al. 1995; Page 1994; Page and Charleston 1996; Stege

1999; Zhang 1997). Formally, given a set of rooted gene trees, {TG}, the problem is to find the species tree,

TS , that optimizes an evaluation criterion. Several optimality criteria have been proposed (see (Eulenstein

et al. 1996; Eulenstein et al. 1998) for a comparative survey), all of which attempt to capture the notion that

gene duplication and subsequent loss are rare events. Thesecriteria involve constructing a mapping,M :

TG 7→ TS , between a gene tree and a species tree, that is used to compute the cost function. Several authors

have pointed out that it is difficult to distinguish true geneloss from genes that have not yet been sequenced

and discuss approaches to distinguishing true losses from apparent losses in the cost function (Goodman

et al. 1979; Mirkin et al. 1995; Page and Charleston 1996).

When inferring a species tree from a gene tree, the gene tree is assumed to be correct and the true species

tree is unknown. We, on the other hand, assume that the true species tree is known and use it to infer the

duplication history from a gene tree. While we share some mathematical structure with (Guigo et al. 1996;

Hallett and Lagergren 2000; Ma et al. 1998; Mirkin et al. 1995; Page 1994; Stege 1999), most notably the

mappingM(·), we consider the problem of dating duplication events and generating and evaluating alternate

hypotheses. The problem of finding an optimal species tree isNP-hard (Ma et al. 1998; Ma et al. 2000) for

the optimality criteria considered so far. In contrast, dating duplication events in rooted and unrooted trees
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is a computationally tractable problem, which is crucial ifwe hope to apply this to large data sets.

The methods for inferring species trees from gene trees surveyed here do implicitly generate duplication

histories in rooted trees although the time of duplication is generally not considered. In addition, most

optimality criteria surveyed here are subject to the constraint that each species may only be represented

once inG and hence would not be suitable for our application. A notable exception is the work of Page

and Charleston (Page and Charleston 1997), who have developed two software packages, COMPONENT

and GENETREE, that, as well as inferring species trees, will compute and display duplication histories for

rooted gene trees. This provides an interactive, exploratory analysis tool, but cannot be used to automate the

analysis of large data sets.

The first analyses of alternate rootings of unrooted gene trees have appeared very recently. (Hallett

and Lagergren 2000) presented an algorithm to infer the species tree from a set of rooted gene trees in

polynomial time under the restriction that the species treecan be reconciled with the gene tree using at most

k simultaneous copies of the gene along its branches. In this context, they also developed a polynomial

time algorithm that selects a root for each unrooted gene tree such that the total number of duplications

required to explain the data is minimized. Their algorithm considers all possible rootings of all trees using

a brute force approach. In work developed independently andpresented simultaneously, we (Chen et al.

2000) presented an algorithm that, given an unrooted gene tree and a fixed species tree, ranks all possible

rootings of the gene tree according to an optimization criterion that estimates the plausibility of the resulting

duplication histories. By using a data structure that stores intermediate results, we avoid the brute force

approach, ranking all rootings in time linear in the size of the gene tree. In the current paper, we apply this

approach to a wider range of optimization criteria based on duplication and loss. None of the work surveyed

here addresses alternate hypotheses due to weak edges. In (Chen et al. 2000), we introduced this problem
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and proposed a heuristic solution. In the current paper, we develop an exact approach.
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Figure 3: Gene family trees for the hypothetical gene family, A, with five known gene sequences (two in
mouse, two in chicken and one in fish.) (a) An unrooted GFT forA. (b) – (d) Three alternate rootings of the
GFT in (a). Duplication nodes are shown in italics and missing genes are shown in grey.

3 Inferring Gene Family Histories from Rooted Trees

The process of inferring a duplication history from a gene family tree is illustrated in Figure 3 which shows

an unrooted GFT for a hypothetical gene family,A, and three possible rootings of that tree. Each rooted tree

corresponds to a single duplication history. For example, the rooted tree in Figure 3(b) suggests that gene

A was present in the common ancestor of fish and tetrapods and was duplicated after the divergence of fish

and before the separation between birds and mammals. In contrast, Figure 3(c) implies that the duplication

took place before the divergence of fish and tetrapods. Although there is only one fish sequence, it clusters

with the genes in theA2 family, suggesting either that the fishA1 gene has been lost due to mutation or that
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it has not yet been sequenced. Because these trees are rooted, we can observe evidence of the duplication

through clustering, even when one of the two paralogs is missing.

The problem of reconstructing a duplication history from a rooted gene family tree can be stated formally

as follows:

Problem 1: Given a rooted GFT,TG, andTS , a binary species tree containing only the species

in TG, identify all duplication nodes and determine lower and upper bounds on the time of each

duplication in terms of speciation events.

Both the identification of duplication nodes and the calculation of duplication dates require constructing

a mapping,M(·), from every node inTG to a target node inTS . We construct this map as follows. Let

v be a node inTG and letl(v) andr(v) be its left and right children, respectively.M(·) maps each leaf

node inTG to the node inTS representing the species from which the sequence was obtained. ( Leaf

nodes inTG represent sequences, whereas leaf nodes inTS represent species.) Each internal node inTG

is mapped to the least common ancestor (lca) inTS of the target nodes of its children; that is,M(v) =

lca(M(l(v)),M(r(v))). For example, in Figure 3(b), the leaf nodes are mapped tofish, chicken, mouse,

chicken, mouse, from top to bottom.M(c) = amniote, since the lca ofmouseandchickenis amniotein the

Tree of Life (Figure 2). Nodesb andd both map toamniote, while M(a) = jawed vertebrate.

An algorithm for constructing the mapping,M(·), and identifying duplication nodes has been developed

independently in the context of using multiple gene trees togenerate a species tree. By using fast lca

queries (Bender and Farach-Colton 2000; JáJá 1991)1, M(·) can be computed inO(|TG|) time. While our

goals are different, we share a key algorithmic component with this work. We refer the reader to (Mirkin

1Several early papers on lca computation were too complicated to implement, even papers which claimed to be “simplifications”,
and had large hidden constants. Thus, it is a “folk theorem” that any algorithm which uses lca precomputation is impractical.
However, the state of the art of lca computation has progressed since those early papers, and there now exist lca algorithms which
are very simple and very practical.
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et al. 1995) for a complete description and proofs.

Observe that under the mapping, a nodev in TG is a speciation node if its children are mapped to

independent lineages inTS . In Figure 3(c),x is a speciation node since mammals and birds are separate

lineages. If the children ofM(v) share a lineage, thenv is a duplication node. When this occurs, either both

children have the same label or one child’s target inTS is an ancestor of the other’s andv will be mapped

to the same label as the ancestral child. For example, nodew is a duplication node in Figure 3(c) because

M(y) = jawed vertebrateis an ancestor ofM(x) = amniote.

Observation 1 Nodev is a duplication node if and only ifM(v) = M(l(v)) or M(v) = M(r(v)) or both.

The mapping,M(·), can also be used to compute lower and upper bounds on the timeof duplication. Let

v be a duplication node inTG. Since copies of the duplicated gene are observed in descendents of bothl(v)

andr(v), the duplication must have been present in their least common ancestor, yielding the lower bound

L(v) = M(v). By a similar argument, the upper bound can be shown to be the target of the nearest ancestor,

av, of v that is a speciation node. Since copies of the duplicated gene are present in only one of the subtrees

rooted at children ofav, the duplication must have occurred in a more recent species. If v has an ancestor

that is a speciation node, we set the upper boundU(v) = M(av). Otherwise,U(v) is the origin of life. For

example, in Figure 3(c), the bounds on the duplication node,w, areL(w) = jawed vertebrateandU(w) =

∞, sincew is the root node ofTG. In Figure 3(b),b is a duplication node with labelamniote. Its parent,a

is a speciation node with labeljawed vertebrate. Thus,L(b) = amnioteandU(b) = jawed vertebrate.

Observation 2 The duplication associated with a node,v, in TG, occurred after the speciation eventU(v)

and before the speciation eventL(v) = M(v).

Notice that we can computeU in O(|TG|) time.
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4 Evaluating Alternate Gene Family Histories

As the example in Figure 3 shows, alternate rootings of an unrooted GFT give alternate duplication histories.

Alternate hypotheses such as these can be evaluated in termsof the number of gene duplications and losses

implied by the associated rooted trees. For example, Figure3(a) requires a single gene duplication to explain,

while Figure 3(c) involves one gene duplication and one geneloss. In contrast, the tree shown in Figure 3(d)

has three subfamilies resulting from two duplications (nodesp andq) and four losses. A duplication and

loss model can also be used to evaluate rearrangements of weak branches.

We formalize the intuition provided by this example in the remainder of this section. First, we develop

two optimization criteria based on duplication and loss forevaluating alternate hypotheses in Section 4.1.

We discuss how to apply these to unrooted trees in Section 4.2. Algorithms for evaluating rearrangements

of weak edges with respect to these criteria are presented inSection 4.3.

4.1 Optimization Criteria for Duplication Histories

We consider two criteria for evaluating alternate gene duplication histories. The first scoring function,

Cdl(·), calculates gene duplication and loss explicitly and can bestated as

Cdl(TG) = cλ · λ + cδ · δ,

whereδ represents the number of duplication nodes inTG, λ represents the number of gene losses andcλ

andcδ are constants that determine the relative importance of duplications and losses in the scoring function.

The best choice ofcλ andcδ is an open problem. In this paper, we usecλ = cδ = 1 consistent with the work

cited in Section 2.

We defineλ to be the most parsimonious number of gene losses required toexplain the duplication
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Figure 4: A rooted tree for the fictionalB gene family showing a gene duplication at nodeq and a gene loss
loss in the common ancestor of mouse and chicken.

history. That is, if an entire subtree ofTS is missing fromTG, we assume that the loss occurred at the

root of the subtree and count it as a single event. For example, in Figure 4, we assume thatB2 was lost

in the common ancestor of mouse and chicken rather than two independent gene losses in the leaf species,

resulting inδ = 1 andλ = 1.

The number of duplications,δ, is a byproduct of the algorithm for inferring duplication histories de-

scribed in Section 3. The loss, can be computed by summing thegene losses over all edges inTG:

λ =
∑

e∈TG

EDGELOSS(e).

The loss associated with the edgee = (parent, child) is given by

EDGELOSS = (DEPTH (M(child)) − DEPTH (M(parent)) − 1) + ISDUP (parent),

where DEPTH (M(v)) returns the depth of the target of nodev in TS , (the species tree for the species in

TG only) and ISDUP (v) = 1 if v is a duplication node and zero otherwise. The first term in this equation
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counts gene losses associated with speciation nodes. The labels of a speciation node and its child should

differ by one if no loss has occurred and will increase by one with each gene loss. In contrast, if no gene

loss has occurred on the edge immediately below a duplication node, the labels of a duplication node and its

child should be identical. Thus, ifparentis a duplication node, the first term will be off by one. The second

term corrects for this case.

We define a second cost function,Cub(·), that is an upper bound on the maximum number of missing

leaf nodes plus the number of duplication nodes. Let the cost, k(t), of a nodet in TS , be the number of leaf

nodes undert. That is,k(t) is the maximum number of gene losses that could occur following a duplication

in the ancestral speciest. If t is a leaf, thenk(t) = 1. The cost of the gene tree,TG, is

Cub(TG) =
∑

d∈D

(k(M(d)) + 1),

whereD be the set of duplication nodes inTG. UnderCub(·), the cost of the tree in Figure 4 is four,

sincek(M(q)) = k(jawed vertebrate) = 3. In comparison, underCdl(·), the cost of the tree is two, when

cλ = cδ = 1.

These criteria represent two extremes on the spectrum of gene-loss models. If a gene is missing in

species which share a common ancestor, is this due to a singleloss in the common ancestor or did several

independent losses occur?Cdl(·) represents the minimum number of gene losses required to explain the

data, whileCub(·) is an upper bound on the maximum number of possible gene losses. We believe that

gene loss is a rare event and that in most cases, the more parsimonious model is likely to be the correct

one. However, by testing our methods on two diametrically opposed models, we can gain insight into how

sensitive our methods are to the choice of model.
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4.2 Unrooted Trees

Unlike a rooted tree, which encodes a single evolutionary hypothesis, an unrooted tree withn = |E| edges

represents up ton different hypotheses, one for each possible rooting. We propose to use the two cost

functions presented above to rank thesen hypotheses, making it possible to consider the most biologically

plausible hypotheses first. We can state the unrooted tree problem formally as follows:

Problem 2.1: Given an unrooted GFT,TG = (V,E), and an optimization criterion,C(·),

determine the duplication history of the tree rooted ate, for every edge,e ∈ E. Rank the

histories according to the criterion,C(·).

To do this, we must label each node inTG as either a duplication or speciation node under every possible

rooting. However, the mapping,M(·) changes with the position of the root. A simple quadratic time

algorithm would be to apply the rooted tree algorithm to every possible rooting. However, we can derive

a linear time algorithm to compute all labelings as follows.Notice that, with respect to a nodev, we can

partition all possible rootings of the tree into three groups: the root must be in one of three directions,

depending on which of the edges incident onv is on the path fromv to the root. Lete1, e2 ande3 be the

edges incident onv. The status ofv as either a duplication or speciation only depends on which edge points

towards the root. This is because if we fix which edge is up, thesubtree rooted atv is fixed, and so is the

bottom-up lca computation. Now, we need only computeMe1
(v), Me2

(v) andMe3
(v), oneM(·) value for

each possible “up” edge, from which we can compute the labeling under any desired rooting in linear time.

To compute the three values we simply do the recursive computation at each node in any order. That is,

suppose we want to computeMe2
(v), for somev. This determines which two nodes are down. Call them

u andw. ThenMe2
(v) = lca(M{v,u}(u),M{v,w}(w)). We recursive computeM{v,u}(u) andM{v,w}(w).

In order to keep from recomputing the same value over and over, we simply store all values in a table as we
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compute them. Thus, after we have computedM{v,u}(u) once recursively, we can look it up in constant time

without need for recomputation in the future. Thus, all3n values can be computed inO(n) time. Similarly,

any cost function that depends on a function ofM(·), including Cdl(·) andCub(·), can be computed in

O(n) time. Thus, linear time is sufficient to rank alln rootings and print a constant number of top ranking

duplication histories. Printing all duplication histories takes longer.

4.3 Rooted Tree Rearrangements

As in the case of unrooted trees, alternate hypotheses for weak edges can be selected with respect to an opti-

mization criterion. While the following analysis can be applied to any arbitrary set of edges deemed suspect

by the user, typically bootstrapping (Efron and Gong 1983) is used to associate a measure of confidence with

every edge in a phylogeny. We use a rearrangement strategy toidentify appropriate alternate hypotheses for

weak edges as follows.

The removal of any edge,e, in a tree bipartitions the set of leaf nodes. If the bootstrap value ofe is low,

it suggests that the evidence in the data for that bipartition is weak. It does not reflect on the certainty of the

structure of any other part of the tree. In reconstructing the duplication history of a rooted GFT, we consider

alternate hypotheses associated with a weak edge,e, by generatingNearest Neighbor Interchanges (NNI’s)

arounde. Examples of NNI rearrangements are shown in Figure 5 (see, for example, (Swofford et al. 1996),

for a more detailed description.) The NNI, around an edgee = (parent, child) shown in bold, is effected by

swapping the subtree rooted at the sibling ofchild with either its left or its right subtree. This rearrangement

generates alternate bipartitions fore while leaving all other bipartitions associated with the tree unchanged.

An NNI in TG will change the mapping,M : TG 7→ TS , resulting in a new mapping and in some cases,

will also change cost of the tree and the duplication history. For example, Figure 5(a) shows a scenario

where, presumably, the frog and fish genes were incorrectly placed with respect to each other due to weak
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Figure 5: Two tree fragments, each with the three possible Nearest Neighbor Interchanges around the edge
shown in bold. Duplication nodes are shown as grey circles. Each node,v, is labeled with its target,M(v),
in the species tree.
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signal in the sequence data. The two internal nodes in this tree fragment are both labeledvertebrate. NNI

a′′ changes the label of the deeper internal node, thereby eliminating a false duplication. The example

in Figure 5(b) is more ambiguous. The middle tree representsa duplication before the divergence of fish

followed by a loss in the fish lineage. The rearrangementb′′ changesM(·) and moves the duplication to

the deeper node, resulting in a duplication after the fish-tetrapod split and eliminating the gene loss. Cost

functions based on gene loss tend to favor histories with more recent duplications (e.g.,b′′ rather thanb).

This is a disadvantage to the duplication/loss model since both b′′ andb are plausible and which scenario is

more likely requires specialized knowledge of gene family.

We now state the problem of optimizing a tree with weak edges formally:

Problem 2.2: Let TG = (V,E) be a rooted GFT and letW ⊆E be a set of weak edges. Define

TG,W to be the set of trees that can be derived fromTG by NNI operations across edges inW .

Find the treeT ∗
G ∈ TG,W such thatT ∗

G optimizes a given criterion,C(·).

Note that whenW = E, the problem reduces to that of finding the optimal gene family tree counting only

duplications and losses and ignoring sequence data.

It is not known if an efficient algorithm for findingT ∗
G exists. No doubt the existence of such an algorithm

depends on the choice ofC(·). In (Chen et al. 2000), we considered the following simple heuristic for

finding optimal trees: Enumerate the weak edges bottom-up and perform any NNI that reduces the label of

the child node of the weak edge under consideration. Once that choice has been made, the weak edge is

considered fixed and rearrangements of weak edges higher in the tree are considered. While we found that

this greedy heuristic works well on the real data sets we applied it to, it is possible to produce biologically

plausible examples where the heuristic performs badly.

In the current paper, we therefore consider algorithms thatfind the actual optimum. The naı̈ve algorithm
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Figure 6: A GFT with four weak edges, shown in bold. The triangles represent subtrees whose structure is
not made explicit.

for such an optimization is to enumerate all possible trees and to evaluateC(·) on each one. This is clearly

not feasible in general, since the number of trees is superexponential in the number of taxa. However, in

many practical cases, the weak edges are sparse and typically appear in small connected components. We

will show that for some choices ofC(·), in particularCdl(·) andCub(·), it is sufficient to optimize these

connected components independently rather than exhaustively enumerating all trees inTG,W , reducing the

cases to be considered to a feasible number.

Consider the tree in Figure 6, which contains four weak edges, shown in bold. These edges form two

connected components: ((a,b),(a,e),(e,f)) and ((k,m)). Given a connected component of weak edges,Wi, let

Ti be the rooted binary tree formed by adding all edges that are immediate descendents of a weak edge to

Wi. Ti haski = |Wi| + 2 leaves. For example, for the connected component ((a,b),(a,e),(e,f)),Ti is the tree

with root a and leavesc, d, g, h andi. (Note that the leaves ofTi may be subtrees ofTG.)
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Thus, each connected component induces a rooted, binary tree embedded in the GFT. For each suchTi,

the set of trees that can be generated by applying an arbitrary sequence of NNIs to edges inWi is equivalent

to the set of all rooted binary trees with the same root and leaf set asTi. We call this setTi. The number of

trees inTi is (2ki −3)!/[2ki−2(ki −2)!]. LetT ∗
i be the tree fromTi that optimizesC(·) and letT̂G be the tree

obtained by replacing eachTi with T ∗
i . The tree,T̂G, can be generated through independent optimization of

the{Ti} by the following algorithm:

Algorithm A:

ComputeM(x) for every node inTG.

ForeachTi,

Compute the optimal rearrangement tree,T ∗
i , by exhaustive enumeration.

ReplaceTi with T ∗
i in TG.

RecomputeM(x) for every node inTG.

Note that there may be more than one optimal rearrangementT ∗
i of Ti. If Ti is optimal, we report this as

T ∗
i . Otherwise, we pick an arbitrary optimal solution to beT ∗

i .

Below we show that, whenC(·) is Cdl(·) or Cub(·), optimization of eachTi independently will yield the

globally optimal tree,T ∗
G. Thus, we do not need to consider the product of all possible rearrangements of

all Ti and this approach will substantially speed up the computation in cases where noTi is too large. Our

exhaustive algorithm will, in fact, run in time linear in thenumber of components and exponential in the

size of the largest component.

Theorem 1 Let C(·) be any cost function such that the cost of the subtree ofT̂G rooted at any nodev is of
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the form

C(Tv) = C(Tl(v)) + C(Tr(v)) + f(M(v),M(r(v)),M(l(v))); (1)

that is, the cost of a tree rooted atv depends on the cost of its subtrees and a function,f(·), that depends

only on the labels ofv and its children. Then̂TG = T ∗
G.

Proof: Let T̂G be the tree resulting from running AlgorithmA onTG = (V,E). We show thatC(Tv) is

optimal for any vertex,v ∈ V , if v is the root of someTi or if v is not in
⋃

{Ti}.

Case 1: v is a root of some weak component, Ti. In this case,C(Tv) is optimal by brute force

optimization.

Case 2: v is outside the Ti. C(Tv) is optimal if each of the terms of Equation 1 is optimal.C(Tl(v))

andC(Tr(v)) are optimal by induction. Thus, it is sufficient to show that there is no rearrangement that can

reduce the value off(·), to show thatC(Tv) is optimal. To see that this is true, note that the label of any

node depends only on the set of leaves below it. Although rearrangement can change the structure of the

{Ti} and hence the labels of their interior nodes, the labels of the roots of the{Ti} and nodes outside them

are unchanged.

Since the root,r, of TG is either outside of
⋃

{Ti} or a root of someTi, C(Tr) is optimal. Thus,

T̂G = T ∗
G.

Corollary 1 If C(·) = Cdl(·) or C(·) = Cub(·), thenT̂G = T ∗
G.

Proof: BothCdl(·) andCub(·) satisfy Equation 1.

The time to optimize a single connected component,Wi, is the product of the number of possible rear-

rangements ofTi and the time to score each rearrangement. Thus, the time to compute optimal rearrange-
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ment tree using AlgorithmA is
N∑

i=1

(
(2ki − 3)!

2ki−2(ki − 2)!
· O(ki)),

whereN is the number of components. The term corresponding to the number of rearrangements of the

largest component will dominate and is exponential in the number of edges in the largest component. How-

ever, the running time is linear in the number of components.If weak edges are sparse, and in particular,

individual components are small, this run-time will not be onerous in practise. In the trees culled from the

literature for this study, no connected component had more than three edges. NOTUNG ’s running time on

these trees never exceeded one second of cpu-time per tree onan UltraSparc 10.
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5 Experimental Results

The algorithms described in the previous sections have beenimplemented in Java program called NOTUNG.

NOTUNG takes a gene family tree,TG, a species tree,Ts and a bootstrap threshold,τ , as input. The user

may select either of the cost functions described in Section4.1 to evaluate alternate hypotheses. Input trees

are represented in Newick format (http://evolution.genetics.washington.edu/phylip/newicktree.html). For

rooted trees, NOTUNG generates a gene duplication history as output; that is, a list of duplication nodes,

with bounds on the time of duplication for each one. If the rearrangement option is turned on, NOTUNG will

also compute the optimal rearrangement tree according to AlgorithmA. Currently, we use the tie–breaking

rule described in Section 4.3. In this case, NOTUNG will present the original duplication history and the

history for the optimized tree, giving scores for both. In the next release, we plan to report all possible

optima to the user. For unrooted trees, NOTUNG considers all possible rootings and computes a duplication

history for each. These histories are ranked according to the cost function selected. Note that our algorithms,

as designed, work with binary and higher degree trees, but NOTUNG currently only handles binary trees.

Similarly, there is no algorithmic reason why the rearrangement option cannot be applied to every every

possible rooting of an unrooted tree automatically, but this approach has not implemented it. Since most

rootings of an unrooted tree are biologically implausible,we leave it to the user to select the rootings of

interest and apply the rearrangement algorithm to them explicitly.

One goal of the experimental work presented here is to determine whether these cost functions rank

alternative hypotheses effectively. Below we describe NOTUNG’ S performance on rooted trees, unrooted

trees and trees with low bootstrap values. As test data, we used all “non-pathological” trees from three

recent articles on large scale duplication (Hughes 1998; Pebusque et al. 1998; Ruvinsky and Silver 1997).

We eliminated non-binary trees and trees based on genes withcomplicated internal structure such as mosaic
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Gene Family Source
ANK (Pebusque et al. 1998) unrooted
C (Hughes 1998) rooted
CRYB (Ruvinsky and Silver 1997) unrooted
EGR (Pebusque et al. 1998) unrooted
HSP70 (Hughes 1998) rooted
LHX (Ruvinsky and Silver 1997) unrooted
NOTCH2 (Hughes 1998) rooted
PBX (Hughes 1998) rooted
PSMB (Hughes 1998) unrooted
RXR (Hughes 1998) rooted
TCF (Ruvinsky and Silver 1997) unrooted
TEN (Hughes 1998) rooted
VMAT (Pebusque et al. 1998) unrooted

Table 1: Gene family trees used in experiments.

genes or genes with repeated domains, and trees that show evidence of horizontal gene transfer. We ana-

lyzed the remaining thirteen trees (summarized in Table 1) using NOTUNG and compared the automatically

generated results with the verbal analysis presented in thesource paper.

NOTUNG compares the input GFT with a species tree to infer the duplication history. Since there are

many competing hypotheses concerning the topology of the Tree of Life, our program allows the user to

supply a species tree as input. In the experiments describedbelow, we tried, to the extent that it was

possible to determine from the text, to use the same species tree as the authors who originally analyzed

the tree. Most authors used a tree consistent with that shownin Figure 2. Pebusqueet al. (Pebusque

et al. 1998) used a variant in which nematodes are included inthe protostome clade. The exact tree used

is shown in Figure 7. This tree is constructed from information in the University of Arizona Tree of Life

project (http://phylogeny.arizona.edu/tree/phylogeny.html) edited by D. R. Maddison and W. P. Maddison,

the NCBI Taxonomy database (http://www.ncbi.nlm.nih.gov/Taxonomy/tax.html) and (Graur et al. 1996),

for the classification of rabbits.
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Gene Family Original Tree Optimal Tree
δ λ Cub δ λ Cub

C 4 14 30 3 11 22
HSP70 9 18 50 6 7 25
NOTCH 5 13 28 4 10 22
PBX 3 3 11 3 3 11
RXR 4 3 16 4 3 16
TEN 2 8 12 2 8 12

Table 2: Scores of rooted trees with respect toCdl(·), given in terms of the number of duplications and
losses, andCub(·). Scores are given for the original tree and the optimal rearrangement tree. The PBX,
RXR and TEN trees were unchanged by rearrangement.

5.1 Rooted Trees

NOTUNG was applied to the rooted trees in Table 1. The scores of the resulting duplication histories are

shown in Table 2. The histories constructed by the program were consistent with the analysis of (Hughes

1998) in all cases. Generally, NOTUNG finds a superset of the duplications discussed by Hughes, since he

only mentions those duplications that are relevant to the biological question he is addressing. This was

true of all the trees reported here; the authors of the original studies did not attempt to describe the entire

duplication history. They simply reported the aspects theyconsidered relevant to their research. In contrast,

NOTUNG reports the entire history, including variants, and allowsthe user to triage the information.

As an example, we show the duplication history generated by NOTUNG for the RXR tree shown in

Figure 1:

Duplication at 15 Lower bound: jaw Upper bound: pro

Duplication at 14 Lower bound: jaw Upper bound: pro

Duplication at 6 Lower bound: zebrafish Upper bound: jaw

Duplication at 3 Lower bound: clawed frog Upper bound: tet

Here “jaw” refers tojawed vertebrate, “pro” to protostomesand “tet” to tetrapods. Both duplications

29



14 and 15 occurred after the divergence of protostomes (insects and molluscs) from deuterostomes (fish and

tetrapods), which is consistent with Hughes’ analysis. It also finds more recent duplications (3 and 6) not

discussed by Hughes.

5.2 Alternate Hypotheses for Weak Branches

Alternate hypotheses were evaluated with respect to both cost functions for every branch with a bootstrap

value less than 90% in the six rooted trees in Table 1. In all cases,Cub(·) andCdl(·) selected the same

optimal rearrangement tree, although they gave different numerical scores. For three input trees, the original

tree was unchanged. The PBX tree had no weak edges at the 90% level and the RXR and TEN trees could

not be improved through rearrangement.

The other three trees were modified by the rearrangement process. The improvements in score, with

respect to both cost functions, are summarized in Table 2. Toillustrate NOTUNG’ S performance on weak

edges, we discuss the rearrangement of one GFT in the data set, HSP70, in detail below. Similar behavior

was observed in the remaining two trees, the C family tree andthe NOTCH tree, which are simpler than

HSP70.
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Figure 8: The HSP70 tree before and after NNI rearrangements. The trees have been simplified by
compressing clades containing only mammals and birds (AMNIOTE*GRP78m, AMNIOTE*HSP70, AM-
NIOTE*HSC70). No rearrangements were accepted in these clades. Internal nodes are given numerical
labels. In the upper tree, the bootstrap values of edges withbootstrap support above 50 are labeled with
square brackets.
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The examples in Figure 5 show that some rearrangements correct phylogenetic mistakes, eliminating

duplications and resulting in a GFT that is more consistent with the species tree, while others move dupli-

cations down in the tree, reducing loss while maintaining the same number of duplications. Both types of

rearrangement appear in the HSP70 trees shown in Figure 8. These trees have been simplified for the pur-

poses of exposition. Subtrees containing only birds and mammals have been compressed and are shown in

capital letters (e.g., AMNIOTE*HSP70). The upper tree shows the original topology before rearrangements

were considered. This tree contains five branches with bootstrap values below the threshold. Two of them

are adjacent. Initially, our program inferred a duplication history with nine duplications and eighteen losses:

Duplication at 18 Lower bound: euk

Duplication at 17 Lower bound: euk

Duplication at 16 Lower bound: euk

Duplication at 14 Lower bound: tet Upper bound: euk

Duplication at 12 Lower bound: roh Upper bound: tet

Duplication at 10 Lower bound: human Upper bound: roh

Duplication at 8 Lower bound: amn Upper bound: euk

Duplication at 6 Lower bound: pla Upper bound: euk

Duplication at 4 Lower bound: fission yeast

The structure of this tree, (fungi (insects (plants, vertebrates))), is at odds with the structure of the Tree

of Life, (plants (fungi, (insects, vertebrates))). The structure within the plant clade also disagrees with the

Tree of Life since petunias and tomatoes are more closely related to each other than either is to corn.

In contrast, the topology after rearrangement had three fewer duplication nodes and seven losses,

Duplication at 18 Lower bound: euk
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Duplication at 13 Lower bound: amn Upper bound: tet

Duplication at 12 Lower bound: roh Upper bound: tet

Duplication at 10 Lower bound: human Upper bound: roh

Duplication at 8 Lower bound: amn Upper bound: tet

Duplication at 4 Lower bound: fission yeast Upper bound: euk

as shown in the lower tree. The removal of duplications from nodes 6, 16 and 17 can be interpreted as

correcting errors in the original topology. The original topology implies that an ancestral HSP gene was

duplicated twice early in the eukaryote lineage; subsequently each of the four resulting copies survived

in only one lineage (fungi, insects, plants and vertebrates, respectively) and was lost in the other three.

In view of the low bootstrap support, it seems more plausiblethat the yeast and fly sequences are placed

incorrectly. In the rearranged tree, the branching of plants, yeast and insects is compatible with the Tree

of Life. This second hypothesis is more compelling than the original hypothesis of two early duplications

followed by massive gene loss. The exchange of the corn and tomato genes to remove the duplication at

node 6 also appears to correct an error in the reconstructionof the tree topology. The rearrangement of the

frog sequence that led to the replacement of the duplicationat node 14 with one at node 13 results from

the tendency of the duplication/loss model to favor more recent duplications and is more controversial. It is

open to interpretation whether a duplication in the amniotelineage is more or less likely than a duplication

before the divergence of amphibians followed by loss of one copy.

This example shows that rearrangement can result in substantially different hypotheses. The number

of duplication nodes in the rearranged HSP tree decreased from nine to six. As this illustrates, although it

is possible to pick out individual rearrangements of low confidence branches by eye, when a tree contains

many weak branches it is helpful to have a tool to integrate all the alternate hypotheses automatically.
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5.3 Unrooted Trees

We tested NOTUNG on the seven unrooted trees in Table 1. For each tree, NOTUNG computed the duplica-

tion history for every root and ranked them according to bothcost functions. We compared these rankings

with the rootings favored by the authors. Although possiblerootings are rarely, if ever, mentioned explicitly

by the author’s whose trees we tested, they frequently implythat only a subset of the possible rootings lead

to plausible hypotheses. Consider, for example, the TCF family tree, shown in Figure 9. In their analysis,

Ruvinsky and Silver (Ruvinsky and Silver 1997) state that “it is difficult to conclude whether the split be-

tween the TCF1 and TCF2 subfamilies occurred before or afterthe separation between fish and tetrapods,”

but “in any case, divergence between the two sub families hastaken place prior to the amniote-amphibian

separation.” These conclusions are consistent with a rooting on the bold edges in Figure 9 and no others.

For each tree, we partitioned the set of edges into plausibleand implausible rootings from the analysis

presented by the original authors. We executed NOTUNG on all trees and compared the rankings induced by

each cost function with the author’s rankings. The two cost functions always agreed on the ranking of the

trees with the best scores, ranging from an identical ranking of the top nine rootings for the EGR family to

identical rankings of all rootings for ANK, LHX and VMAT. When NOTUNG ’s rankings were compared

with those of the original authors, Noting ranked all plausible rootings ranked above all implausible rootings

for five out of the seven trees. For the remaining two trees, the costs of all implausible rootings were greater

than or equal to the costs of all plausible rootings. For one of these, the PSMB tree, the set of highest

ranked edges is a superset of the rootings deemed plausible by Hughes. One of these edges has weak

bootstrap support. A rearrangement around this edge improves the score of the tree with respect to both

Cdl(·) andCub(·). When the alternate rootings of this rearranged tree were rescored, the set of lowest cost

rootings exactly agreed with Hughes’ analysis. In the othercase, the CRYB tree, there were eight top-ranked
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Figure 9: An unrooted tree for the TCF family (Ruvinsky and Silver 1997). Each edge,e, is labeled with the
ranking, with respect to bothCdl(·) andCub(·), of the tree rooted ate. Edges in bold correspond to rootings
supported by the analysis in (Ruvinsky and Silver 1997).
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rootings of equal cost, while the authors’ analysis impliedthat only one rooting is possible. The duplication

histories (i.e., the set of duplication nodes with time ranges) were identical for the eight edges. Only the

ordering of the duplication nodes differed. This suggests either that the authors did not consider all alternate

scenarios, possibly missing something of interest, or thatthey had additional information about the gene

family, such as the biochemical properties or functional roles of the proteins, that allowed them to rule out

other rootings.

Within the set of plausible rootings, the ordering of scoresdoes not always agree with the biologists’

assessments. In contrast to the analysis of Ruvinsky and Silver, who ranked the three best edges equally,

the edge adjacent to the fish sequence in Figure 9 is ranked higher than the other two because this rooting

requires one fewer gene loss.
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6 Discussion

In this study, we analyzed every non-pathological tree in three recent gene duplication studies (Hughes 1998;

Pebusque et al. 1998; Ruvinsky and Silver 1997). The duplication histories generated for rooted trees were

consistent with the analyses of the authors of the original papers for all trees considered. For unrooted trees,

alternate histories were computed for each rooting and ranked according to two different cost functions

based on duplication and loss. One of these is based on a modelof parsimonious gene loss while the other

is an upper bound on the maximum number of gene losses that occurred. Although the rankings for the

two cost functions were different, for top ranking rootingsthe cost functions agreed for every tree in the

test set. In particular, they agreed on the hypotheses most likely to be of interest to the user. Both rankings

correctly identified unlikely hypotheses, providing the user with a way to control the quantity of output to

be reviewed. When used to select alternate hypotheses for trees with weak edges, both cost functions were

effective in correcting errors in the duplication history stemming from errors in the original tree topology.

The fact that the cost functions agree on both unrooted treesand rearrangements, suggest that the prob-

lem is robust with respect to the duplication/loss model. Since the cost functions represent models that are

opposite extremes of gene loss, our results imply that inferring duplication histories is not highly sensitive

to the choice of model and we can have confidence in an exploratory analysis tool based on such scoring

functions. This approach does present some limitations. Because both cost functions count gene losses, they

favor hypotheses with more recent duplications. As a result, in addition to correcting phylogenetic errors

when evaluating alternatives for weak branches, in some cases they select more controversial alternatives.

By combining duplication and loss with sequence information, this approach offers a richer source of infor-

mation for reconstructing gene duplication histories thansequence information alone. Nevertheless, there

are other sources biological information (e.g., biochemical properties and intron/exon structure) that can
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guide analysis that are not incorporated in this approach. Another limitation of this approach is that it is

difficult to distinguish true gene loss from genes that have not yet been sequenced.

This paper suggests several open problems for future research. Currently, there is no known polynomial

algorithm for finding the optimal rearrangement tree with respect to either cost function. Nor has this

optimization problem been shown to be NP-hard. The sensitivity of the cost function,Cdl(·), to the relative

importance of gene duplications and gene losses (i.e., the values ofcλ andcδ) has not been investigated.

Finally, the more general problem of phylogeny reconstruction using a cost function that combines sequence

comparison, gene duplication and gene loss is an outstanding challenge.

Currently, there is a great deal of interest in using gene duplications to study the role of whole genome

duplications in genome evolution (Skrabanek and Wolfe 1998; Wolfe and Shields 1997). This will require

dating all paralogs in a genome. In its current form, NOTUNG can be used to estimate duplication dates of

rooted GFT’s automatically. With more reliable evaluationmethods, NOTUNG can also be adapted to the

automatic analysis of unrooted trees and rearrangements oftrees with weak edges.
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