
Dictionaries Using Variable-Length Keys

and Data, with Applications ∗

Daniel K. Blandford
dkb1@cs.cmu.edu

Guy E. Blelloch
blelloch@cs.cmu.edu

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We consider the problem of maintaining a dynamic
dictionary in which both the keys and the associated
data are variable-length bit-strings. We present a
dictionary structure based on hashing that supports
constant time lookup and expected amortized constant
time insertion and deletion. To store the key-data pairs
(s1, t1) . . . (sn, tn), our dictionary structure uses O(m)
bits where m =

∑
(max(|si| − log n, 1) + |ti|) and |si| is

the length of bit string si. We assume a word length
w > logm.

We present several applications, including represen-
tations for semi-dynamic graphs, ordered sets for inte-
gers in a bounded range, cardinal trees with varying car-
dinality, and simplicial meshes of k dimensions. These
results either generalize or simplify previous results.

1 Introduction

There has been significant recent interest in data struc-
tures that use near optimal space while supporting fast
access [19, 23, 10, 8, 24, 17, 27, 15, 4, 28]. In additional
to theoretical interest, such structures have significant
practical implications. In recent experimental work [5],
for example, it was shown that a compact representa-
tion of graphs not only requires much less space than
standard representations (e.g., adjacency lists), but in
many cases it is faster. This is because it requires less
data to be loaded into the cache.

The dictionary problem is to maintain an n-element
set of keys si with associated data ti. A dictionary
is dynamic if it supports insertion and deletion as
well as the lookup operation. In this paper we are

∗This work was supported in part by the Na-
tional Science Foundation as part of the Aladdin Cen-
ter (www.aladdin.cmu.edu) under grants ACI-0086093,
CCR-0085982, and CCR-0122581.

interested in dynamic dictionaries in which both the
keys and data are variable-length bit-strings. Our main
motivation is to use such dictionaries as building blocks
for various other applications. We describe applications
of our dictionary structure to graphs, cardinal trees with
nodes of varying cardinality, ordered sets, and simplicial
meshes. These applications either generalize or simplify
previously known results. We assume the machine has
a word length w > log |C|, where |C| is the number of
bits used to represent the collection. We assume the
size of each string |si| ≥ 1, |ti| ≥ 1 for all bit-strings si
and ti.

For fixed-length keys the dictionary problem has
been well studied. The information-theoretic lower
bound for representing n elements from a universe U
is B = d

(|U |
n

)
e = n(log |U | − log n) + O(n). Cleary

[11] showed how to achieve (1 + ε)B + O(n) bits with
O(1/ε2) expected time for lookup and insertion while
allowing satellite data. His structure used the technique
of quotienting [21], which involves storing only part of
each key in a hash bucket; the part not stored can be
reconstructed using the index of the bucket containing
the key. Brodnik and Munro [8] describe a static
structure using B + o(B) bits and requiring O(1) time
for lookup; the structure can be dynamized, increasing
the space cost to O(B) bits. That structure does
not support satellite data. Pagh [25] showed a static
dictionary using B+o(B) bits and O(1) query time that
supported satellite data, using ideas similar to Cleary’s,
but that structure could not be easily dynamized.

Recently Raman and Rao [28] described a dynamic
dictionary structure using B + o(B) bits that supports
lookup in O(1) time and insertion and deletion in
O(1) expected amortized time. The structure allows
attaching fixed-length (|t|-bit) satellite data to elements:
in that case the space bound is B + n|t| + o(B + n|t|)
bits. None of this considers variable-bit keys or data.

Our variable-bit dictionary structure can store pairs
(si, ti) using O(m) space where m =

∑
i(max(1, |si| −

log n) + |ti|). Note that if |si| is constant and |ti| is zero
then O(m) simplifies to O(B). Our dictionaries support
lookup in O(1) time and insertion and deletion in O(1)
expected amortized time.

Our dictionary makes use of a simpler structure: an
“array” structure that supports an array of n locations
(1, . . . , n) with lookup and update operations. We
denote the ith element of an array A as ai. In our case
each location will store a bit-string. We present a data-
structure that uses O(m+w) space where m =

∑n
i=1 |ai|

and w is the machine word length. The structure
supports lookups in O(1) worst-case time and updates
in O(1) expected amortized time. Note that if all bit-
strings were the same length then this would be trivial.

Applications. Using our dictionaries we present
succinct dynamic representations for several other data
structures. For graphs we support adjacency queries,
listing the neighbors of a vertex, and deleting and
inserting edges. Insertion and deletion run in O(1)
expected amortized time, adjacency queries require
O(1) worst case time, and listing neighbors requires
O(1) time per neighbor. Given an integer labeling of
the vertices, the space required is O(m + n) where
m =

∑
(u,v)∈E log |u − v|, and n = |V |. Any graph

from a class satisfying an n1−ε edge-separator theorem
(ε > 0) can be labeled so that m < kn for some
constant k, and hence can be coded in O(n) bits. It
is well known, for example, that the class of bounded-
degree planar-graphs satisfies an n1/2 edge-separator
theorem. For graphs with bounded degree this extends
previous results [29, 20, 18, 4] by permitting insertion
and deletion of edges. We say that the graph is partially
dynamic since although it allows dynamic insertions and
deletions, the space bound relies on m remaining small.
As far as we know this is the first compact dynamic
graph representation of any kind.

For ordered sets S ⊂ {0, . . . , |U | − 1} we support
the same operations in the same bounds as recently
reported [3], except that the updates are expected
amortized time here and were worst case time bounds
there. The structure we describe here, however is
simpler and quite different from the previous structure.
It also allows for attaching a satellite bit string to each
key.

For cardinal trees (aka tries) we support a tree
in which each node can have a different cardinality.
Queries can request the kth child, or the parent of any
vertex. Again we can attach satellite bit-strings to each
vertex. Updates can add or delete the kth child. For
an integer labeled tree the space bound is O(m) where
m =

∑
v∈V (log c(p(v)) + log |v − p(v)|), and p(v) and

c(v) are the parent and cardinality of v, respectively.
Using an appropriate labeling of the vertices m reduces
to
∑
v∈V log c(p(v)), which is asymptotically optimal.

This generalizes previous results on cardinal trees [2, 27]
to varying cardinality. We do not match the optimal
constant in the first order term.

For d-simplicial meshes1 we support insertion and
deletion of simplices of dimension d, and returning the
neighbors across all faces of dimension d − 1. For ex-
ample in a 3d tetrahedral mesh we can add and delete
tetrahedrons, and ask for the neighboring tetrahedron
across any of the four faces, if there is one. Given an
integer labeling of the vertices, the space required is
O(m+n) where m =

∑
(a,b,c)∈F (log |a− b|+log |a− c|),

n = |V |, and F are the faces in the 2−skeleton of
the mesh. In the bounded degree case this reduces to
m =

∑
(u,v)∈E(log |u− v|) where E are the edges in the

1-skeleton of the mesh. As usual, updates take O(1)
amortized expected time and queries take O(1) worst
case time. We note that we have actually used a similar
data structure as described here to implement triangu-
lated and tetrahedral meshes [6]. The experiments show
that the tetrahedral mesh allows fast access and updates
and uses only about 7 bytes per tetrahedron (compared
to 32 bytes per tetrahedron needed for the most com-
pact traditional representation). In that paper we do
not give any theoretical bounds on space.

2 Preliminaries

Processor model. In our data structures we as-
sume that the processor word length is w bits, for some
w > log |C|, where |C| is the total number of bits con-
sumed by our data structure. That is, we assume that
we can use a w-bit word to point to any memory we
allocate.

We assume that the processor supports two special
operations, bitSelect and bitRank, defined as follows.
Given a bit string s of length w bits, bitSelect(s, i) re-
turns the least position j such that there are i ones in
the range s[0] . . . s[j]. bitRank(s, j) returns the number
of ones in the range s[0] . . . s[j]. These operations mimic
the function of the rank and select data structures of
Jacobson [19].

If the processor does not support these operations,
we can implement them using table lookup in 1/ε time
using O(2εwεw log(εw)) bits. By simulating a word size
of Θ(log |C|) this can be reduced to less than |C|, and
thus made a low order term, while running in constant
time. Note that it is always possible to simulate smaller
words with larger words with constant overhead by

1By d simplicial mesh we mean a pure simplicial complex of

dimension d, which is a manifold, possibly with boundary [13].

packing multiple small words into a larger one.
Memory allocation. Many of our structures do

not explicitly support storage of bit strings longer than
w bits. To handle these strings we use a separate
memory allocation system. This memory system must
be capable of allocating or freeing |s| bits of memory in
time |s|/w, and may use O(|s|) space to keep track of
each allocation. It is well known how to do this (e.g.,
[1]).

Quotienting. For sets of fixed length elements
a space bound is already known [24]: to represent
n elements, each of size |s| bits, requires O(n(|s| −
log n)) bits. A method used to achieve this bound is
quotienting : every element s ∈ U is uniquely hashed
into two bit strings s′, s′′ such that s′ is a log n-bit
index into a hash bucket and s′′ contains |s| − log n
bits. Together, s′ and s′′ contain enough bits to describe
s; however to add s to the data structure, it is only
necessary to store s′′ in the bucket specified by s′. The
idea of quotienting was first described by Knuth [21,
Section 6.4, exercise 13] and has been used in several
contexts [11, 8, 28, 15].

Gamma codes. The gamma code [14] is a
variable-length prefix code that represents a positive in-
teger v with blog vc zeroes, followed by the (blog vc+1)-
bit binary representation of v, for a total of 2blog vc+ 1
bits.

Given a string s containing a gamma code (of
length ≤ w) followed possibly by other information,
it is possible to decode the gamma code in constant
time. First, an algorithm uses bitSelect(s, 1) to find
the location j of the first one in s. The length of the
gamma code is 2j + 1, so the algorithm uses shifts to
extract the first 2j + 1 bits of s. A gamma code for d
is equivalent to a binary code for d with some leading
zeroes; thus decoding d is equivalent to reinterpreting it
as an integer.

If the integer d to be encoded might be zero or
negative, this can be handled by packing a sign bit with
the gamma code for d. If the sign bit is a zero, then the
gamma code is a code for d; otherwise, the gamma code
is actually a code for 1− d.

Gamma codes are only one of a wide class of
variable-length codes. This paper makes use of gamma
codes because they require very few operations to
decode.

3 Arrays

The variable-bit-string array problem is to maintain bit
strings a1 . . . an, supporting update and lookup opera-
tions. Our array representation supports strings of size
1 ≤ |ai| ≤ w. Strings of size more than w must be al-
located separately, and w-bit pointers to them can be

stored in our structure.
Our structure consists of two parts: a set of blocks

B and an index I. The bit-strings in the array are stored
in the blocks. The index allows us to quickly locate the
block containing a given array element.

Blocks. A block Bi is an encoding of a series of
bit strings (in increasing order) ai, ai+1, . . . , ai+k.
The block stores the concatenation of the strings bi =
aiai+1 . . . ai+k, together with information from which
the start location of each string can be found. It suffices
to store a second bit string b′i such that b′i contains a 1
at position j if and only if some bit string ak ends at
position j in bi.

A block Bi consists of the pair (bi, b′i). We denote
the size of a block by |bi| =

∑k
j=0 |ai+j |. We maintain

the strings of our array in blocks of size at most w.
We maintain the invariant that, if two blocks in our
structure are adjacent (meaning, for some i, one block
contains ai and the other contains ai+1), then the sum
of their sizes is greater than w.

Index structure. The index I for our array struc-
ture consists of a bit array A[1 . . . n] and a hash table
H. The array A is maintained such that A[i] = 1 if and
only if the string ai is the first string in some block Bi
in our structure. In that case, the hashtable H maps i
to Bi.

The hashtable H must use O(w) bits (that is, O(1)
words) per block maintained in the hashtable. It must
support insertion and deletion in expected amortized
O(1) time, and lookup in worst-case O(1) time. Cuckoo
hashing [26] or the dynamic version of the FKS perfect
hashing scheme [12] have these properties. If expected
rather than worst-case lookup bounds are acceptable,
then a standard implementation of chained hashing will
work as well.

Operations. We begin by observing that no block
can contain more than w bit strings (since blocks have
maximum size w and each bit string has size at least one
bit). Thus, from any position A[k], the distance to the
nearest one in either direction is at most w. To find the
nearest one on the left, we let s = A[k − w] . . . A[k − 1]
and compute bitSelect(s, bitRank(s, w− 1)). To find
the nearest one on the right, we let s = A[k+1] . . . A[k+
w] and compute bitSelect(s, 1). These operations take
constant time.

To access a string ak, our structure first searches I
for the block Bi containing ak. This is simply a search
on A for the nearest one on the left. The structure
performs a hashtable lookup to access the target block
Bi. Once the block is located, the structure scans the
index string b′i to find the location of ak. This can be
done using bitSelect(b′i, k − i+ 1).

If ak is updated, its block Bi is rewritten. If Bi

becomes smaller as a result of an update, it may need
to be merged with its left neighbor or its right neighbor
(or both). In either case this takes constant time.

If Bi becomes too large as a result of an update to
ak, it is split into at most three blocks. The structure
may create a new block at position k, at position k+ 1,
or (if the new |ak| is large) both. To maintain the size
invariant, it may then be necessary to join Bi with the
block on its left, or to join the rightmost new block with
the block on its right.

All of the operations on blocks and on A take O(1)
time: shifting and copying takes can be done w bits at
a time. Access operations on H take O(1) worst-case
time; updates take O(1) expected amortized time.

We define the total length of the bit-strings in
the structure to be m = O(

∑n
i=1 |ai|). The structure

contains n bits in A plus O(w) bits per block; there are
O(m/w+1) blocks, so the total space usage is O(m+w).
This gives us the following theorem:

Theorem 3.1 Our variable-bit-string array represen-
tation can store bit strings of length 1 ≤ ai ≤ w in
O(w +

∑n
i=1 |ai|) bits while allowing accesses in O(1)

worst-case time and updates in O(1) amortized expected
time.

The proof follows from the discussion above.

4 Dictionaries

Using our variable-bit-length array structure we can im-
plement space-efficient variable-bit-length dictionaries.
In this section we describe dictionary structures that can
store a set of bit strings s1 . . . sn, for 1 ≤ |si| ≤ w+logn.
(We can handle strings of length greater than w+ logn
by allocating memory separately and storing a w-bit
pointer in our structure.) Our structures use space
O(m) where m =

∑
(max(|si| − log n, 1) + |ti|).

We will first discuss a straightforward implementa-
tion based on chained hashing that permits O(1) ex-
pected query time and O(1) expected amortized update
time. We will then present an implementation based
on the dynamic version [12] of the FKS perfect hashing
scheme [16] that improves the query time to O(1) worst-
case time. Our structure uses quotienting, as described
in Section 2.

For our quotienting scheme to work, we will need
the number of hash buckets to be a power of two. We
will let q be the number of bits quotiented, and assume
there are 2q hash buckets in the structure. As the
number of entries grows or shrinks, we will resize the
structure using a standard doubling or halving scheme
so that 2q ≈ n.

Hashing. For purposes of hashing it will be conve-
nient to treat the bit strings si as integers. Accordingly
we reinterpret, when necessary, each bit string as the bi-
nary representation of a number. To distinguish strings
with different lengths we prepend a 1 to each si before
interpreting it as a number. We denote this padded
numerical representation of si by xi.

We say a family H of hash functions onto 2q

elements is k-universal if for random h ∈ H, Pr(h(x1) =
h(x2)) ≤ k/2q [9], and is k-pairwise independent if for
random h ∈ H, Pr(h(x1) = y1 ∧ h(x2) = y2) ≤ k/22q

for any x1 6= x2 in the domain, and y1, y2 in the range.
We wish to construct hash functions h′, h′′. The

function h′ must be a hash function h′ : {0, 1}w+q+1 →
{0, 1}q. The binary representation of h′′(xi) must
contain q fewer bits than the binary representation of
xi. Finally, it must be possible to reconstruct xi given
h′(xi) and h′′(xi).

Note that others, such as [21, 24, 27], have described
quotienting functions in the past. Previous authors,
however, were not concerned with variable length keys,
so their h′′ functions do not have the length properties
we need.

For clarity we break xi into two words, one contain-
ing the low-order q bits of xi, the other containing the
remaining high-order bits. The hash functions we use
are:

xi = xi div 2q xi = xi mod 2q

h′′(xi) = xi h′(xi) = (h0(xi))⊕ xi

where h0 is any 2-pairwise independent hash func-
tion with range 2q. For example, we can use:

h0(xi) = ((axi + b) mod p) mod 2q

where p > 2q is prime and a, b are randomly chosen from
1 . . . p. Given h′ and h′′, these functions can be inverted
in a straightforward manner:

xi = h′′ xi = h0(h′′)⊕ h′

We can show that the family from which h′ are
drawn is 2-universal as follows. Given x1 6= x2, we have

Pr(h′(x1) = h′(x2)) = Pr(h0(x1)⊕ x1 = h0(x2)⊕ x2)
= Pr(h0(x1)⊕ h0(x2) = x1 ⊕ x2)

The probability is zero if x1 = x2, and otherwise it is
< 2/22q (by the 2-pairwise independence of h0). Thus
Pr(h′(x1) = h′(x2)) ≤ 2/22q.

Note also that selecting a function from H requires
O(log n) random bits.

Dictionaries. Our dictionary data structure is a
hash table consisting of a variable-bit-length array A
and a hash function h′, h′′. To insert (si, ti) into the
structure, we compute s′i and s′′i and insert s′′i and ti
into bucket s′i.

It is necessary to handle the possibility that multi-
ple strings hash to the same bucket. To handle this we
prepend to each string s′′i or ti a gamma code indicat-
ing its length. (This increases the length of the strings
by at most a constant factor.) We concatenate together
all the strings in a bucket and store the result in the
appropriate array slot.

If the concatenation of all the strings in a bucket
is of size greater than w, we allocate that memory
separately and store a w-bit pointer in the array slot
instead.

It takes O(1) time to decode any element in
the bucket (since the gamma code for the length
of an element can be read in constant time with a
bitSelect function and shifts). Each bucket has ex-
pected size O(1) elements (since our hash function is
universal), so lookups for any element can be accom-
plished in expected O(1) time, and insertions and dele-
tions can be accomplished in expected amortized O(1)
time.

The bit string stored for each si has size
O(max(|si| − q, 1)); the bit string for ti has size O(|ti|).
Our variable-bit-length array increases the space by
at most a constant factor, so the total space used by
our variable dictionary structure is O(m) for m =∑

(max(|si| − log n, 1)) + |ti|).
Perfect Hashing. We can also use our variable-

bit-length arrays to implement a dynamized version of
the FKS perfect hashing scheme. We use the same
hash functions h′, h′′ as above, except that h′ maps
to {0, 1}logn+1 rather than {0, 1}logn. We maintain a
variable-bit-length array of 2n buckets, and as before
we store each pair (s′′i , ti) in the bucket indicated by s′i.

If multiple strings collide within a bucket, and
their total length is w bits or less, then we store the
concatenation of the strings in the bucket, as we did
with chained hashing above. However, if the length is
greater than w bits, we allocate a separate variable-
bit-length array to store the elements. If the bucket
contained k bits then the new array has about k2 slots—
we maintain the size and hash function of that array as
described by Dietzfelbinger et. al. [12].

In the primary array we store a w-bit pointer to
the secondary array for that bucket. We charge the
cost of this pointer, and the O(w)-bit overhead for
the array and hash function, to the cost of the w bits
that were stored in that bucket. The space bounds for
our structure follow from the bounds proved in [12]:

the structure allocates only O(n) array slots, and our
structure requires only O(1) bits per unused slot. Thus
the space requirement of our structure is dominated by
the O(m) bits required to store the elements of the set.

Access to elements stored in secondary arrays takes
worst-case constant time. Access to elements stored
in the primary array is more problematic, as the po-
tentially w bits stored in a bucket might contain O(w)
strings, and to meet a worst-case bound it is necessary
to find the correct string in constant time.

We can solve this problem using table lookup. The
table needed would range over {0, 1}εw ∗ {0, 1}εw; and
would allow searching in a string a of gamma codes for
a target string b. Each entry would contain the index in
a of b, or the index of the last gamma code in a if b was
not present. The total space used would be 22εw log(εw);
the time needed for a query would be O(1/ε).

By selecting ε and w appropriately we can made the
table require o(|C|) space.

This gives us the following theorem:

Theorem 4.1 Our variable-bit-string dictionary repre-
sentation can store bit strings of any size using O(m)
where m =

∑
(max(|si|−log n, 1)+ti) bits while allowing

updates in O(1) amortized expected time and accesses in
O(1) worst-case time.

5 Graphs

Using our variable-bit-length dictionary structure we
can implement space-efficient representations of unla-
beled graphs. We will begin by describing a general
data structure for representing integer labeled n-vertex
graphs. We will then describe how this structure can be
efficiently compressed by assigning labels appropriately.

Operations. We wish to support the following
operations:

adjacent(u, v): true iff u and v are adjacent in G

firstEdge(v): return the first neighbor of v in G

nextEdge(u, v): given a vertex u and neighbor v in G,
return the next neighbor of u

addEdge(u, v): add the edge (u, v) to G

deleteEdge(u, v): delete the edge (u, v) from G.

The query operations will take O(1) worst-case
time, while the update operations (addEdge and dele-
teEdge) will take O(1) amortized expected time.

The adjacent operation allows us to support ad-
jacency queries, while the combination of firstNeigh-
bor and nextNeighbor allow us to support neighbor
listing in O(1) time per neighbor. The interface can be

supported by using doubly linked adjacency lists along
with a hash table using O((|E|+ |V |) log |V |) bits. The
hash table can be used for the adjacency and dele-
teEdge operations. We would like to improve on the
space bounds.

Our structure can represent any graph but it will
give good compression results only on a certain class
of graphs: those with k-compact labelings. Given an
integer labeling for the vertices of a graph, we define
the length of an edge |e|, e = (u, v) to be the distance
between its vertices |u − v|. We say that a k-compact
labeling for a graph is one for which

∑
e∈E log |e| <

k|V |. We define a graph to be k-compact if it has a
k-compact labeling.

Blandford et. al. showed that for any class of
graphs satisfying an O(n1−ε)-edge separator theorem,
ε > 0, all members are O(1)-compact [4]. This
includes bounded-degree planar graphs, which satisfy
an O(n

1
2)-edge separator theorem, and certain well-

shaped meshes [22] of fixed dimension. The labeling
can be found using separator trees. Additionally, many
graphs in practice have been found to be k-compact
for much smaller k than would be expected for random
graphs [5] (e.g., web link graphs, VLSI circuits, and
internet connectivity graphs).

Theorem 5.1 All n-vertex graphs with a k-compact
labeling can be stored in O(k|V |) bits while allowing
updates in O(1) amortized expected time and queries in
O(1) worst-case time.

Proof. We begin by describing our graph structure in
an uncompressed form, and then describe how it is
compressed.

Our structure represents a graph as a dictionary
of edges. The edges incident on each vertex are cross
linked into a doubly linked list. Consider a vertex u
and some ordering on its neighboring vertices v1, . . . , vd.
We represent each edge (u, vi), 1 ≤ i ≤ d using the
dictionary entry (u, vi; vi−1, vi+1). (That is, (u, vi) is
the key, and (vi−1, vi+1) is the associated data.) We
define v0, vd+1 = u and for each vertex we include an
entry (u, u; vd, v1).

Given this representation we can support all of
the above operations using functions of the dictionary.
Pseudocode for these operations is shown in Figure 1.

In its uncompressed form this dictionary consumes
d + 1 entries for each vertex of degree d. The total
number of entries is therefore |V |+ |E|. The space used
is O((|E|+ |V |)w).

Compression. To compress this structure we
make use of difference coding : we simply store each dic-
tionary entry using differences with respect to u. That is

to say, rather than store an entry (u, vi; vi−1, vi+1) in the
dictionary, we instead store (u, vi−u; vi−1−u, vi+1−u).

We use our variable-bit-length dictionary to store
the entries. The encoding of u in each entry requires
log |V | bits; the dictionary absorbs this cost using
quotienting. The space used, then, is proportional to
the cost of encoding vi − u, vi−1 − u, and vi+1 − u, for
each edge (u, vi) in the dictionary. We compress these
differences by representing them with gamma codes
(with sign bits). The cost to encode each edge e with a
logarithmic code is O(log |e|). Each edge appears O(1)
times in the structure, so the total cost to encode all
the edges is

∑
e∈E log |e|.

For a k-compact labeling,
∑
e∈E log |e| is O(kn).

6 Ordered Sets

We would like to represent ordered sets S of integers
in the range (0, . . . ,m − 1). In addition to lookup
operations, an ordered set needs to efficiently support
queries that depend on the order. Here we consider
findNext and finger searching. findNext on a key k1

finds min{k2 ∈ S|k2 > k1}; finger searching on a finger
key k1 ∈ S and a key k2 finds min{k3 ∈ S|k3 > k2}, and
returns a finger to k3. Finger searching takes O(log l)
time, where l = |{k ∈ S|k1 ≤ k ≤ k2}|.

To represent the set we use a red-black tree on the
elements. We will refer to vertices of the tree by the
value of the element stored at the vertex, use n to refer
to the size of the set, and without loss of generality we
assume n < m/2. For each element v we denote the
parent, left-child, right child, and red-black flag as p(v),
l(v), r(v), and q(v) respectively.

We represent the tree as a dictionary containing en-
tries of the form (v; l(v) − v, r(v) − v, q(v)). (We could
also add parent pointers p(v)− v without violating the
space bound, but in this case they are unnecessary.) It is
straightforward to traverse the tree from top to bottom
in the standard way. It is also straightforward to im-
plement a rotation by inserting and deleting a constant
number of dictionary elements. Assuming dictionary
queries take O(1) time, findNext can be implemented
in O(log n) time. Using a hand data structure [7], fin-
ger searching can be implemented in O(log l) time with
an additional O(log2 n) space. Membership takes O(1)
time. Insertion and deletion take O(log n) expected
amortized time. We call this data structure a dictio-
nary red-black tree.

It remains to show the space bound for the struc-
ture.

Lemma 6.1 If a set of integers S ⊂ {0, . . . ,m− 1} of
size n is arranged in-order in a red-black tree T then∑
v∈T (log |p(v)− v|) ∈ O(n log(m/n)).

adjacent(u, v)
return (lookup((u, v)) 6= null)

firstEdge(u)
(vp, vn)←lookup((u, u))
return vn

nextEdge(u, v)
(vp, vn)←lookup((u, v))
return vn

addEdge(u, v)
(vp, vn)←lookup((u, u))
insert((u, u), (vp, v))
insert((u, v), (u, vn))

deleteEdge(u, v)
(vp, vn)←lookup((u, v))
(vpp, v)←lookup((u, vp))
(v, vnn)←lookup((u, vn))
insert((u, vp), (vpp, vn))
insert((u, vn), (vp, vnn))
delete((u, v))

Figure 1: Pseudocode to support our graph operations.

Proof. Consider the elements of a set S ⊂ {0, . . . ,m−1}
organized in a set of levels L(S) = {L1, . . . , Ll}, Li ⊂ S.
If |Li| ≤ α|Li+1|, 1 ≤ i < l, α > 1, we say such an
organization is a proper level covering of the set.

We first consider the sum of the log-differences
of cross pointers within each level, and then count
the pointers in the red-black trees against these point-
ers. For any set S ⊂ {0, . . . ,m − 1} we define
next(e, S) = min{e′ ∈ S ∪ {m}|e′ > e}, and M(S) =∑
j∈S log(next(j, S) − j). Since logarithms are concave

the sum is maximized when the elements are evenly
spaced and hence M(S) ≤ |S| log(m/|S|)). For any
proper level covering L of a set S this gives:∑

Li∈L(S)

M(Li) ≤
∑
Li∈L

|Li| log(m/|Li|)

≤
i<l∑
i=0

α−i|S| log(αim/|S|))

≤ 2 +
α

(α− 1)
|S| log(m/|S|)

∈ O(|S| log(m/|S|))

This represents the total log-difference when summed
across all “next” pointers. The same analysis bounds
similarly defined “previous” pointers. Together we call
these cross pointers.

We now account for each pointer in the red-black
tree against one of the cross pointers. First partition
the red-black tree into levels based on number of black
nodes in the path from the root to the node. This
gives a proper level covering with α = 2. Now for each
node i, the distance to each of its two children is at
most the distance to the previous or next element in its
level. Therefore we can account for the cost of the left
child against the previous pointer and the right child
against next pointer. The sum of the log-differences of

the child pointers is therefore at most the sum of the
log-differences of the next and previous cross pointers.
This gives the desired bound.

Theorem 6.1 A set of integers S ⊂ {0, . . . ,m − 1}
of size n represented as a dictionary red-black tree and
using a compressed dictionary uses O(n log((n+m)/n)
bits and supports find-next queries in O(log n) time,
finger-search queries in O(log l) time, and insertion and
deletion in O(log n) expected amortized time.

Proof. (outline) Recall that the space for a com-
pressed dictionary is bounded by O(m) where m =∑

(s,t)∈D(max(1, |s|−log |D|)+|t|). The keys use log |D|
bits each, and the size of the data stored in the dictio-
nary is bounded by Lemma 6.1. This gives the desired
bounds.

7 Cardinal Trees

A cardinal tree (aka trie) is a rooted tree in which every
node has c slots for children any of which can be filled.
We generalize the standard definition of cardinal trees
to allow each node v to have a different c, denoted as
c(v). For a node v we want to support returning the
parent p(v) and the ith child v[i], if any. We also want
to support deleting or inserting a leaf node. As with
graphs, we consider these semi dynamic operations since
the updates might require relabeling of the vertices to
maintain the space bounds.

Lemma 7.1 Integer labeled cardinal trees with m =∑
v∈V (log c(p(v))+log |v−p(v)|), can be stored in O(m)

bits and support parent and child queries in O(1) time
and insertion and deletion of leaves in O(1) expected
amortized time.

Proof. (outline) For child queries we can just store a
dictionary entry for each vertex v that is keyed on
(p(v), i) and stores p(v)− v as the data. In the cost for
dictionaries given by m =

∑
(s,t)∈D(|t| + max(1, |s| −

log |D|)) the p(v) can be counted against the log |D|,
the i against the log c(p(v)) and the p(v) − v against
the log |v− p(v)|. Parent queries can be supported by a
dictionary from v to p(v).

Any tree T can be separated into a set of trees of size
at most 1/2n by removing a single node. Recursively
applying such a separator on the cardinal tree defines
a separator tree Ts over the nodes. An integer labeling
can then be given to the nodes of T based on the inorder
traveral of Ts. We call such a labeling a tree-separator
labeling.

Lemma 7.2 For all tree-separator labelings of trees
T = (V,E) of size n,

∑
(u,v)∈E(log |u − v|) < O(n) +

2
∑

(u,v)∈E log(max(d(u), d(v))).

Proof. Consider the separator tree Ts = (V,Es) on
which the labeling is based. For each node v we denote
the degree of v by d(v). We let Ts(v) denote the subtree
of Ts that is rooted at v. Thus |Ts(v)| is the size of the
piece of T for which v was chosen as a separator.

There is a one-to-one correspondence between the
edges E and edges Es. In particular consider an
edge (v, v′) ∈ Es between a vertex v and a child v′.
This corresponds to an edge (v, v′′) ∈ T , such that
v′′ ∈ Ts(v′). We need to account for the log-difference
log |v − v′′|. We have |v − v′′| < |Ts(v)| since all labels
in any subtree are given sequentially. We partition the
edges into two classes and calculate the cost for edges
in each class.

First, if d(v) >
√
|Ts(v)| we have for each edge

(v, v′′), log |v − v′′| < log |Ts(v)| < 2 log d(v) <
2 log max(d(v), d(v′′)).

Second, if d(v) ≤
√
|Ts(v)| we charge each edge

(v, v′′) to the node v. The most that can be charged to a
node is

√
|Ts(v)| log |Ts(v)| (one pointer to each child).

Note that for any tree in which for every node v (A)
|Ts(v)| < 1/2|Ts(p(v))|, and (B) cost(v) ∈ O(|Ts(v)|c)
for some c < 1, we have

∑
v∈V cost(v) ∈ O(n).

Therefore the total charge is O(n).
Summing the two classes of edges gives O(|T |) +

2
∑

(u,v)∈E log(max(d(u), d(v))).

Theorem 7.1 Cardinal trees with a tree-separator la-
beling, with m =

∑
v∈V (1 + log(1 + c(p(v)))) can be

stored in O(m) bits.

Proof. We are interested in the edge cost Ec(T) =∑
v∈V (log |v − p(v)|). Substituting p(v) for u in

Lemma 7.2 gives:

Ec(T) < O(n) + 2
∑
v∈V

log(max(d(v), d(p(v))))

< O(n) + 2
∑
v∈V

d(v) + log d(p(v)))

= O(n) + 4n+ 2
∑
v∈V

log(d(p(v)))

< O(n) + 2
∑
v∈V

log(1 + c(p(v)))

With Lemma 7.1 this gives the required bounds.

8 Simplicial Meshes

Using our variable-bit-length dictionary structure we
can implement space-efficient representations of d di-
mensional simplicial meshes. By a d simplicial mesh we
mean a pure simplicial complex of dimension d, which
is a manifold, possibly with boundary [13].

We will describe the structure for d = 3 but note
that this can be generalized to d dimensions. Our
structure supports the following operations:

find(a, b, c): finds all vertices d such that (a, b, c, d)
form a tetrahedron in M (at most two since the
mesh is a manifold).

insert(a, b, c, d): adds the tetrahedron (a, b, c, d) to M

delete(a, b, c, d): delete the tetrahedron (a, b, c, d) from
M

We represent a simplicial mesh as a dictionary of
simplices. Each face (a, b, c) in the mesh may belong to
two tetrahedra, (a, b, c, d) and (a, b, c, e). For each face
in the mesh we store the entry (a, b, c; d, e). If a face
is not part of two tetrahedra then we store the special
character 0 in that slot. The operations can then be
implemented as shown in Figure 2.

As we did with our graph implementation, we
can compress this structure by encoding b, c, d, and
e relative to a. That is, in our variable-bit-length
dictionary we store tuples of the form (a, b−a, c−a; d−
a, e − a). To account for the space stored, we charge
the cost of storing b − a and c − a to the face (a, b, c);
we charge the cost of d − a to the face (a, b, d) and of
e − a to the face (a, b, e). The dictionary absorbs the
log |V |-bit cost of representing a using quotienting.

Each face is charged at most O(1) times, and each
time the charge is O(log |b−a|+ log |c−a|). This gives:

Theorem 8.1 Our simplicial mesh represen-
tation using our variable-bit dictionary uses

find((a, b, c))
return lookup((a, b, c), T)

insert(S)
for each rotation (a, b, c, d) of S

(e, 0)← lookup((a, b, c), T)
insert((a, b, c), (d, e))

delete(S)
for each rotation (a, b, c, d) of S

(d, e)← lookup((a, b, c), T)
if e = 0 then delete((a, b, c), T)
else insert((a, b, c), (e, 0))

Figure 2: Pseudocode to support simplicial mesh oper-
ations.

O(
∑

(a,b,c)∈F (log |a − b| + log |a − c|)) bits where
F is the 2−skeleton of the mesh. It supports find in
worst-case constant time and add and delete in
expected amortized constant time.

If the 2-skeleton of the mesh (that is, the graph
induced by the faces) has a k-compact labeling, then
the representation of the mesh will use O(n) bits. We
note that well-shaped meshes with bounded degree have
small separators [22] and are therefore k-compact for
fixed dimension.

If the mesh has bounded degree, then the bound
O(
∑

(a,b,c)∈F (log |a − b| + log |a − c|)) simplifies to
O(
∑

(u,v)∈E(log |u− v|)), where E is the 1−skeleton of
the mesh.

References

[1] H. G. Baker. List processing in real-time on a serial
computer. Communications of the ACM, 21(4):280–
94, 1978.

[2] D. Benoit, E. D. Demaine, J. I. Munro, and V. Raman.
Representing trees of higher degree. In WADS, pages
169–180, 1999.

[3] D. Blandford and G. Blelloch. Compact representa-
tions of ordered sets. In SODA, pages 11–19, 2004.

[4] D. Blandford, G. Blelloch, and I. Kash. Compact
representations of separable graphs. In SODA, pages
342–351, 2003.

[5] D. Blandford, G. Blelloch, and I. Kash. An experi-
mental analysis of a compact graph representation. In
ALENEX04, 2004.

[6] D. K. Blandford, G. E. Blelloch, D. E. Cardoze, and
C. Kadow. Compact representations of simplicial
meshes in two and three dimensions. In Proc. Inter-
national Meshing Roundtable (IMR), Sept. 2003.

[7] G. E. Blelloch, B. Maggs, and M. Woo. Space-
efficient finger search on degree-balanced search trees.
In SODA, pages 374–383, 2003.

[8] A. Brodnick and J. I. Munro. Membership in constant
time and almost-minimum space. Siam Journal of
Computing, 28(5):1627–1640, 1999.

[9] L. Carter and M. Wegman. Universal classes of hash
functions. Journal of Computer and System Sciences,
pages 143–154, 1979.

[10] R. C.-N. Chuang, A. Garg, X. He, M.-Y. Kao, and H.-I.
Lu. Compact encodings of planar graphs via canonical
orderings and multiple parentheses. Lecture Notes in
Computer Science, 1443:118–129, 1998.

[11] J. G. Cleary. Compact hash tables using bidirectional
linear probing. IEEE Trans. Comput, 9:828–834, 1984.

[12] M. Dietzfelbinger, A. R. Karlin, K. Mehlhorn, F. M.
auf der Heide, H. Rohnert, and R. E. Tarjan. Dynamic
perfect hashing: Upper and lower bounds. SIAM J.
Comput., 23(4):738–761, 1994.

[13] H. Edelsbrunner. Geometry and Topology of Mesh
Generation. Cambridge Univ. Press, England, 2001.

[14] P. Elias. Universal codeword sets and representations
of the integers. IEEE Transactions on Information
Theory, IT-21(2):194–203, March 1975.

[15] D. Fotakis, R. Pagh, P. Sanders, and P. G. Spirakis.
Space efficient hash tables with worst case constant
access time. In STACS, 2003.

[16] M. L. Fredman, J. Komlos, and E. Szemerdi. Storing a
sparse table with 0(1) worst case access time. JACM,
31(3):538–544, 1984.

[17] R. Grossi and J. S. Vitter. Compressed suffix arrays
and suffix trees with applications to text indexing and
string matching. In FOCS, pages 397–406, 2000.

[18] X. He, M.-Y. Kao, and H.-I. Lu. A fast general
methodology for information-theoretically optimal en-
codings of graphs. SIAM J. Computing, 30(3):838–846,
2000.

[19] G. Jacobson. Space-efficient static trees and graphs.
In 30th FOCS, pages 549–554, 1989.

[20] K. Keeler and J. Westbrook. Short encodings of planar
graphs and maps. Discrete Applied Mathematics,
58:239–252, 1995.

[21] D. E. Knuth. The Art of Computer Program-
ming/Sorting and Searching, Volumes 3. Addison Wes-
ley, 1973.

[22] G. L. Miller, S.-H. Teng, W. P. Thurston, and S. A.
Vavasis. Separators for sphere-packings and nearest
neighbor graphs. Journal of the ACM, 44:1–29, 1997.

[23] J. I. Munro and V. Raman. Succinct representation of
balanced parentheses, static trees and planar graphs.
In 38th FOCS, pages 118–126, 1997.

[24] R. Pagh. Low redundancy in static dictionaries with
o(1) worst case lookup. In ICALP, pages 595–604,
1999.

[25] R. Pagh. Low redundancy in static dictionaries with
constant query time. Siam Journal of Computing,
31(2):353–363, 2001.

[26] R. Pagh and F. F. Rodler. Cuckoo hashing. In ESA,

2001.
[27] R. Raman, V. Raman, and S. S. Rao. Succinct

indexable dictionaries with applications to encoding k-
ary trees and multisets. In SODA, 2002.

[28] R. Raman and S. S. Rao. Succinct dynamic dictionar-
ies and trees. In ICALP, pages 357–36, 2003.

[29] G. Turán. Succinct representations of graphs. Discrete
Applied Mathematics, 8:289–294, 1984.

