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Abstract

Large scale gene duplication is a major force driving the evolutiageogktic functional innovation.
Whole genome duplications are widely believed to have played an impadinin the evolution of
the maize, yeast and vertebrate genomes. The use of evolutionary trees e dhalfiistory of gene
duplication and estimate duplication times provides a powerful tookfiedying this process. Many
studies in the molecular evolution literature have used this appraoashall data sets, using analyses
performed by hand. The rapid growth of genetic sequence data will scmm silnilar studies on a
genomic scale, but such studies will be limited unless the analysis carndreatad. Even existing data
sets admit alternative hypotheses that would be too tedious to constdeutautomation.

In this paper, we describe a program calledNNG that facilitates large scale analysis, using both
rooted and unrooted trees. When tested on trees analyzed in the literabarey &lconsistently yielded
results that agree with the assessments in the original publicatidnss, NoTUNG provides a basic
building block for inferring duplication dates from gene trees autaraliyi and can also be used as an

exploratory analysis tool for evaluating alternative hypotheses.



1 Introduction

Yeast is a single cell organism with 6000 genes (Goffeau. éi986), while mice have an estimated 50,000
- 100,000 genes (Silver 1995). How did this order-of-magteétincrease in gene number, with its concomi-
tant increase in functional complexity, arise? Gene dafibo followed by mutation leads to new function
and is considered a principal force driving developmemtabvation in vertebrates (Ohno 1970).

The availability of sequence data has catalyzed the stutlyedmpact of duplication, especially whole
genome duplication, on the evolution of genomic structsee (Skrabanek and Wolfe 1998) for a survey),
as well as the specialization of function through the evwolubf gene families. An important tool in the
study of both questions is the construction and analysieettbased on the sequences of duplicated genes,
so called gene family trees.

Until recently, such studies involved a small number of gianeilies, each represented by ten or twenty
sequences, and the analysis could be carried out by vismédtion of the trees (Endo et al. 1997; Hughes
1998; Hughes 1999; Kasahara 1997; Martin 1999; Pebusquk €t988; Ruvinsky and Silver 1997).
However, as genomic sequence data grows, the number of gmile to be considered in a single genome
will grow, and so will the number of trees to be analyzed. Bamaple, in their analysis of duplications in
the yeast genome, (Wolfe and Shields 1997) identified 44¢icdupd genes. This data set is an order of
magnitude larger than the gene duplication studies cuyrbetng carried out by hand.

In this paper, we formalize the analytic methods descrilmetdotally in the molecular evolution studies
and cast them into a unified framework. Using this framewark, develop computational methods for
analyzing duplication histories and determining dupl@atdates in rooted trees, as well as exploring two
kinds of alternative hypotheses: local rearrangementaie evidence supporting an edge is weak and

alternate rootings for unrooted trees. These methods wileimented in a set of tools calledbNUNG that
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Figure 1: A rooted Neighbor Joining tree for the RXR familpmeduced from (Hughes 1998). Interior
nodes are labeled numerically. Labels in square bracketesent the percentage of bootstrap samples
supporting that branch leading from the label to the rootu&&s< 50% are not shown.

can be used for exploring alternative hypotheses abouiddtipin events and is a step towards the automated

analysis of duplications in large genomic data sets.

An Example of Duplication Analysis. A gene family is “a set of genes descended by duplication and
variation from some ancestral gene” (King and Stansfield}9%9pically exhibiting related sequence and
function. A gene family tree (GFTis a phylogeny constructed from the sequences of family neesnb
including representatives of the same gene in differentispgorthologs) and duplicate genes in the same
species (paralogs). A GFT differs from a species tree indlsgiecies may appear more than once.

We begin by considering a typical analysis of gene duplbcatising a gene family tree. (Hughes
1998) analyzed the evolution of the RXR family, using thetedatree reproduced in Figure 1, which was
constructed using the Neighbor Joining heuristic. Confideim clustering patterns was assessed using
bootstrapping, a statistical resampling method (Efron@odg 1983).

Summarizing the history of the RXR family that can be infdrfi®m the tree, Hughes states “RXR genes
from three insects fell outside of all the vertebrate RXRXHB and RXRG genes. The phylogeny suggests

that RXRB diverged first followed by RXRA and RXRG.. Zebrafish genes were found to cluster with



mammalian RXRB, RXRA and RXRG, but bootstrap support fos¢éhelustering patterns was not strong.
Frog RXRB and RXRG genes cluster with their mammalian capatés and, in each of these cases, there is
strong (99%) bootstrap support. The tree thus suggest&¥@A, RXRB and RXRG diverged before the
divergence of amphibians and amniotes and probably bdiferditergence of tetrapods and bony fishes.”

Hughes’ description makes the following technical points:

e Every node in the tree represents either a speciation or lgcdtipn event. It is possible to find the
set of duplication nodes by comparing the gene family treeedpecies tree such as the cartoon of the
Tree of Life shown in Figure 2. Hughes identified two duplicatnodes (14 and 15). There are two

more duplication nodes in the RXRB clade (3 and 6) that he doemention.

e Bounds on the time of duplication, given in terms of majorcégigon events, can be inferred for each
duplication node from the relative positions of speciatiod duplication nodes in the tree. According
to the topology shown in Figure 1, duplications 14 and 15 atb bounded above by the divergence
of vertebrates and insects, and bounded below by the diveegef tetrapods and bony fishes. The
upper bound can be inferred from the clustering of insecege@witside the gene family clades and the

lower bound from the presence of a fish gene in each subfataitiec

e When a duplication hypothesis depends on a node with weglostip the sequence data, alternative
hypotheses should be considered. Because the bootstusgs @ssociated with the zebrafish branches
in Figure 1 are low, topologies in which zebrafish genes dachster within the subfamilies should
also be considered. For this reason, the divergence of tiphibian lineage may be a more reliable

lower bound for duplications 14 and 15.
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Figure 2: A species tree showing major speciation eventsdretikaryote lineage.

Our Results. Hughes’ analysis is typical of many studies in the biologgrature of gene duplication
using ad hoc analysis of gene family trees (Endo et al. 199ighs 1998; Hughes 1999; Kasahara 1997,
Pebusque et al. 1998; Ruvinsky and Silver 1997). These semBre based on the assumption that a rooted
GFT is a hypothesis concerning the evolution of a gene farmtg duplication history of the family can be
inferred from a GFT, where we define the duplication histarpé¢ a list of the duplications that occurred
and a time range for each. If the topology of the tree is unguathis and the tree is rooted, then the inferred
history is unique.

However, as Hughes’ discussion of weak bootstrap valugstifites, in many instances it is not possible
to infer the tree topology unambiguously from the sequeiacek in this case, alternate histories must be
considered. Alternate histories must also be considerdtkitree is unrooted. While a rooted GFT is a
hypothesis concerning the evolutionary history of a gendlja an unrooted gene family tree represents a
set of such hypotheses, one for each possible rooting. &tiilx RXR example, many of the trees reported
in the literature are unrooted because it is frequently pesible to find a sequence from the gene family in
a suitable outgroup species.

These considerations suggest two computational probl&ims.solution to the first problem is used as

a subroutine in the solution of the second.



1. When the correct, rooted gene family tree is known, thélpro is to infer the duplication history

from the tree.

2. When the correct rooted GFT is not known, the problem iswibthie rooted gene family tree that best

represents the evolutionary history of the gene family.

The most general approach to the second question is to epraidooted binary trees with respect to an
optimization criterion based on a model of gene family etfolu That is, giverG, a set of orthologous and
paralogous gene sequences from a gene familylgna binary species tree containing exactly the species
in G, find the rooted binary tre€y;, whose leaf set i&/, that optimizes a given optimization criterion. The
forces that govern the evolution of gene families involvaeyduplication and loss as well as the evolution
of the gene sequences themselves, as we discuss at gregtériteSection 4. The optimization criterion
should therefore take all three processes into account. ekenyit is not obvious how to determine the
relative importance of macroscopic mutations like genedlidation and loss with microscopic mutations
like point mutations in a single optimization criterion.stead, our approach is to start with a gene family
tree inferred from sequence alone. When the sequence dattssfficient to reconstruct an unambiguous,
rooted GFT, we use optimization criteria based on gene chtish and loss to consider alternate hypotheses.

We review previous work involving the relationship betweggne family trees and species trees in
Section 2. In Section 3, we present a linear time algorithmirfierring the duplication history of a gene
family from a rooted GFT. We address the problem of findingap8mal alternate hypothesis, when the
correct rooted GFT is not known, in Section 4. After introithgctwo optimization criteria for GFTs based on
duplication and loss in Section 4.1, we discuss how to usa theselect the optimal rooting of an unrooted
tree in Section 4.2. In Section 4.3, we present an algorithmfiiding the optimal gene duplication history

given a rooted GFT with weak branches. Although in the gdrease, the number alternate hypotheses is



superexponential in the number of taxa, we show that witheetsto the criteria introduced in Section 4.1
it is possible to vastly reduce the search space if the weatkches are sparse, by identifying sets of weak
branches that can be evaluated independently.

We implemented these algorithms and tested them on genéyfeees published in the molecular
evolution literature (Hughes 1998; Pebusque et al. 199&irRky and Silver 1997). As summarized in
Section 5, the gene family histories generated by our progna consistent with the assessments presented
in the original papers. For unrooted trees and nodes withblogtstrap values, our program generates and
scores alternate hypotheses, providing an exploratodysiadool. In addition, an explicit statement of all

hypotheses helps mitigate any biased expectations of tagltmuser might have.



2 Reated Work

The problem of disagreement between gene trees and speassvas first raised by (Goodman et al. 1979)
in the context of inferring a species tree from a gene treentay contain paralogies. They introduced the
notion of a map between a gene tree and a species tree and®aygeost function for evaluating a species
tree with respect to a gene tree based on edit distance, gefieation and gene loss.

These concepts were further developed and formalized img¢Get al. 1996; Hallett and Lagergren
2000; Ma et al. 1998; Ma et al. 2000; Mirkin et al. 1995; Pag84tPage and Charleston 1996; Stege
1999; Zhang 1997). Formally, given a set of rooted gene t{@es}, the problem is to find the species tree,
Ts, that optimizes an evaluation criterion. Several optitgadriteria have been proposed (see (Eulenstein
et al. 1996; Eulenstein et al. 1998) for a comparative synadlyof which attempt to capture the notion that
gene duplication and subsequent loss are rare events. Thisi involve constructing a mapping/ :

Tc — Ts, between a gene tree and a species tree, that is used to eotimpabst function. Several authors
have pointed out that it is difficult to distinguish true géogs from genes that have not yet been sequenced
and discuss approaches to distinguishing true losses fpparent losses in the cost function (Goodman
et al. 1979; Mirkin et al. 1995; Page and Charleston 1996).

When inferring a species tree from a gene tree, the genestesssiumed to be correct and the true species
tree is unknown. We, on the other hand, assume that the tegespiree is known and use it to infer the
duplication history from a gene tree. While we share soméemaatical structure with (Guigo et al. 1996;
Hallett and Lagergren 2000; Ma et al. 1998; Mirkin et al. 199&ge 1994; Stege 1999), most notably the
mapping)/(-), we consider the problem of dating duplication events ameégging and evaluating alternate
hypotheses. The problem of finding an optimal species triihard (Ma et al. 1998; Ma et al. 2000) for

the optimality criteria considered so far. In contrastjratiuplication events in rooted and unrooted trees



is a computationally tractable problem, which is cruciakd hope to apply this to large data sets.

The methods for inferring species trees from gene treeggeadvhere do implicitly generate duplication
histories in rooted trees although the time of duplicatisrgénerally not considered. In addition, most
optimality criteria surveyed here are subject to the caimsirthat each species may only be represented
once inG and hence would not be suitable for our application. A netaxception is the work of Page
and Charleston (Page and Charleston 1997), who have dedetom software packages,OBIPONENT
and GENETREE, that, as well as inferring species trees, will compute asplay duplication histories for
rooted gene trees. This provides an interactive, exploratoalysis tool, but cannot be used to automate the
analysis of large data sets.

The first analyses of alternate rootings of unrooted geres thewve appeared very recently. (Hallett
and Lagergren 2000) presented an algorithm to infer theiepdee from a set of rooted gene trees in
polynomial time under the restriction that the speciesdsebe reconciled with the gene tree using at most
k simultaneous copies of the gene along its branches. In dmtext, they also developed a polynomial
time algorithm that selects a root for each unrooted gereedueh that the total number of duplications
required to explain the data is minimized. Their algorithomsiders all possible rootings of all trees using
a brute force approach. In work developed independentlypaesented simultaneously, we (Chen et al.
2000) presented an algorithm that, given an unrooted gereatnd a fixed species tree, ranks all possible
rootings of the gene tree according to an optimization oitethat estimates the plausibility of the resulting
duplication histories. By using a data structure that staméermediate results, we avoid the brute force
approach, ranking all rootings in time linear in the sizehaf gene tree. In the current paper, we apply this
approach to a wider range of optimization criteria basedugiication and loss. None of the work surveyed

here addresses alternate hypotheses due to weak edgeshielmgCal. 2000), we introduced this problem
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and proposed a heuristic solution. In the current paper,aveldp an exact approach.
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Figure 3: Gene family trees for the hypothetical gene familywith five known gene sequences (two in
mouse, two in chicken and one in fish.) (a) An unrooted GFTAfo(b) — (d) Three alternate rootings of the
GFT in (a). Duplication nodes are shown in italics and miggjanes are shown in grey.

3 Inferring Gene Family Histories from Rooted Trees

The process of inferring a duplication history from a gemaikatree is illustrated in Figure 3 which shows
an unrooted GFT for a hypothetical gene family,and three possible rootings of that tree. Each rooted tree
corresponds to a single duplication history. For example,rooted tree in Figure 3(b) suggests that gene
A was present in the common ancestor of fish and tetrapods adupdicated after the divergence of fish
and before the separation between birds and mammals. Irasgrfeigure 3(c) implies that the duplication
took place before the divergence of fish and tetrapods. Aghdhere is only one fish sequence, it clusters

with the genes in thel, family, suggesting either that the figh gene has been lost due to mutation or that
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it has not yet been sequenced. Because these trees are mwetean observe evidence of the duplication
through clustering, even when one of the two paralogs isingss
The problem of reconstructing a duplication history froneated gene family tree can be stated formally

as follows:

Problem 1. Given a rooted GFT[, andTys, a binary species tree containing only the species
in T, identify all duplication nodes and determine lower andargmunds on the time of each

duplication in terms of speciation events.

Both the identification of duplication nodes and the caliotaof duplication dates require constructing
a mapping,M(-), from every node iff; to a target node iffls. We construct this map as follows. Let
v be a node ifl; and letl(v) andr(v) be its left and right children, respectively/(-) maps each leaf
node inTs to the node inTs representing the species from which the sequence was ebtaiq Leaf
nodes inT represent sequences, whereas leaf nodds irepresent species.) Each internal nodé&n
is mapped to the least common ancestor (Icaf¢nof the target nodes of its children; that &/ (v) =
lea(M(l(v)), M(r(v))). For example, in Figure 3(b), the leaf nodes are mappdistipchicken mouse
chicken mouse from top to bottom.A (¢) = amniote since the Ica omouseandchickenis amniotein the
Tree of Life (Figure 2). Nodesandd both map tcamniote while M (a) = jawedvertebrate

An algorithm for constructing the mappingy/ (-), and identifying duplication nodes has been developed
independently in the context of using multiple gene treegdnerate a species tree. By using fast Ica
queries (Bender and Farach-Colton 2000; JaJa 1991)-) can be computed i®(|T¢|) time. While our

goals are different, we share a key algorithmic componetit this work. We refer the reader to (Mirkin

!Several early papers on Ica computation were too comptidatenplement, even papers which claimed to be “simplifaragr,
and had large hidden constants. Thus, it is a “folk theordmat ainy algorithm which uses Ica precomputation is impeatti
However, the state of the art of Ica computation has progresice those early papers, and there now exist Ica algeitvhich
are very simple and very practical.
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et al. 1995) for a complete description and proofs.

Observe that under the mapping, a nade T is a speciation node if its children are mapped to
independent lineages ifis. In Figure 3(c),z is a speciation node since mammals and birds are separate
lineages. If the children af/ (v) share a lineage, thenis a duplication node. When this occurs, either both
children have the same label or one child’s targetinis an ancestor of the other’s andwill be mapped
to the same label as the ancestral child. For example, modea duplication node in Figure 3(c) because

M (y) = jawed vertebrateis an ancestor od/ (x) = amniote

Observation 1 Nodew is a duplication node if and only #/(v) = M (I(v)) or M (v) = M(r(v)) or both.

The mapping)(-), can also be used to compute lower and upper bounds on theftologlication. Let
v be a duplication node ifi;. Since copies of the duplicated gene are observed in descesnof both (v)
andr(v), the duplication must have been present in their least camamoestor, yielding the lower bound
L(v) = M(v). By a similar argument, the upper bound can be shown to batgettof the nearest ancestor,
ay, Of v that is a speciation node. Since copies of the duplicated gempresent in only one of the subtrees
rooted at children ofi,, the duplication must have occurred in a more recent spelfieshas an ancestor
that is a speciation node, we set the upper bduitw) = M(a,). Otherwise[J (v) is the origin of life. For
example, in Figure 3(c), the bounds on the duplication nad@re L(w) = jawed vertebrateandU (w) =
00, sincew is the root node of ;. In Figure 3(b),b is a duplication node with labelmniote Its parenta

is a speciation node with labglwedvertebrate Thus,L(b) = amnioteandU (b) = jawed vertebrate.

Observation 2 The duplication associated with a node,in T¢;, occurred after the speciation evdiitv)

and before the speciation evebtv) = M (v).

Notice that we can computé in O(|T¢|) time.

14



4 Evaluating Alternate Gene Family Histories

As the example in Figure 3 shows, alternate rootings of anaiad GFT give alternate duplication histories.
Alternate hypotheses such as these can be evaluated indgethesnumber of gene duplications and losses
implied by the associated rooted trees. For example, FR(@)eequires a single gene duplication to explain,
while Figure 3(c) involves one gene duplication and one des® In contrast, the tree shown in Figure 3(d)
has three subfamilies resulting from two duplications @sydandq) and four losses. A duplication and
loss model can also be used to evaluate rearrangements lobnaahes.

We formalize the intuition provided by this example in theneender of this section. First, we develop
two optimization criteria based on duplication and losseealuating alternate hypotheses in Section 4.1.
We discuss how to apply these to unrooted trees in SectionMgdrithms for evaluating rearrangements

of weak edges with respect to these criteria are presentgddtion 4.3.

4.1 Optimization Criteriafor Duplication Histories

We consider two criteria for evaluating alternate gene idapbn histories. The first scoring function,

Cy(+), calculates gene duplication and loss explicitly and castaied as

Ca(Tag)=cx-A+cs- 6,

whereé represents the number of duplication node&in A represents the number of gene losses @and
andc; are constants that determine the relative importance dicdipns and losses in the scoring function.
The best choice afy, andcs is an open problem. In this paper, we uge= cs = 1 consistent with the work
cited in Section 2.

We define) to be the most parsimonious number of gene losses requiregplain the duplication
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Figure 4: A rooted tree for the fiction@ gene family showing a gene duplication at ngdind a gene loss
loss in the common ancestor of mouse and chicken.

history. That is, if an entire subtree @k is missing fromT, we assume that the loss occurred at the
root of the subtree and count it as a single event. For examplegure 4, we assume that, was lost
in the common ancestor of mouse and chicken rather than wependent gene losses in the leaf species,
resulting ind = 1 and\ = 1.

The number of duplications;, is a byproduct of the algorithm for inferring duplicatiorstories de-

scribed in Section 3. The loss, can be computed by summingethe losses over all edgesTin:

A= ) EDGELOSS(e).

e€Ta

The loss associated with the edge- (parent child) is given by

EDGELOSS = (DEPTH (M (child)) — DEPTH (M (parend) — 1) + IsSDup (parent,

where DePTH (M (v)) returns the depth of the target of nodén T, (the species tree for the species in

T¢ only) and BDuUP (v) = 1 if v is a duplication node and zero otherwise. The first term is élgjuation
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counts gene losses associated with speciation nodes. b¢le laf a speciation node and its child should
differ by one if no loss has occurred and will increase by oiite wach gene loss. In contrast, if no gene
loss has occurred on the edge immediately below a duplicatide, the labels of a duplication node and its
child should be identical. Thus, fifarentis a duplication node, the first term will be off by one. Themset
term corrects for this case.

We define a second cost functiofi,;(-), that is an upper bound on the maximum number of missing
leaf nodes plus the number of duplication nodes. Let the €68t of a nodet in Ts, be the number of leaf
nodes undet. That is,k(t) is the maximum number of gene losses that could occur fatigwiduplication

in the ancestral specieslf t is a leaf, therk:(t) = 1. The cost of the gene tre€g, is

Cup(Ta) = Y (K(M(d)) +1),
deD

whereD be the set of duplication nodes ;. UnderCy;(-), the cost of the tree in Figure 4 is four,
sincek(M (q)) = k(jawedvertebratg = 3. In comparison, undefy(-), the cost of the tree is two, when
cy=cs=1.

These criteria represent two extremes on the spectrum a-lgss models. If a gene is missing in
species which share a common ancestor, is this due to a $isglén the common ancestor or did several
independent losses occul?y(-) represents the minimum number of gene losses required taiexpe
data, whileCy;(-) is an upper bound on the maximum number of possible geneslodse believe that
gene loss is a rare event and that in most cases, the morenparsus model is likely to be the correct
one. However, by testing our methods on two diametricallyosed models, we can gain insight into how

sensitive our methods are to the choice of model.
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4.2 Unrooted Trees

Unlike a rooted tree, which encodes a single evolutionapothesis, an unrooted tree with= |E| edges
represents up ta different hypotheses, one for each possible rooting. W@gse to use the two cost
functions presented above to rank thedaeypotheses, making it possible to consider the most bictiigi

plausible hypotheses first. We can state the unrooted todepn formally as follows:

Problem 2.1: Given an unrooted GFT[; = (V, E), and an optimization criterion’(-),
determine the duplication history of the tree rootec,ator every edgee € E. Rank the

histories according to the criterioy(-).

To do this, we must label each nod€Tlig as either a duplication or speciation node under every lpessi
rooting. However, the mapping}/(-) changes with the position of the root. A simple quadraticetim
algorithm would be to apply the rooted tree algorithm to gvawssible rooting. However, we can derive
a linear time algorithm to compute all labelings as followdotice that, with respect to a node we can
partition all possible rootings of the tree into three gmughe root must be in one of three directions,
depending on which of the edges incidentwois on the path fromv to the root. Lete, e; andeg be the
edges incident on. The status ob as either a duplication or speciation only depends on wiidgfe @oints
towards the root. This is because if we fix which edge is upstli®ree rooted at is fixed, and so is the
bottom-up Ica computation. Now, we need only compulg (v), M., (v) and M., (v), oneM (-) value for
each possible “up” edge, from which we can compute the lagelnder any desired rooting in linear time.

To compute the three values we simply do the recursive caatipatat each node in any order. That is,
suppose we want to compuld., (v), for somew. This determines which two nodes are down. Call them
u andw. ThenM,, (v) = lea(Mq, (1), My, 3 (w)). We recursive computey,, 3 (u) and My, .3 (w).

In order to keep from recomputing the same value over and wxesimply store all values in a table as we

18



compute them. Thus, after we have computég, ., (u) once recursively, we can look it up in constant time
without need for recomputation in the future. Thus3allvalues can be computed @(n) time. Similarly,
any cost function that depends on a functionldf-), including Cy(-) and Cy(-), can be computed in
O(n) time. Thus, linear time is sufficient to rank allrootings and print a constant number of top ranking

duplication histories. Printing all duplication histmitakes longer.

4.3 Rooted Tree Rearrangements

As in the case of unrooted trees, alternate hypotheses fik edges can be selected with respect to an opti-
mization criterion. While the following analysis can be g to any arbitrary set of edges deemed suspect
by the user, typically bootstrapping (Efron and Gong 1983jsied to associate a measure of confidence with
every edge in a phylogeny. We use a rearrangement stratégdgriify appropriate alternate hypotheses for
weak edges as follows.

The removal of any edge, in a tree bipartitions the set of leaf nodes. If the boogstralue ofe is low,
it suggests that the evidence in the data for that bipantiSaveak. It does not reflect on the certainty of the
structure of any other part of the tree. In reconstructirgdiplication history of a rooted GFT, we consider
alternate hypotheses associated with a weak eddpy, generatindNearest Neighbor Interchanges (NNI's)
arounde. Examples of NNI rearrangements are shown in Figure 5 (seeximple, (Swofford et al. 1996),
for a more detailed description.) The NNI, around an edge(parent child) shown in bold, is effected by
swapping the subtree rooted at the siblingloifd with either its left or its right subtree. This rearrangemen
generates alternate bipartitions towhile leaving all other bipartitions associated with theetunchanged.

An NNI in T will change the mappingy/ : T — Tg, resulting in a new mapping and in some cases,
will also change cost of the tree and the duplication histdfgr example, Figure 5(a) shows a scenario

where, presumably, the frog and fish genes were incorreldted with respect to each other due to weak
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signal in the sequence data. The two internal nodes in #isftagment are both labeledrtebrate NNI

a” changes the label of the deeper internal node, therebyreltmg a false duplication. The example
in Figure 5(b) is more ambiguous. The middle tree represemigplication before the divergence of fish
followed by a loss in the fish lineage. The rearrangendrthanges)/(-) and moves the duplication to
the deeper node, resulting in a duplication after the figtaped split and eliminating the gene loss. Cost
functions based on gene loss tend to favor histories witremecent duplications (e.dy! rather tharb).
This is a disadvantage to the duplication/loss model simtie#§ andb are plausible and which scenario is
more likely requires specialized knowledge of gene family.

We now state the problem of optimizing a tree with weak edgandlly:

Problem 2.2: LetT; = (V, E) be arooted GFT and 1&V C E be a set of weak edges. Define
Tc,w to be the set of trees that can be derived frbgnby NNI operations across edgeslin.

Find the treel s, € 7w such thatl, optimizes a given criterior()(-).

Note that wherlV = FE, the problem reduces to that of finding the optimal gene fatngéle counting only
duplications and losses and ignoring sequence data.

Itis not known if an efficient algorithm for finding exists. No doubt the existence of such an algorithm
depends on the choice 6f(-). In (Chen et al. 2000), we considered the following simplartstic for
finding optimal trees: Enumerate the weak edges bottom-dgparform any NNI that reduces the label of
the child node of the weak edge under consideration. Once that chagdden made, the weak edge is
considered fixed and rearrangements of weak edges highwe inee are considered. While we found that
this greedy heuristic works well on the real data sets weiegbjil to, it is possible to produce biologically
plausible examples where the heuristic performs badly.

In the current paper, we therefore consider algorithmsfihathe actual optimum. The naive algorithm
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Figure 6: A GFT with four weak edges, shown in bold. The trlaagepresent subtrees whose structure is
not made explicit.

for such an optimization is to enumerate all possible treeksta evaluate”(-) on each one. This is clearly
not feasible in general, since the number of trees is superential in the number of taxa. However, in
many practical cases, the weak edges are sparse and tygippktar in small connected components. We
will show that for some choices @f(-), in particularCy(-) andCy(-), it is sufficient to optimize these
connected components independently rather than exhelyséimumerating all trees i 17, reducing the
cases to be considered to a feasible number.

Consider the tree in Figure 6, which contains four weak edgf@awvn in bold. These edges form two
connected components: ((a,b),(a,e),(e,f)) and ((k,mersa connected component of weak edgd€s,let
T; be the rooted binary tree formed by adding all edges thathameediate descendents of a weak edge to
W;. T; hask; = |W;| + 2 leaves. For example, for the connected component ((ad)(@f)),7; is the tree

with roota and leaves, d, g, h andi. (Note that the leaves @f; may be subtrees af.)
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Thus, each connected component induces a rooted, binargrimbedded in the GFT. For each s¢h
the set of trees that can be generated by applying an ayb#eauence of NNIs to edgesiiti; is equivalent
to the set of all rooted binary trees with the same root anfdsietzasT;. We call this setZ;. The number of
trees in7; is (2k; —3)!/[2%2(k; —2)!]. LetT}* be the tree fron; that optimizes(-) and letl; be the tree
obtained by replacing ead) with T°*. The tree;, can be generated through independent optimization of

the {T;} by the following algorithm:

Algorithm A:

ComputeM (x) for every node irfg.

Foreachr;,
Compute the optimal rearrangement trég, by exhaustive enumeration.
Replacel; with 77 in 1.

RecomputeV/(z) for every node il .

Note that there may be more than one optimal rearrangefijeof 7;. If 7; is optimal, we report this as
T>. Otherwise, we pick an arbitrary optimal solution to’ge

Below we show that, whe@'(-) is Cy(+) or Cy5(-), optimization of eacl; independently will yield the
globally optimal tree;l .. Thus, we do not need to consider the product of all posséderangements of
all T; and this approach will substantially speed up the compmrtati cases where nf; is too large. Our
exhaustive algorithm will, in fact, run in time linear in timeimber of components and exponential in the

size of the largest component.

Theorem 1 LetC(-) be any cost function such that the cost of the subtré;aboted at any node is of
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the form

C(T) = C(Tiw)) + C(To(w)) + f(M(v), M(r(v)), M((v))); 1)

that is, the cost of a tree rooted atdepends on the cost of its subtrees and a functfgn, that depends

only on the labels of and its children. Thefi; = T¢.

Proof: Let T be the tree resulting from running Algorithmon T = (V, E). We show that(T,,) is
optimal for any vertexy € V, if v is the root of somé&; or if v is not in|J{T; }.

Case 1. v isaroot of some weak component, 7;. In this case,C(T,) is optimal by brute force
optimization.

Case 2: v isoutsde the T;. C(T,) is optimal if each of the terms of Equation 1 is optimél(7;,))
andC'(7,,)) are optimal by induction. Thus, it is sufficient to show ttare is no rearrangement that can
reduce the value of (-), to show thatC (7)) is optimal. To see that this is true, note that the label of any
node depends only on the set of leaves below it. Althouglraegement can change the structure of the
{T;} and hence the labels of their interior nodes, the labelseofdbts of the{T;} and nodes outside them
are unchanged.

Since the rooty, of T is either outside of J{7;} or a root of somel;, C(7)) is optimal. Thus,

Te = Tg,. |

Corollary 1 If C(-) = Cy(-) or C(-) = Cup(-), thenT = T4,

Proof: Both Cy(-) andCy(+) satisfy Equation 1.

The time to optimize a single connected compon#rt, is the product of the number of possible rear-

rangements of; and the time to score each rearrangement. Thus, the timartpute optimal rearrange-
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ment tree using Algorithrm is

Y, (2ki —3)!
2 gra(g, — g Ok

where N is the number of components. The term corresponding to th&bau of rearrangements of the
largest component will dominate and is exponential in thaloer of edges in the largest component. How-
ever, the running time is linear in the number of componetitezeak edges are sparse, and in particular,
individual components are small, this run-time will not beemus in practise. In the trees culled from the
literature for this study, no connected component had mwe three edges. ®YuUNG ’s running time on

these trees never exceeded one second of cpu-time per tegeldiiraSparc 10.
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5 Experimental Results

The algorithms described in the previous sections have ingg@emented in Java program calle®RUNG.
NOTUNG takes a gene family tredy;, a species tre€]; and a bootstrap threshold, as input. The user
may select either of the cost functions described in Sedtibrio evaluate alternate hypotheses. Input trees
are represented in Newick format (http://evolution.g@seivashington.edu/phylip/newicktree.html). For
rooted trees, NTUNG generates a gene duplication history as output; that ist @fliduplication nodes,
with bounds on the time of duplication for each one. If then@agement option is turned onAMUNG will
also compute the optimal rearrangement tree accordinggorthm A. Currently, we use the tie—breaking
rule described in Section 4.3. In this casepING will present the original duplication history and the
history for the optimized tree, giving scores for both. le thext release, we plan to report all possible
optima to the user. For unrooted treesgNING considers all possible rootings and computes a duplication
history for each. These histories are ranked accordingetodbt function selected. Note that our algorithms,
as designed, work with binary and higher degree trees, mituNG currently only handles binary trees.
Similarly, there is no algorithmic reason why the rearranget option cannot be applied to every every
possible rooting of an unrooted tree automatically, bug #pproach has not implemented it. Since most
rootings of an unrooted tree are biologically implausibie leave it to the user to select the rootings of
interest and apply the rearrangement algorithm to thenicithpl

One goal of the experimental work presented here is to determhether these cost functions rank
alternative hypotheses effectively. Below we describ@rNING’ s performance on rooted trees, unrooted
trees and trees with low bootstrap values. As test data, we ab “non-pathological” trees from three
recent articles on large scale duplication (Hughes 199Bufie et al. 1998; Ruvinsky and Silver 1997).

We eliminated non-binary trees and trees based on genesawitplicated internal structure such as mosaic
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Gene Family| Source

ANK (Pebusque et al. 1998) unrooted
C (Hughes 1998) rooted
CRYB (Ruvinsky and Silver 1997) unrooted
EGR (Pebusque et al. 1998) unrooted
HSP70 (Hughes 1998) rooted
LHX (Ruvinsky and Silver 1997) unrooted
NOTCH? (Hughes 1998) rooted
PBX (Hughes 1998) rooted
PSMB (Hughes 1998) unrooted
RXR (Hughes 1998) rooted
TCF (Ruvinsky and Silver 1997) unrooted
TEN (Hughes 1998) rooted
VMAT (Pebusque et al. 1998) unrooted

Table 1. Gene family trees used in experiments.

genes or genes with repeated domains, and trees that shd@neeiof horizontal gene transfer. We ana-
lyzed the remaining thirteen trees (summarized in TablestjguUNOTUNG and compared the automatically
generated results with the verbal analysis presented isaiee paper.

NOTUNG compares the input GFT with a species tree to infer the dafjibic history. Since there are
many competing hypotheses concerning the topology of the of Life, our program allows the user to
supply a species tree as input. In the experiments deschiblv, we tried, to the extent that it was
possible to determine from the text, to use the same spaeiesas the authors who originally analyzed
the tree. Most authors used a tree consistent with that shovAgure 2. Pebusquet al. (Pebusque
et al. 1998) used a variant in which nematodes are includéoeiprotostome clade. The exact tree used
is shown in Figure 7. This tree is constructed from inforimatin the University of Arizona Tree of Life
project (http://phylogeny.arizona.edu/tree/phylogktml) edited by D. R. Maddison and W. P. Maddison,
the NCBI Taxonomy database (http://www.ncbi.nim.nih/§exonomy/tax.html) and (Graur et al. 1996),

for the classification of rabbits.
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Figure 7: Tree of Life
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Gene Family| Original Tree| Optimal Tree

Ol AN | Cuw |6 A | Cuw
C 4(14| 30 |3|11] 22
HSP70 9/18| 50 |6 7 | 25
NOTCH 5/13| 28 |4|10| 22
PBX 313 11 {3 3 11
RXR 43|16 |4| 3| 16
TEN 28|12 (2| 8| 12

Table 2: Scores of rooted trees with respectig(-), given in terms of the number of duplications and
losses, and”,;,(-). Scores are given for the original tree and the optimal asgiement tree. The PBX,
RXR and TEN trees were unchanged by rearrangement.

5.1 Rooted Trees

NOTUNG was applied to the rooted trees in Table 1. The scores of ghetirg duplication histories are
shown in Table 2. The histories constructed by the prograne wensistent with the analysis of (Hughes
1998) in all cases. Generally,dYUNG finds a superset of the duplications discussed by Hughes bim
only mentions those duplications that are relevant to tiodogical question he is addressing. This was
true of all the trees reported here; the authors of the aigitudies did not attempt to describe the entire
duplication history. They simply reported the aspects tw@ysidered relevant to their research. In contrast,
NOTUNG reports the entire history, including variants, and alldesuser to triage the information.

As an example, we show the duplication history generated byuNiG for the RXR tree shown in

Figure 1:

Duplication at 15 Lower bound: jaw Upper bound: pro
Duplication at 14 Lower bound: jaw Upper bound: pro
Duplication at 6 Lower bound: zebrafish Upper bound: jaw

Duplication at 3 Lower bound: <clawed frog Upper bound: tet

Here “jaw” refers tojawedvertebrate “pro” to protostomes&nd “tet” to tetrapods Both duplications
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14 and 15 occurred after the divergence of protostomesctima@ad molluscs) from deuterostomes (fish and
tetrapods), which is consistent with Hughes’ analysis.I96 &inds more recent duplications (3 and 6) not

discussed by Hughes.

5.2 Alternate Hypotheses for Weak Branches

Alternate hypotheses were evaluated with respect to bathfanctions for every branch with a bootstrap
value less than 90% in the six rooted trees in Table 1. In a&ésa’,;(-) and Cy(-) selected the same
optimal rearrangement tree, although they gave differentarical scores. For three input trees, the original
tree was unchanged. The PBX tree had no weak edges at the 9éPane the RXR and TEN trees could
not be improved through rearrangement.

The other three trees were modified by the rearrangemenegsoclhe improvements in score, with
respect to both cost functions, are summarized in Table 2lluBrate NOTUNG’ S performance on weak
edges, we discuss the rearrangement of one GFT in the datda3et0, in detail below. Similar behavior
was observed in the remaining two trees, the C family treetaadNOTCH tree, which are simpler than

HSP70.
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AMNIOTE*GRP78

18 3199 fission yeast*grp78
fission yeast*ssal
4 [100 fission yeast*ssa2
i iy — fruitfly*87c1
16 [77] .
petunia*hsp70
———5058] nensp70
15 [53] 6 [100 tomato*hsc-1
—————— AMNIOTE*HSC70
14 199]
13188 clawed frog*hsp70
AMNIOTE*HSC70
O AMNIOTE*GRP78
L= fission yeast*grp78
18 .
_E petunia*hsp70
6 tomato*hsc-1
corn*hsp70
17 o
_E fission yeast*ssal
16 fission yeast*ssa2
15 fruitfly*87cl
17 clawed frog*hsp70

AMNIOTE*HSC70

13 AMNIOTE*HSC70

Figure 8: The HSP70 tree before and after NNI rearrangemefitse trees have been simplified by
compressing clades containing only mammals and birds (AMNE*GRP78m, AMNIOTE*HSP70, AM-

NIOTE*HSC70). No rearrangements were accepted in theskeglalnternal nodes are given numerical
labels. In the upper tree, the bootstrap values of edgeshaitiistrap support above 50 are labeled with

square brackets.
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The examples in Figure 5 show that some rearrangementsctpirglogenetic mistakes, eliminating
duplications and resulting in a GFT that is more consistditit the species tree, while others move dupli-
cations down in the tree, reducing loss while maintainiregygame number of duplications. Both types of
rearrangement appear in the HSP70 trees shown in FiguregkeTihees have been simplified for the pur-
poses of exposition. Subtrees containing only birds and mashave been compressed and are shown in
capital letters (e.g., AMNIOTE*HSP70). The upper tree shtlne original topology before rearrangements
were considered. This tree contains five branches with traptsalues below the threshold. Two of them

are adjacent. Initially, our program inferred a duplicatfistory with nine duplications and eighteen losses:

Duplication at 18 Lower bound: euk
Duplication at 17 Lower bound: euk

Duplication at 16 Lower bound: euk

Duplication at 14 Lower bound: tet Upper bound: euk
Duplication at 12 Lower bound: roh Upper bound: tet
Duplication at 10 Lower bound: human Upper bound: roh
Duplication at 8 Lower bound: amm Upper bound: euk
Duplication at 6 Lower bound: pla Upper bound: euk

Duplication at 4 Lower bound: fission yeast

The structure of this tree, (fungi (insects (plants, ved#ss))), is at odds with the structure of the Tree
of Life, (plants (fungi, (insects, vertebrates))). Thauisture within the plant clade also disagrees with the
Tree of Life since petunias and tomatoes are more closayeto each other than either is to corn.

In contrast, the topology after rearrangement had threerfewplication nodes and seven losses,

Duplication at 18 Lower bound: euk
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Duplication at 13 Lower bound: ann Upper bound: tet

Duplication at 12 Lower bound: roh Upper bound: tet
Duplication at 10 Lower bound: human Upper bound: roh
Duplication at 8 Lower bound: amm Upper bound: tet

Duplication at 4 Lower bound: fission yeast Upper bound: euk

as shown in the lower tree. The removal of duplications fradeas 6, 16 and 17 can be interpreted as
correcting errors in the original topology. The originapadogy implies that an ancestral HSP gene was
duplicated twice early in the eukaryote lineage; subsetfjueach of the four resulting copies survived
in only one lineage (fungi, insects, plants and vertebratespectively) and was lost in the other three.
In view of the low bootstrap support, it seems more plaudibée the yeast and fly sequences are placed
incorrectly. In the rearranged tree, the branching of glap¢ast and insects is compatible with the Tree
of Life. This second hypothesis is more compelling than thigimal hypothesis of two early duplications
followed by massive gene loss. The exchange of the corn andttogenes to remove the duplication at
node 6 also appears to correct an error in the reconstruatithre tree topology. The rearrangement of the
frog sequence that led to the replacement of the duplicatiamode 14 with one at node 13 results from
the tendency of the duplication/loss model to favor moreméduplications and is more controversial. It is
open to interpretation whether a duplication in the amnliotsage is more or less likely than a duplication
before the divergence of amphibians followed by loss of @mmy/c

This example shows that rearrangement can result in suiadiamlifferent hypotheses. The number
of duplication nodes in the rearranged HSP tree decreasedrfine to six. As this illustrates, although it
is possible to pick out individual rearrangements of lowfience branches by eye, when a tree contains

many weak branches it is helpful to have a tool to integrdtthalalternate hypotheses automatically.
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5.3 Unrooted Trees

We tested TUNG on the seven unrooted trees in Table 1. For each tresluUNG computed the duplica-
tion history for every root and ranked them according to lmatst functions. We compared these rankings
with the rootings favored by the authors. Although possibtitings are rarely, if ever, mentioned explicitly
by the author's whose trees we tested, they frequently irtialyyonly a subset of the possible rootings lead
to plausible hypotheses. Consider, for example, the TCHyanee, shown in Figure 9. In their analysis,
Ruvinsky and Silver (Ruvinsky and Silver 1997) state thais'idifficult to conclude whether the split be-
tween the TCF1 and TCF2 subfamilies occurred before or eifeeseparation between fish and tetrapods,”
but “in any case, divergence between the two sub familieddias place prior to the amniote-amphibian
separation.” These conclusions are consistent with angath the bold edges in Figure 9 and no others.
For each tree, we partitioned the set of edges into plauaideimplausible rootings from the analysis
presented by the original authors. We executed BNG on all trees and compared the rankings induced by
each cost function with the author’s rankings. The two costfions always agreed on the ranking of the
trees with the best scores, ranging from an identical rankirthe top nine rootings for the EGR family to
identical rankings of all rootings for ANK, LHX and VMAT. WheNOTUNG 's rankings were compared
with those of the original authors, Noting ranked all plalesrootings ranked above all implausible rootings
for five out of the seven trees. For the remaining two treesctsts of all implausible rootings were greater
than or equal to the costs of all plausible rootings. For dnthese, the PSMB tree, the set of highest
ranked edges is a superset of the rootings deemed plausilifughes. One of these edges has weak
bootstrap support. A rearrangement around this edge iraprthe score of the tree with respect to both
Cy(-) andCyp(-). When the alternate rootings of this rearranged tree wered, the set of lowest cost

rootings exactly agreed with Hughes’ analysis. In the otlase, the CRYB tree, there were eight top-ranked
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rat*vhnfl mouse*tcf2

pig*vhnfl

human*tcf2

clawed frog*hnfl

chicken*hnfl

mouse*tcfl
human*tcfl

golden hamster*hnfl

Figure 9: An unrooted tree for the TCF family (Ruvinsky antv&i1997). Each edge, is labeled with the
ranking, with respect to botf; (-) andCy;(-), of the tree rooted at Edges in bold correspond to rootings
supported by the analysis in (Ruvinsky and Silver 1997).
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rootings of equal cost, while the authors’ analysis imptieat only one rooting is possible. The duplication
histories (i.e., the set of duplication nodes with time es)gvere identical for the eight edges. Only the
ordering of the duplication nodes differed. This suggeskeethat the authors did not consider all alternate
scenarios, possibly missing something of interest, ortti@¢ had additional information about the gene
family, such as the biochemical properties or functiont¢smf the proteins, that allowed them to rule out
other rootings.

Within the set of plausible rootings, the ordering of scaitess not always agree with the biologists’
assessments. In contrast to the analysis of Ruvinsky amdrSitho ranked the three best edges equally,
the edge adjacent to the fish sequence in Figure 9 is rankbdrhigan the other two because this rooting

requires one fewer gene loss.
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6 Discussion

In this study, we analyzed every non-pathological treeliegiiecent gene duplication studies (Hughes 1998;
Pebusque et al. 1998; Ruvinsky and Silver 1997). The dujgithistories generated for rooted trees were
consistent with the analyses of the authors of the origiapkps for all trees considered. For unrooted trees,
alternate histories were computed for each rooting andedr@iccording to two different cost functions
based on duplication and loss. One of these is based on a wigokeisimonious gene loss while the other
is an upper bound on the maximum number of gene losses thatredc Although the rankings for the
two cost functions were different, for top ranking rootirthe cost functions agreed for every tree in the
test set. In particular, they agreed on the hypotheses ikebt to be of interest to the user. Both rankings
correctly identified unlikely hypotheses, providing theuwith a way to control the quantity of output to
be reviewed. When used to select alternate hypothese®és with weak edges, both cost functions were
effective in correcting errors in the duplication histotgraming from errors in the original tree topology.
The fact that the cost functions agree on both unrooted &nregsearrangements, suggest that the prob-
lem is robust with respect to the duplication/loss modehc8ithe cost functions represent models that are
opposite extremes of gene loss, our results imply thatrinfgduplication histories is not highly sensitive
to the choice of model and we can have confidence in an expigranalysis tool based on such scoring
functions. This approach does present some limitationsa@se both cost functions count gene losses, they
favor hypotheses with more recent duplications. As a reBuiddition to correcting phylogenetic errors
when evaluating alternatives for weak branches, in somesdhgy select more controversial alternatives.
By combining duplication and loss with sequence infornmatihis approach offers a richer source of infor-
mation for reconstructing gene duplication histories thaquence information alone. Nevertheless, there

are other sources biological information (e.g., biochednproperties and intron/exon structure) that can
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guide analysis that are not incorporated in this approaamoti#er limitation of this approach is that it is
difficult to distinguish true gene loss from genes that hasteyet been sequenced.

This paper suggests several open problems for future adse@urrently, there is no known polynomial
algorithm for finding the optimal rearrangement tree withpect to either cost function. Nor has this
optimization problem been shown to be NP-hard. The seitgitif the cost function(Cy(+), to the relative
importance of gene duplications and gene losses (i.e.,ahew ofc) andcs) has not been investigated.
Finally, the more general problem of phylogeny reconsionctising a cost function that combines sequence
comparison, gene duplication and gene loss is an outstactialenge.

Currently, there is a great deal of interest in using gendichtjons to study the role of whole genome
duplications in genome evolution (Skrabanek and Wolfe 1988fe and Shields 1997). This will require
dating all paralogs in a genome. In its current forrgMNG can be used to estimate duplication dates of
rooted GFT’s automatically. With more reliable evaluatimethods, MTUNG can also be adapted to the

automatic analysis of unrooted trees and rearrangemetrsesfwith weak edges.
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