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Abstract

The Dynamic Optimality Conjecture [ST85] states that
splay trees are competitive (within a constant compet-
itive factor) among the class of all binary search tree
(BST) algorithms. Despite 20 years of research this
conjecture is still unresolved. Recently, Demaine et
al. [DHIP04] suggested searching for alternative algo-
rithms which have small but non-constant competitive
factors. They proposed Tango, a BST algorithm which
is nearly dynamically optimal – its competitive ratio is
O(log log n) instead of a constant. Unfortunately, for
many access patterns, such as random and sequential,
Tango is worse than other BST algorithms by a factor
of log log n.

In this paper, we introduce the multi-splay tree
(MST) data structure, which is the first O(log log n)-
competitive BST to simultaneously achieve O(log n)
amortized cost and O(log2 n) worst-case cost per query.
We also prove the sequential access lemma for MSTs,
which states that sequentially accessing all keys takes
linear time. Thus, MSTs are O(log log n)-competitive
like Tango but, unlike Tango, require only O(log n)
amortized time per access in an arbitrary sequence and
only O(1) amortized time per access during a sequential
access sequence.

Furthermore, we generalize the standard frame-
work for competitive analysis of BST algorithms to in-
clude updates (insertions and deletions) in addition to
queries. In doing so, we extend the lower bound of
Wilber [Wil89] and Demaine et al. [DHIP04] to han-
dle these update operations. We show how MSTs can
be modified to support these update operations and
be O(log log n)-competitive in the new framework while
maintaining the rest of the properties above.

∗This research was sponsored by National Science Foundation
(NSF) grant no. CCR-0122581.

1 Introduction

A splay tree [ST85] is a self-adjusting form of binary
search tree where each time a node in the tree is
accessed, that node is moved to the root according
to an algorithm called splaying . In a splay tree, all
accesses and updates (e.g. insert, delete, join, split) are
accomplished by using the splaying algorithm. Splay
trees have been shown to have a number of remarkable
properties, including the Balance Theorem [ST85], the
Static Optimality Theorem [ST85], the Static Finger
Theorem [ST85], the Working Set Theorem [ST85],
the Scanning Theorem [Sun89], the Sequential Access
Theorem [Tar85, Sun92, Elm04], and the Dynamic
Finger Theorem [CMSS00, Col00].

The Dynamic Optimality Conjecture [ST85] states
that on any sequence of accesses, the cost of splay trees
on that sequence is within a constant factor of any other
BST algorithm for processing that sequence of accesses.
All of the properties of splay trees cited in the above
paragraph are special cases of Dynamic Optimality.
Dynamic Optimality is equivalent to the statement that
splay trees are c-competitive [ST85] for some constant c.
Resolving this conjecture seems difficult – it has defied
concerted attempts to solve it for about 20 years.1

Demaine et al. [DHIP04] suggested searching for al-
ternative binary search tree algorithms that have small
but non-constant competitive factors. They proposed
Tango, a BST algorithm that achieves dynamic opti-
mality with a competitive ratio of O(log log n). They
achieved this ratio by making use of a variation of
Wilber’s first lower bound on the cost of an access se-
quence [Wil89].

We introduce the multi-splay tree (MST2) data
structure. In addition to being O(log log n)-competitive,
MSTs also simultaneously achieve O(log n) amortized
cost and O(log2 n) worst-case cost per query. We also

1It is even apparently difficult to obtain any (online exponen-
tial time [BCK02] or offline polynomial time) binary search tree
algorithm that is c-competitive.

2Throughout this paper, MST always means multi-splay tree
and not minimum spanning tree.



prove the sequential access lemma for MSTs, which
states that sequentially accessing all keys takes linear
time. Although MSTs are quite similar to Tango,
they do achieve improved performance in several ways.
Tango does not have the sequential access property, nor
does it achieve O(log n) amortized cost per operation.3

The original framework in which the O(log log n)-
competitive bounds for Tango and MSTs are proven
does not allow for insertions or deletions. We generalize
this framework to include these update operations,
and extend the lower bound appropriately. We also
show how to modify the MST data structure to handle
insertions and deletions, and prove that it remains
O(log log n)-competitive while preserving the rest of the
properties mentioned above.

1.1 Model In order to discuss optimality of BST
algorithms, we need to give a precise definition for this
class of algorithms, and their costs. The model we
use is that implied by Sleator and Tarjan [ST85] and
developed in detail by Wilber [Wil89]. A static set of n
keys is stored in the nodes of a binary tree. The keys are
from a totally ordered universe, and they are stored in
symmetric (left to right) order. Each node has a pointer
to its left child, to its right child, and to its parent. Also,
each node may keep a constant4 amount of additional
information but no additional pointers.

A BST algorithm is required to process a sequence
of queries σ = σ1, . . . , σm. Each access σi is a query
to a key σ̂i in the tree5, and the requested nodes must
be accessed in the specified order. Each access starts
from the root and follows pointers until the desired
node (the one with key σ̂i) is reached. The algorithm
is allowed to update the fields and pointers in any node
that it touches along the way. The cost of the algorithm
to satisfy the sequence of queries is defined to be the
number of nodes that it touches. Finally, we do not
allow any information to be preserved from one access to
the next, other than in the nodes’ fields, and a pointer to
the root of the tree. It is easy to see that this definition
is satisfied by all of the standard BST algorithms, such
as red-black trees and splay trees. This model does not
handle insertions and deletions, but we generalize it to
handle them in Section 6.

3On a random access pattern, Tango uses Θ(log n log log n)

time per query. However, it has been pointed out that Tango can
be modified to achieve O(log n) amortized performance, at a cost
of changing the worst-case to Θ(n).

4To be consistent with standard conventions, here we consider
O(log n) bits to be “constant.”

5This model is only concerned with successful searches.

1.2 Interleave Lower Bound Given an initial tree
T0 and an m-element access sequence σ, for any BST
algorithm satisfying these requests there is a cost, as
defined above. Thus, we can define OPT(T0, σ) to be
the minimum cost of any BST algorithm for satisfying
these requests starting with initial tree T0. Wilber
[Wil89] derived a lower bound on OPT(T0, σ), and this
was modified to be the interleave bound by Demaine et
al. [DHIP04].

Let IB(P, σ) denote the interleave lower bound on
the cost of accessing the sequence σ, where P is a BST
(later called a reference tree) over the same set of keys as
T0. Define IB(P, σ) =

∑

v∈P IB(P, σ, v), where for each
node v, IB(P, σ, v) is defined as follows. First, restrict
σ to the set of nodes in the subtree of P rooted at v
(including v). Next, label each access in this restricted
σ as either “left” (or “right”) depending on whether the
accessed element is in the left subtree (including v) or
right subtree of v. Now, IB(P, σ, v) is the number of
times the labels switch.

Theorem 1.1. [Wil89, DHIP04]

OPT(T0, σ) ≥ IB(P, σ)/2 − O(n) + m

Culik and Wood [CW82] proved that the number of
rotations needed to change any binary tree of n nodes
into another one is at most 2n − 2.6 It follows that
OPT(T0, σ) differs from OPT(T ′

0, σ) by at most 2n− 2.
Thus, as long as m = Ω(n), the initial tree is irrelevant.
We shall make this assumption.

1.3 The Access Lemma for Splay Trees Sleator
and Tarjan [ST85] proved that the amortized cost of
splaying a node is bounded by O(log n) in a tree of n
nodes. By the use of the flexible potential described
below, they proved tighter bounds on the amortized cost
of splaying for access sequences that are non-uniform
(e.g., the Static Optimality Theorem). This framework
is essential for the analysis of multi-splay trees.

For an arbitrary positive weight function w over the
nodes of a splay tree, they defined the size s(v) of node
v to be

∑

v∈subtree(v) w(v), the sum of the weights of all
nodes in v’s subtree. They defined the potential of the
tree to be

∑

v∈V lg s(v), where V is the set of nodes in
the splay tree.

As a measure of the cost (running time) of a
splaying operation, they used the distance from the
node being splayed to the root plus 1. With these
definitions, Sleator and Tarjan proved the following
theorem about the amortized cost of splaying.

6Sleator, Tarjan and Thurston [STT86] subsequently showed
that only 2n − 6 rotations (for n ≥ 10) are necessary.



Theorem 1.2. (Access Lemma) [ST85] The amortized
time to splay a node v in a tree currently rooted at r is
at most O(1 + lg(s(r)/s(v))).

Theorem 1.3. (Generalized Access Lemma) Given a
pointer to an ancestor node a, the amortized time to
splay a node v with respect to an ancestor a in the same
splay tree is at most O(1 + lg(s(a)/s(v))).

The main difference between this and the original
access lemma is that we are allowed to stop at any
ancestor a. Its truth follows from the proof of the
original access lemma because that proof does not
require splaying to go all the way to the root.

2 The Multi-Splay Tree Data Structure

Consider a balanced7 BST P made up of n nodes,
which we will refer to as the reference tree. Because
P is balanced, the depth of any node in P is at most
2 lg(n + 1). (The depth of the root is defined to be
1.) Each node in the reference tree has a preferred
child . The structure of the reference tree is static (but
we will generalize it to support insert and delete in
Section 6), except that the preferred children will change
over time, as explained below. We call a maximal chain
of preferred children a preferred path. The nodes of the
reference tree are partitioned into approximately n/2
sets, one for each preferred path. The reference tree is
not explicitly part of our data structure, but is useful in
understanding how it works.

A multi-splay tree is a BST T (over the same
set of n keys contained in the reference tree P ) that
evolves over time, and preserves a tight relationship
to the reference tree. Each edge of a multi-splay tree
is either solid or dashed . We call a maximal set of
vertices connected by solid edges a splay tree. There is a
one-to-one correspondence between the splay trees of a
multi-splay tree and the preferred paths of its reference
tree. The set of nodes in a splay tree is exactly the
same as the set of nodes in its corresponding preferred
path. In other words, at any point in time a multi-splay
tree can be obtained from its reference tree by viewing
each preferred edge as solid, and executing a series of
rotations on only the solid edges.8

Each node of a multi-splay tree T has several fields
in it, which we enumerate here. First of all, it has the
usual key field, and pointers leftChild, rightChild, and
parent. Although the reference tree P is not explicitly
represented in T , each node stores information related

7By “balanced” we mean that every subtree t has height at
most 2 lg(|t|)

8An example of P and T is shown in the extended version of the
paper at http://www.cs.cmu.edu/∼chengwen/paper/MST.pdf.

to P . In each node’s refDepth field, we keep its depth
in P .9 Note that every node in the same splay tree
has a different depth in P . In addition, each node
v stores the minimum depth of all of the nodes in
splaySubtree(v) in its minDepth field (splaySubtree(v)
contains all of the nodes in the same splay tree as v
that have v as an ancestor, including v). Finally, to
represent the solid and dashed edges, each node has an
isRoot boolean variable that indicates if the edge to its
parent is dashed.

3 The Multi-Splay Algorithm

In this section, we first explain the algorithm assuming
we have the reference tree P , then we explain how to
implement the corresponding operations in our actual
representation T .

As stated above, the preferred edges in P evolve
over time. A switch at a node just swaps which child is
the preferred one. For each access, switches are carried
out, from the bottom up, so that the accessed node
v is on the same preferred path as the root of P . In
addition, one last switch is carried out on the node that
is accessed.

In other words, traverse the path from v to the
root doing a switch at each parent of a non-preferred
child on the path, and then finally switch v. That
is the whole algorithm from the point of view of the
reference tree. The tricky part is to do it without the
reference tree. Note that if the multi-splay algorithm
did not make the final switch on the queried node, the
number of switches caused by single query would equal
the increase in interleave bound. With the extra switch,
the amortized number of switches only increases by at
most 2 per query.

Unfortunately, P is not our representation, T is. To
achieve O(log log n)-competitiveness, we can only afford
to spend O(log log n) amortized time per switch. As
shown below, we can simulate a switch in P with at
most three splay operations, and two changes of isRoot
bits in T .

More specifically, suppose we want to switch y’s
preferred child from left to right. To understand the
effect of this, temporarily make both children of y
preferred. Now, consider the set S of nodes in P
reachable from y using only preferred edges. This set
can be partitioned into four parts: L, those nodes in
the left subtree of y in P ; R, those nodes in the right
subtree of y in P ; U those nodes above y in P ; and y.
When set S is sorted by key, L and R form contiguous

9Note that this quantity is static in our initial description of
multi-splay trees, but becomes dynamic in Section 6 when we
extend multi-splay trees to support insert and delete.
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Figure 1: Graphical representations of S, U , L, R, x, y,
and z during a single left-to-right switch.

regions of keyspace, separated by y (See Figure 1).
Let us see what this means in a multi-splay tree

T . The splay tree in T containing y consists of nodes
L∪U ∪{y}. After the switch it consists of R∪U ∪{y}.
To do this transformation we need to remove L and add
in R. Because L and R are contiguous regions in the
symmetric ordering, we can use splaying to efficiently
split off the tree containing L and join in the tree
containing R. We first find z, the predecessor of L in
S, using the minDepth field. (Note that z is the largest
node less than y with depth less than y, and z must be
a member of U .) Then, we splay y and splay z until z
becomes the left child of y. This ensures that the set
of nodes in the right subtree of z is L. Thus, we mark
the right child of z as a root in order to remove L from
y’s splay tree. As for joining in R, we simply splay the
successor of y (called x) in U until x becomes the right
child of y, so that unmarking the isRoot bit of the left
child of x joins in R.10

However, an access is not just a single switch in P ,
it is a sequence of switches. For the purposes of our
running time analysis, we do these from bottom to top.
Also, we perform a final switch on the accessed node to
pay for the traversal from the root of T to the accessed
node. Notice that this final switch brings the accessed
node to the root of T .11

This description has glossed over a number of subtle
details, like how to determine if the switch is from left
to right or from right to left. In addition, we have not

10To prove MSTs use only O(log n) amortized cost per query,
we can only afford to splay nodes that are in {y}∪U . As a result,
we cannot split L by splaying y and then splaying l, the leftmost

node in L (stopping at the left child of y). This technique would
have been analogous to the technique used in [DHIP04].

11If the accessed node σ̂i has one or fewer children, then the
final switch on σ̂i still induces the corresponding splays, but no
root marking will occur.

discussed the boundary cases such as when z or x does
not exist.

In more detail, when serving a query σi for key σ̂i,
we traverse the MST T to find σ̂i. As we traverse,
we maintain vj = pred(σ̂i) and wj = succ(σ̂i) for the
jth splay tree encountered, where pred(σ̂i) denotes the
predecessor of σ̂i and succ(σ̂i) denotes the successor
of σ̂i. Notice that the switch in the jth splay tree
must occur at the deeper of vj and wj in the reference
tree (this is where the access path in the reference tree
diverges from the preferred path corresponding to the
jth splay tree). Let αj be the node we switch, and βj be
the other node. To decide the direction of the switch,
observe that if αj < βj , we switch from left to right.
Otherwise, we switch from right to left. After we finish
all of these switches from the bottom up, we switch σ̂i.

4 Running Time Analysis for an Arbitrary

Sequence

For the purpose of analysis, we define the potential of
a multi-splay tree T as follows. If each node v has an
arbitrary positive weight w(v), define the size s(v) of
node v to be

∑

v∈splaySubtree(v) w(v) (i.e., the sum of
the weights of all descendants of v in T reachable by
traversing only solid edges). Define the potential of the
tree to be

∑

v∈T lg s(v).

Theorem 4.1. For any query in a multi-splay tree, the
worst-case cost is O(log2 n).

Proof. This follows from the fact that to query a node,
we visit at most O(height(P )) splay trees. Because the
size of each splay tree is O(log n), the total number of
nodes we can possibly touch is O(log2 n).

Theorem 4.2. For an arbitrary access sequence σ =
σ1 · · ·σm in a multi-splay tree with n elements, the cost
of σ is O(OPT(σ) ∗ log log n).

Proof. The total number of switches in a multi-splay
tree during σ is at most IB(P, σ) + 2m [DHIP04] (the
extra 2m term results from the additional switch on
σ̂i, which may need to be undone later in the access
sequence), so it suffices to show that the amortized cost
of each switch is O(log log n).

Each switch at an arbitrary node y (with corre-
sponding x and z12) consists of up to 3 splays followed

12Here and throughout the paper, we use xi to denote a node

whose child will be unmarked as a root during the ith switch of
an access and zi to denote a node whose child will be marked as
a root during the ith switch of an access. If we omit the subscript
i, then we are referring to any switch.



by up to 2 changes to isRoot bits. To analyze the amor-
tized cost of each of these operations, we invoke the
access lemma for splay trees, and recall that it uses
the following potential function for a splay tree TS :
∑

v∈TS
log s(v). The analysis in this sub-section as-

sumes uniform constant weights are used for all nodes
in all splay trees comprising a multi-splay tree.

The amortized cost of each of the 3 splays is
O(log s(r)), where r is the root of the splay tree
corresponding to y’s preferred path in the reference tree.
Because s(r) = O(log n), the amortized cost of the 3
splays is O(log log n).

The amortized cost of marking child(z) (if it ex-
ists13) is O(1) because it does not increase the size of
any subtrees in any splay trees, so the overall potential
does not increase. The amortized cost of unmarking
child(x) (if it exists) is O(log log n) because the only
nodes whose size increase are x and y, and the increase
in each of their sizes is bounded by the size of the splay
tree rooted at child(x), which is O(log n).

To summarize, the amortized cost of each switch is:

Amortized cost = cost of splays

+ root marking cost

+ root unmarking cost

= O(log log n + 1 + log log n)

= O(log log n).

Theorem 4.3. Each query σj in a multi-splay tree
costs O(log n) amortized time.

Proof. To analyze the amortized cost of an access in
a multi-splay tree T , we assign a weight w(v) to each
node in T according to its depth in the reference tree as
follows: w(v) = 2−refDepth(v). One key fact to notice is
that this implies that the sum of the weights on a path
to a leaf from v (but not including it) is less than w(v).

Again, each switch during an access consists of at
most 3 splays, and at most 2 changes to isRoot bits. Be-
cause the amortized cost of a splay is O(log(s(r)/s(v)))
when v is being splayed in a tree rooted at r, the cost
of the 3 splays is at most

log(s(ri)/s(yi)) + log(s(ri)/s(xi)) + log(s(ri)/s(zi)),

where yi is ith node being switched going up the multi-
splay tree access path to the root of the multi-splay tree

13As a caveat, we note that determining whether z and x exist

can be done in constant time, and if they do exist the cost of
finding z and x (and also y) is proportional to their depth in their
splay tree. The cost of this traversal can be charged to the splay
operations.

and ri is the root of the splay tree containing yi (y1 is
the first node switched, and by our convention the splay
tree rooted at r0 contains σ̂j).

Because the elements in the splay tree rooted at ri−1

comprise a path to a leaf in the reference tree starting
below yi, we have s(yi) ≥ w(yi) > s(ri−1). Moreover,
because xi and zi are ancestors of yi in the reference
tree, w(xi) and w(zi) are both larger than w(yi) (and,
hence, s(ri−1)). Therefore, the total amortized cost
of splaying all xi during a single access (similar math
applies to y and z) is

k
∑

i=1

lg

(

s(ri)

s(xi)

)

≤

k
∑

i=1

lg

(

s(ri)

w(xi)

)

≤

k
∑

i=1

lg

(

s(ri)

w(yi)

)

≤

k
∑

i=1

lg

(

s(ri)

s(ri−1)

)

≤ lg

(

s(rk)

s(r0)

)

.

Next, we account for the cost of marking and un-
marking the root bits of child(zi) and child(xi) respec-
tively. (We refer to the children in L∪R.) First, notice
that marking child(zi) as a root reduces the overall po-
tential of the collection of splay trees, so it has O(1)
amortized cost per switch. Second, notice that unmark-
ing child(xi) only increases s(xi) and s(yi) by at most
w(yi) because the nodes of the tree rooted at child(xi)
make up a path to a leaf in the reference tree starting
below yi. Thus, s(xi) and s(yi) at most double because
s(yi) > s(xi) ≥ w(xi) > w(yi), and potential increases
by at most 2. There are O(height(P )) switches per ac-
cess, so the total cost of root marking/unmarking per
access is O(log n) because the reference tree is balanced.

Finally, note that the last switch (on the accessed
node) costs O(log(s(rk)/s(σ̂j)). Because the smallest
weight in the tree is at least 2−height(P ), and the largest
size is less than 1, the total amortized cost of each access
is,

Cost = Cost of k switches + Cost of root markings

+ Cost of final switch

= O
(

log
(

s(rk)
s(r0)

)

+ h(P ) + log
(

s(rk)
s(σ̂j)

))

= O
(

log
(

1
2−h(P )

)

+ h(P ) + log
(

1
2−h(P )

))

= O(log n),

where h(P ) = height(P ).

To further generalize the above proofs, we define
descendants(v, P ) to be all of the descendants of v in
P . We also define paths(v, P ) to be the set of all paths
from a node v in P to any descendant leaf.

Theorem 4.4. (Multi-Splay Access Lemma) Let P be
any initial reference tree with root r, f be any multi-
plier greater than 2, and w(x) be any positive weight
assignment satisfying the following two conditions:



w(v) ≥ max
u∈descendants(v,P )

w(u)

f ∗ w(v) ≥ max
p∈paths(v,P )

∑

u∈p

w(u).

Then the running time to access the sequence σ =
σ1, . . . , σm is amortized

O

(

m
∑

i=1

log(w(r)/w(σ̂i)) + (log f) ∗ (IB(P, σ) + m)

)

.

The proof for this theorem14 is similar to the proofs
of the preceding theorems. With this theorem, one
can prove O(log log n)-competitiveness by choosing a
balanced reference tree P , setting the weight of every
node v to 1, and choosing f to be O(log n). One can
also prove the O(log n) amortized bound by choosing
a balanced reference tree P , setting the weight of
node v to be 1

2refDepth(v) , and choosing f to be O(1).
Unfortunately, the two constraints above prevent the
use of the Multi-Splay Access Lemma for proving the
classical splay tree properties.

5 Sequential Access Takes Linear Time

We begin with several simple lemmas.15

Lemma 5.1. The cost of a switch is O(log n) worst-
case.

Lemma 5.2. During a sequential access of all nodes of
T , when a node with a left child (in P ) is accessed,
exactly one switch occurs.

Lemma 5.3. In a splay tree TS with root r (r changes
as the root changes), if all splay operations are per-
formed on a connected set of nodes S ⊆ TS , and r ∈ S,
then the splay algorithm will never rotate any node out-
side of S. (This allows us to analyze the cost of splaying
assuming all nodes in (TS \ S) do not exist.)

Lemma 5.4. During a sequential access sequence, when
accessing nodes from the right ref-subtree R of y, the
multi-splay algorithm touches at most 2 nodes outside
of R.

Lemma 5.5. In a red-black tree TRB with n nodes,
∑

v∈TRB
lg |subtree(v)| = O(n).

14This proof is in the extended version of the paper at
http://www.cs.cmu.edu/∼chengwen/paper/MST.pdf.

15The proofs are in the extended version of the paper at
http://www.cs.cmu.edu/∼chengwen/paper/MST.pdf.

Theorem 5.1. In any multi-splay tree T of n nodes,
the cost of the access sequence σ = σ1, · · · , σn, where
σ̂i < ˆσi+1 is O(n).

Proof. In this proof, we assume that P is a full red-black
tree [GS78]. Using the previous lemmas, we can develop
a recurrence for the cost of sequential access. First, we
define rightParent(v) to be p if the left child of p is v.
Also, we define the right ascending path of v to be the
set of nodes u, such that rightParent∗(v) = u. Finally,
we define A(v) to be the size of the right ascending
path of v. We analyze the cost of sequentially accessing
all of the nodes of an MST T in terms of the cost of
sequentially accessing subtrees of P . More specifically,
we recursively account for the cost as follows:

Time(t) = Time(leftRefSubtree) + Time(root(t))

+ Time(rightRefSubtree),

where t is some subtree of P , and Time(t) is the
amortized time used when sequentially accessing the
nodes of t within the context of sequential access to
all nodes of T , not just the ones in t.

However, to tightly bound the time for accessing
the root of t, we need to incorporate A(root(t)). Hence,
we define

Time(t, a) = Time to sequentially access all nodes

in t, where A(root(t)) = a,

where t is a subtree of P (taken within the context
of T ’s full reference tree, so that t’s root may have a
non-trivial right ascending path). With this expanded
accounting method, the cost of sequentially accessing
all of the nodes of T is Time(P, 1).

In general, we can write

Time(t, a) = Time(tL, a+1)+Time(tR, 1)+O(a+log |t|),

for the case in which root(t) is an internal node because
root(tL) has a right ascending path with one more node
than the path of root(t), root(tR) has a right ascending
path including just itself, and accessing root(t) causes
at most one switch by Lemma 5.2, whose running time
is O(a + 1 + log |t|) worst-case because the number
of nodes touched during a switch at node root(t) is
O(2+A(root(t))+ log |t|) = O(A(root(t))+ log |t|). The
O(A(root(t)) + log |t|) bound is true because at most 2
nodes higher in P than root(t)’s right ascending path
are touched as seen by Lemma 5.4, and the number
of nodes in root(t)’s splay tree including root(t)’s right
ascending path and below is A(root(t))+height(t), which
is O(A(root(t)) + log |t|).

For the base case in which root(t) is a leaf in P , we
have

Time(t, a) = O(a2)



because at most a switches occur during the access of
root(t)16, each of which costs O(a) using similar logic to
above, for a total of O(a2).

To see that this recurrence solves to O(n), we show
how to account for all of the O(a + log |t|) terms and
all of the O(a2) terms so that their costs total O(n).
For each t such that root(t) is not a leaf, note that
if we spread the O(a) = O(A(root(t))) portion of the
cost evenly among the nodes of root(t)’s right ascending
path, each node v in the reference tree is charged at
most O(height(v)) = O(log |subtree(v)|). Similarly, to
account for the O(a2) cost for each leaf l, we charge
Θ(k+1) to rightParentk(l) so that each node is charged
at most O(height(v)) = O(log |subtree(v)|). Thus, it
suffices to show that

∑

v∈P O(log |subtree(v)|) = O(n),
which is true by Lemma 5.5.

6 Making the Data Structure Dynamic

With a slight modification, our data structure can
support insert and delete while maintaining all of
the properties of Section 4, including O(log log n)-
competitiveness. We describe the details of how to dy-
namize MSTs in Sections 6.3 and 6.4. To think about
what is necessary for supporting insert and delete, it is
illustrative to think about the effect of insert and delete
on the reference tree. When nodes are inserted into
and deleted from the reference tree we need to maintain
the invariants that that the tree is balanced and that
every internal node has exactly one preferred child. We
meet the balance requirement by allowing rotations on
the reference tree P (after insertion and deletion), and
making P a dynamic red-black tree. We meet the sin-
gle preferred child requirement by making a constant
number of switches prior to each rotation. Because the
reference tree is implicitly maintained, we need to be
able to simulate the update operations over the refer-
ence tree (e.g., rotations, pointer traversals) efficiently.
Simulating each of these operations turns out to cost
O(log log n) amortized time in an MST, so it is im-
portant that the corresponding reference tree requires
only O(m) virtual traversals and virtual rotations dur-
ing a sequence of m operations. (Finding the location
of the update does not involve virtual traversals.) Red-
black trees meet this requirement because they require
only O(1) amortized time to rebalance after an insert
or delete [Tar83].

6.1 Defining Competitive Analysis in a Dy-

namic BST Before we can argue about the compet-

16Because the deepest left ancestor v of root(t) was just queried,
there is always a preferred path from the root of P to v, and the
number of nodes between v and root(t) is at most a.

itiveness of dynamic multi-splay trees, we must intro-
duce an intuitive definition of what it means for a dy-
namic BST to be competitive. We assume an arbitrary
dynamic BST algorithm A must execute a sequence of
operations σ = σ1, . . . , σm, each of which is query(σ̂i),
insert(σ̂i), or delete(σ̂i). For each σi, we assume A must
pay the following costs:

• To execute query(σ̂i), it must pay for touching each
node on the path from the root to σ̂i.

• To execute insert(σ̂i), it must insert the node at
a leaf and must pay for the traversal to get there.
This is reasonable because A must search for σ̂i to
realize its BST does not contain σ̂i.

• To execute delete(σ̂i), it must pay for accessing σ̂i

and for performing rotations until σ̂i has no chil-
dren (at which time, the node can be removed).17

During (or after) each operation, a BST algorithm
may perform any rotations it wishes at a cost of one
per rotation. The cost of an operation is simply the
total number of nodes touched, plus the number of
rotations. Without insert and delete, this definition
would be identical to the one in Section 1.1. From this
point onward, we use OPT(σ) to refer to the cost of an
optimal dynamic BST algorithm serving σ.

6.2 Dynamic Interleave Lower Bound With our
new definitions, we must prove a new lower bound
for OPT(σ). Fortunately, techniques similar to those
in [Wil89] suffice. Our new lower bound is an extension
of the one in [DHIP04], which is a variant of Wilber’s
first lower bound.

As in the original definition of the interleave bound,
for each node v in the initial reference tree P0, we
track if the last query in refSubtree(v) is in either
Lv = leftRefSubtree(v)∪{v} or Rv = rightRefSubtree(v).
Whenever the tracking for a node changes, we increment
the dynamic interleave bound, DIB(ρ, σ), by one. For an
insert of v, we add the cost of querying pred(v) followed
by succ(v) (because both of these nodes must be touched
to insert v at a leaf). For a delete of v, we add the cost of
querying pred(v), v, and succ(v) in succession because
all three of these nodes must be touched in order to
rotate v to a leaf of the BST. Whenever we rotate a
node v, we reset the tracking of v and refParent(v) to
Lv but do not increase the interleave bound. Without
insertions, deletions, and rotations, this definition would
be identical to the original interleave bound.

17In this model, we do not allow BSTs to swap nodes and con-
tract edges during deletion. This implies that it must additionally
pay for accessing both pred(σ̂i) and succ(σ̂i). As a result, this
model is slightly more restrictive.



Theorem 6.1. Dynamic Interleave Bound18 For a
sequence of operations σ = σ1, . . . , σm where each σi

is a query, insert, or delete, the cost of an arbitrary
BST algorithm A on σ is at least Ω(DIB(ρ, σ)/2 −
n − 2k + cm), where n is the number of nodes in
Pm, ρ = ρ1, . . . , ρm is a sequence of changes to P ,
where each ρi contains a sequence of rotation operations
to be performed on P (insertions and deletions in P
correspond to those in σ), and k is the number of rotate
operations in ρ (i.e., k =

∑m
i=1(# of rotations in ρi)).

In the Dynamic Interleave Bound reference tree, we
assume deletion of node v is accomplished as in [Tar83],
by “splicing out” v unless it has two non-null children,
in which case v is swapped with its predecessor and then
spliced out.19

The operations ρi are the changes to P that occur
between successive operations of σ. (For MSTs ρi

represents the rebalancing rotations performed on its
reference tree following an insert or a delete.) Different
ρ sequences give different lower bounds on the cost of
executing σ.

6.3 Simulating Reference Tree Traversals and

Rotations To simulate a reference tree pointer traver-
sal from node v in an MST T with reference tree P ,
we need only to search for the relevant parent or child
node, which can be accomplished if we add 3 new fields
to store the values of the parent and children of each
node in the reference tree. The cost of this search can
be paid for by performing a constant number of switches
(notice that the path from v to v’s child or parent in the
reference tree spans at most two splay trees), for a total
amortized cost of O(log log n). Essentially, each path we
traverse in the MST will be splayed, which ensures the
amortized cost bound. We omit the details for brevity.

To simulate a right rotation of a node v over its
parent in the reference tree, a multi-splay tree first
ensures that v’s preferred child is its right child, and v’s
parent’s preferred child is its left by performing either
1 or 2 switches on v and v’s parent. By meeting these
requirements T ensures that if its reference tree satisfies
the preferred path property before the rotation, it will
still satisfy that property after the rotation, as seen in
Figure 2.

We also need to be able to quickly update the
fields in each of T ’s nodes v when a virtual rotation
is performed in P . Recall that we store refDepth

18The proofs are in the extended version of the paper at
http://www.cs.cmu.edu/∼chengwen/paper/MST.pdf.

19Although our model for BST deletion does not allow such
swapping/splicing, MSTs will only be simulating them while
adhering to our dynamic BST model.
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Figure 3: Observe that after we call switch(v) and
switch(p), the sets of nodes in Lv and Rp form two
subtrees in an MST. A rotation of v over p in the
reference tree decreases the depth value of each of the
nodes in Lv by one, and increases the depth value of each
of the nodes in Rp by one (Shown in Figure 2). Because
Lv and Rp are grouped together by the switches, the
updates in depth values cost O(1) after performing the
switches.

(the depth of v in the reference tree) and minDepth
(the minimum refDepth of all the nodes in v’s splay
subtree). To update these values efficiently, we do
not store the values explicitly. Instead, in v we store
refDepth(v) − refDepth(parent(v)) and minDepth(v) −
minDepth(parent(v)), except if v is the root of T , in
which case it simply stores its refDepth and minDepth.
This is analogous to the technique used in link-cut
trees [ST85].

Let v be the node we rotate in the reference tree P
(and the corresponding node in the MST T ). Let p be
the parent of v in P . Without loss of generality, we as-
sume v is the left child of p. At first glance, a rotation of
v over p in P changes the refDepth value for many nodes,
so it would be difficult to update. However, the sets of
nodes whose depths change constitute two subtrees in
the reference tree. More specifically, the refDepth of
each node in leftRefSubtree(v), Lv, decreases by one,
while the refDepth of each node in rightRefSubtree(p),



p s

rp

v

s

rp

p

Multi-Splay Tree: Reference Tree:v

PS

PS

Figure 4: An example of what an MST looks like during
deletion of node σ̂i, with v = σ̂i, p = pred(σ̂i), s =
succ(σ̂i), rp = refParent(pred(σ̂i)) after the sequence
query(p), switch(rp), query(p), query(s), and query(v).
Here we show the case in which rp < p.

Rp, increases by one. Using this observation, we can
decrease the depth value of all of the nodes in v’s ref-
subtree by executing switch(v) and switch(p) in T , which
isolates Lv and Rp as shown in Figure 3 so we can change
the difference value at a single node to decrease (or in-
crease) the stored refDepth of each node in Lv (or Rp)
by one. This method can be used for the minDepth field
as well.

Hence, a rotation in P can be simulated in T using
a constant number of switches and field updates, so
its amortized cost is O(log log n) if the reference tree
is balanced.

6.4 Implementing Insertion and Deletion To in-
sert σ̂i, we perform a normal BST insert, access the in-
serted node, and then rebalance the reference tree using
amortized O(1) simulated rotations and pointer traver-
sals. We also insert it into the virtual reference tree by
finding its refParent on the way down σ̂i’s access path
in T (refParent(σ̂i) is the node of maximum refDepth
on the access path) and setting the appropriate fields of
σ̂i and refParent(σ̂i).

For deletion, we consider the case in which σ̂i has
two children in P (the other two cases are simpler).
Before rebalancing the reference tree using amortized
O(1) simulated rotations and pointer traversals, we
must first swap σ̂i with pred(σ̂i) and splice out σ̂i using
a constant number of switches, rotations, and field
updates in addition to a constant number of accesses
to pred(σ̂i), σ̂i, and succ(σ̂i), which will be justified in
Section 6.5. To accomplish this, we first perform the
sequence: query(pred(σ̂i)), switch(refParent(pred(σ̂i))),
query(pred(σ̂i)), query(succ(σ̂i)), and query(σ̂i). Notice
that this sequence adheres to our cost specification, and
results in an MST that looks like the one in Figure 4.

There are two important aspects of this MST. First,
pred(σ̂i), σ̂i, and pred(σ̂i) are located close together, so
that O(1) rotations suffices to make σ̂i a leaf so that it
can be deleted. Second, pred(σ̂i)’s subtree is isolated in
its own subtree of the MST (the subtree PS in Figure 4),
so that we can decrement all of its nodes’ refDepth and
minDepth fields in O(1) time just by changing the fields
in the root of PS . We omit most of the details, but
remark that once σ̂i is rotated to a leaf and deleted,
the depth values of PS are adjusted, and pred(σ̂i) has
its fields set so that it takes σ̂i’s place in the reference
tree, we need only to recompute the minDepth fields of
the ancestors of pred(σ̂i) and reset the parent and child
value fields (used during virtual pointer traversals as
mentioned in Section 6.3) of the nodes whose parents or
children change in the reference tree (i.e., the parents
and children of σ̂i and pred(σ̂i) in the reference tree),
requiring only a constant number of field updates and
reference pointer traversals, each costing O(log log n).

6.5 Proof of Running Time Bounds Without
insert and delete, the analysis in Section 4 applies. For
the insert and delete operations, only O(1) amortized
reference tree rotations are required to rebalance the
tree, so that the total amortized cost is O(log log n),
which does not affect the O(log log n)-competitiveness
of the operations or the O(log n) amortized cost of them.

For each insert operation, the number of switches,
which each cost amortized O(log log n), performed dur-
ing the insert’s query is equal to the increase in the
Dynamic Interleave Bound. The rest of the O(log log n)
amortized cost is charged to the minimum cost of 1 per
operation in any BST algorithm.

For each delete operation, the number of switches
performed during the queries to pred(σ̂i), σ̂i, and
succ(σ̂i) is bounded by 3 times the maximum num-
ber of switches caused by queries to these 3 nodes plus
a constant number to account for the extra switches
performed on the queried nodes and the lowest com-
mon ancestors between pairs of these 3 nodes in the
reference tree (and additionally, in our case, a switch
on refParent(pred(σ̂i))). The constant number of ex-
tra switches and the rest of the additional O(log log n)
amortized cost (the virtual traversals, virtual rotations,
MST rotations, field updates, and the actual deletion)
is charged to the minimum cost of 1 per operation in
any BST algorithm.

Finally, because the number of rotations performed
on the reference tree is O(1) worst-case per operation,
we can afford to pay for the −2k term in the lower bound
with the +cm term (for a suitable constant c), it follows
that dynamic MSTs are O(log log n)-competitive. Also,
because the strongest assumption about the balance of



the reference tree in Sections 4 and 5 was that the
reference tree was a red-black tree, all of the proofs in
Sections 4 and 5 still apply.

7 Conclusions and Future Work

In this paper we showed that multi-splay trees achieve
O(log log n)-competitiveness, O(log n) amortized cost,
and O(log2 n) worst-case cost per query. We then com-
bined these proofs to show the access lemma for multi-
splay trees – a parameterizable theorem for analyzing
multi-splay tree query sequences. We also proved that
sequential access in multi-splay trees costs O(n).

We extended the interleave lower bound to allow
insertions and deletions, and showed how to carry out
these operations in multi-splay trees. We proved that
the same bounds quoted above for the query-only case
apply when insertions and deletions are also allowed if
we use a red-black tree with O(1) amortized rebalancing
cost for the reference tree.

The multi-splay algorithm is similar to splaying, but
differs in a few important ways. Consider modifying the
algorithm so that it does not splay zi. In this modified
algorithm, an access to a node v is then a series of partial
splays (ones that stop before getting all the way to the
root) of nodes on v’s path to the root. Because of this
similarity to splay trees, these partial splays do not keep
MSTs balanced.

However, with the additional splay on zi, MSTs
become somewhat balanced (i.e., their maximum depth
becomes bounded by O(log2 n)). Moreover, one way
of thinking about the marking of root bits is that it
effectively “removes” from the tree a large amount of
weight. This allows us to prove tighter bounds on the
competitiveness than can be proven for splay trees.

Given the similarities between multi-splay trees and
classical splay trees, it is natural to ask whether splay
trees are also O(log log n)-competitive. It is also natural
to ask whether multi-splay trees share some of the other
nice properties of splay trees, such as static optimality.

As far as we know, multi-splay trees may be dy-
namically optimal. Is this true? One big difficulty in
addressing this problem is the lack of tight lower bounds
on the cost of accessing a sequence. The static interleave
bound is insufficient, because it is known to be off by a
factor of log log n for some sequences.
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A Proof of Lemmas for Sequential Access

Lemma A.1. The cost of a switch is O(log n) worst-
case, not amortized.

Proof. Each switch consists of 3 splays and up to 2 root
markings/unmarkings. Because the size of each splay
tree is O(height(P )) = O(log n), the worst-case cost of
the splays is O(log n), and clearly the root markings
cost O(1) worst-case.

Lemma A.2. During a sequential access of all nodes of
T , when a node with a left child (in P ) is accessed,
exactly one switch occurs.

Proof. Within a sequential access, a query to a node
v with a left child immediately follows a query to a
node in its left ref-subtree, so the preferred path from
the root includes v. The one switch occurs because the
multi-splay algorithm always switches the node that is
accessed.

Lemma A.3. In a splay tree TS with root r (r changes
as the root changes), if all splay operations are per-
formed on a connected set of nodes S ⊆ TS , and r ∈ S,
then the splay algorithm will never rotate any node out-
side of S. (This allows us to analyze the cost of splaying
assuming all nodes in (TS \ S) do not exist.)

Proof. Observe that if all the rotations are performed
on nodes in S, then the set of nodes S will always be a
connected set of nodes that includes the root of TS . A
splay operation on v ∈ S will rotate nodes on the path
from v to the root. Because S consists of a connected
set of nodes, all of these rotated nodes must be in S.
Thus, the invariant that S is a connected set and r ∈ S
is maintained.

Lemma A.4. During a sequential access sequence,
when accessing nodes from the right ref-subtree R of y,
the multi-splay algorithm touches at most 2 nodes out-
side of R.

Proof. After y is accessed, y is the root of the MST, its
right child x is the successor of R, and all the nodes
of R are in x’s left splay subtree (See Figure 1). The
following splays induced by querying R can only touch
y, R, and x by lemma A.3.

Lemma A.5. In a red-black tree TRB of n nodes,
∑

v∈TRB
lg |subtree(v)| = O(n).

Proof. Suppose we merge all the red nodes with their
parents. For instance, if a black node originally has two
red children and each red child has two black children,
then we are left with a black node with 4 black children

after the merge. (Essentially, we are converting the red-
black tree into its corresponding 2-3-4 tree.)

Since every root-to-leaf path in a red black tree
has the same number of black nodes, each black node
can have at most two red children, and each red node
has two black children, the merge process reduces the
number of nodes in the subtree of every black node by
at most a factor of 3.

Define bh(v) to be the number of black nodes from
v to a leaf, excluding v. Observe that the number of
black nodes at bh(v) is at most n

2bh(v) . Also, note that
the number of nodes in a black node v’s subtree is at
most 4bh(v).

Hence,

∑

v∈TRB

lg |subtree(v)| ≤ 3 ∗
∑

black v,v∈TRB

lg |subtree(v)|

≤ 3 ∗
∑

black v,v∈TRB

lg 4bh(v)

≤ 6 ∗
∑

black v,v∈TRB

bh(v)

≤ 6 ∗

⌈lg n⌉
∑

i=1

i ∗
n

2i

≤ 12n.

B Proof of Multi-Splay Tree Access Lemma

Let P be any initial reference tree with root r, f be
any multiplier greater than 2, and w(x) be any positive
weight assignment satisfying these two conditions:

w(v) ≥ max
u∈descendants(v,P )

w(u)

f ∗ w(v) ≥ max
p∈paths(v,P )

∑

u∈p

w(u).

Then the running time to access the sequence σ =
σ1, . . . , σm is amortized

O

(

m
∑

i=1

log(w(r)/w(σ̂i)) + (log f) ∗ (IB(P, σ) + m)

)

.

Intuitively, the first weight condition forces the
shallower nodes in P to have bigger weight. This is
necessary because multi-splay trees tend to access the
nodes with lower depth more frequently than the nodes
with higher depth in P . As for the second weight
condition, it forces P to be somewhat balanced to
achieve a reasonable upper bound. As for the multiplier
f , it significantly relaxes the second constraint on the
growth of w(x).
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exactly to the sum of the nodes on a path in p(y, P )

In the proof, we first bound the time for each switch.
Then we bound the time for each access as a function
of the number of switches. Then we relate the number
of switches to the interleave bound.

Proof. Let the set of keys be S = a1, a2, . . . , an. For
any access σm, let σ′ = σ1, σ2, . . . , σm−1 be the access
sequence before σm, and σ = σ1, σ2, . . . , σm. Let the k
switches made by accessing σm be Y = y1, y2, . . . , yk,
and ri be the root of the splay tree containing yi before
the access. Define r0 to be the root of the splay tree
containing σm.

For a particular switch yi, we define s(v) to be the
size of v before the changes in isRoot bit. Similarly,
define s′(v) be the size of v after the changes in isRoot
bit. Each switch operation consists of at most 3 splays
(on zi, yi, xi), setting the isRoot bit of child(zi),
and clearing the isRoot bit of child(x). As a result,
the root changes affect the potential of nodes zi, yi,
xi. Specifically, s(zi) decreases by s(child(zi)); s(yi)
changes by s(child(xi)) − s(child(zi)); and xi increases
by s(child(xi)). In addition, from the second condition
on the weight assignment, f ∗ w(yi) ≥ s(child(xi)),

∆Φ = (lg(s′(xi)) − lg(s(xi)))

+(lg(s′(yi)) − lg(s(yi)))

+(lg(s′(zi)) − lg(s(zi)))

≤ lg(s′(xi)/s(xi)) + lg(s′(yi)/s(yi))

≤ lg((s(xi) + s(child(xi)))/s(xi))

+ lg((s(yi) + s(child(xi)))/s(yi))

≤ lg(1 + s(child(xi))/w(yi))

+ lg(1 + s(child(xi))/w(yi))

≤ 2 lg(1 + f)

= O(lg f).

Because both x and z are ancestors of y in P ,
w(x) ≥ w(y) and w(z) ≥ w(y) by the first condition,
the time to switch yi is

= Time(splay(yi)) + Time(splay(xi))

+ Time(splay(zi)) + ∆Φ

< O(lg s(ri)
s(yi)

) + O(lg s(ri)
s(xi)

) + O(lg s(ri)
s(zi)

) + O(lg f)

≤ O(lg s(ri)
w(yi)

) + O(lg s(ri)
w(xi)

) + O(lg s(ri)
w(zi)

) + O(lg f)

≤ O(lg s(ri)
w(yi)

) + O(lg s(ri)
w(yi)

) + O(lg s(ri)
w(yi)

) + O(lg f)

= O(lg s(ri)
w(yi)

) + O(lg f)

≤ O(lg s(ri)
s(ri−1)/f ) + O(lg f)

= O(lg s(ri)
s(ri−1)

) + O(lg f).

When we access a node in a multi-splay tree, we are
just making a series of switches and then doing a final
switch. Therefore,

Time(σm) =

k
∑

i=1

(switch(yk))

+ Time(switch(σ̂m))

=
k
∑

i=1

O(lg s(ri)
s(ri−1)

) +
k
∑

i=1

O(lg f)

+ O(lg s(t)
s(σ̂m) )

= O(lg s(rk)
s(r1)

) + O(k ∗ (lg f))

+ O(lg f∗w(r)
w(σ̂m) )

= O(lg w(r)
w(σ̂m) ) + O((k + 1) ∗ (lg f)).

Because a switch occurs when the preferred child
changes from left to right (or right to left), this is



exactly when the previous access in yi’s subtree in P
is in the left subtree (or right subtree) of y, while
σm is in the right subtree (or left subtree) of y.20

Thus, ∀0<i≤k(IB(T0, σ
′, yi) + 1 = IB(T0, σ, yi)). In

addition, for all other nodes v 6= yi, the IB(T0, σ
′, v) =

IB(T0, σ, v). Hence,

k = IB(T0, σ) − IB(T0, σ
′).

Thus, exactly IB(P, σ) switches are made for an m
element access sequence σ. The amortized running time
for the access sequence σ is:

Time(σ) =
m
∑

i=1

Time(σi)

= O(

m
∑

i=1

lg w(r)
w(σi)

+ (lg f) ∗ (IB(P, σ) + m)).

C Proof of the Dynamic Interleave Bound

Here we present an extended version of Wilber’s first
lower bound [Wil89]. Our presentation is similar to
Demaine et al.’s, with modifications to permit the lower
bound tree to be dynamic.

In our description of the bound, there are two trees,
P and T , which are both dynamic BSTs over the same
keys. The tree P is a reference tree that the lower bound
will use (P does not really exist), and each internal
node always has exactly one preferred child (like the
reference tree for an MST). The tree T refers to the tree
maintained by an arbitrary BST algorithm A adhering
to the model described in Section 6.1.

Let σ = σ1, . . . , σm be a sequence of operations on T
for which each σi is either a query, an insert, or a delete,
and A is responsible for executing these operations in
order.

Because both P and T are dynamic, we often refer
to them by their time index. By Pi and Ti, we mean
the state of P and T right before σi is executed. For
notational simplicity, both P and T are assumed to be
empty initially (i.e., P0 and T0 are empty).

Further, because P is dynamic, we need a way
to describe changes to it. Let ρ = ρ1, . . . , ρm be a
sequence of changes to P , where each ρi contains a
sequence of rotations to be performed on P . Insertions
and deletions in the reference tree correspond to the
operations in σ and follow the standard BST insert and
delete procedures. That is, an insertion occurs at the
relevant leaf, and a deletion typically swaps the node v

20Here we are ingoring the effect of the final switch on the
accessed node, which clearly only adds O(1) per access to the
total number of switches.

to be deleted with pred(v) and splices out v. The change
in ρi is performed immediately before σi is executed by
A (i.e., after σi−1 is executed for i > 1). Note that ρ1

and ρ2 are always empty because there is at most one
node in P prior to σ2. Whenever a node in P is involved
in a rotation (i.e., it is either v or p for a rotation of v
over p), its preferred child is set to its leftmost child, if it
has a child. This child setting is not considered a switch
for accounting purposes (e.g., in DIB(ρ, σ) as described
below).

If σi queries σ̂i, Pi switches its nodes’ preferred
children as necessary so as to create a path consisting
only of preferred child edges to σ̂i starting from the
root. In the case of insert, the switches connect both the
predecessor and successor of σ̂i to the root. For delete,
pred(σ̂i), succ(σ̂i), and σ̂i are connected to the root in
arbitrary order (note that the order only affects the
lower bound by a constant additive term per deletion).
Let DIBi(ρ, σ, v) be the number of switches of node v’s
preferred child that are made in Pi to accommodate
σi. Let DIB(ρ, σ, v) =

∑m
i=1 DIBi(ρ, σ, v), and let

DIB(ρ, σ) =
∑

v∈V DIB(ρ, σ, v), where V is the set of all
nodes that are inserted into P (and T ) at some point.

Our lower-bound proof runs parallel to the proof
for a static reference tree in [DHIP04], with some
changes to allow P to be dynamic. We define Ly =
leftRefSubtree(y) ∪ y and Ry = rightRefSubtree(y) (Ly

and Ry can be indexed by time as well). For a node y,
define the transition point of y to be the highest node z
in T such that the path from z to the root contains at
least one node from both Ly and Ry. Observe that z is
either the lowest common ancestor of Ly or of Ry.

We restate a few useful lemmas from [DHIP04].
Lemma C.2 has been modified to account for P ’s being
dynamic. The proofs of Lemmas C.1 and C.3 are the
same as in [DHIP04] because these lemmas refer to a
snapshot of P .

Lemma C.1. [DHIP04] The transition point z in Ti

for a node y in Pi is unique.

Lemma C.2. Suppose a BST access algorithm does not
touch a node z in T for the time interval i ∈ [j, k], and z
is the transition point in Tj for a node y in Pj. Further,
suppose that y is not rotated in the reference tree by
the execution of ρj+1, . . . ρk (i.e., there is no rotation in
ρj+1, . . . ρk of v over its parent p where y = v or y = p).
It follows that z remains the transition point of y for
the entire time interval [j, k].

Proof. Suppose, without loss of generality, that z ∈ Ry
j .

Notice that all of Ry
j is in the subtree rooted at z in

Tj because z is the lowest common ancestor of Ry
j in

Tj . Because z is not touched, z remains the lowest



common ancestor of Ry
i for all i ∈ [j, k].21 Moreover,

at time j the predecessor a of the nodes in the set
subtree(z) ∩ (Ly

j ∪ Ry
j ) is in Ly because Ly ∪ Ry forms

a contiguous region of keyspace. Notice that a is the
deepest left-ancestor of z in T .22 Thus, no rotation in
ρj+1, . . . , ρk changes the fact that a is the deepest left-
ancestor of z, and a cannot be deleted from T during
[j, k] because it has a right child.

Lemma C.3. [DHIP04] At any time i, no node in Ti

is the transition point for multiple nodes in Pi.

The following theorem relates DIB(ρ, σ) to a lower
bound on OPT(σ):

Theorem C.1. (Dynamic Interleave Bound) For a se-
quence of operations σ = σ1, . . . , σm where each σi is
a query, insert, or delete, the cost of an arbitrary BST
algorithm A on σ is Ω(DIB(ρ, σ)/2 − n − 2k + cm),
where n is the number of nodes in Pm, ρ = ρ1, . . . , ρm

is a sequence of changes to P , where each ρi contains
a sequence of rotation operations to be performed on P
(insertions and deletions in P correspond to those in
σ), and k is the number of rotate operations in ρ (i.e.,
k =

∑m
i=1(# of rotations in ρi)).

Proof. First, note that the cm term in the lower bound
appears because each operation costs at least a constant
c.

Following [DHIP04], suppose every time a node y in
P is switched from left to right the lower bound places
a marble on the transition point of y in T . Moreover,
whenever the lower bound rotates v over p in P , it
removes any marbles from the transition point of v and
of p in T . On the other hand, whenever A touches a
node, it discards all of the marbles at that node, and
when A deletes a node y the lower bound removes the
marble from y’s transition point z if z exists and still
has a marble after A deletes y. Clearly, if the number
of marbles sitting on a node never exceeds 1 then the
number of marbles removed is at most A’s cost for σ.

Moreover, to prove the theorem it suffices to show
that no node can ever have more than one marble.
Because the number of marbles placed is at least half
the number of total switches (because there are at least
as many left-to-right switches as right-to-left switches23)

21Notice that z remains a member of R
y

i
because if it needs to

be swapped as a result of its successor’s being deleted, our model
dictates that the BST algorithm must access z in T , contradicting

our assumption that the algorithm does not touch z in T .
22By “deepest left-ancestor of z”, we mean the parent of the

highest node in z’s right ascending path.
23This is true if we do not count the at most m right-to-left

switches following the insertion of a node as a left child of a node
that has a right child.

and A must remove all of the marbles that are placed
on T except those that either remain on Tm at the
end (up to n) or are removed by the lower bound (up
to 2k removed for rotations and up to m removed for
deletions).

To see that no node can ever have more than one
marble, notice that by Lemma C.3 no two nodes in Pi

ever have the same transition point in Ti. As argued
in [DHIP04], when a left-to-right switch is made at y at
times i and j (i < j), the transition point for y in Ti

must be touched at some time during the interval (i, j],
assuming that the transition point remains constant
during that interval. By Lemma C.2, y’s transition
point z during this interval remains constant unless A
touches z in T , in which case A removed its marbles,
or the lower bound executed a rotation involving y, in
which case the lower bound removed the marbles of z.

D An Example of an MST and the

Corresponding Reference Tree

Figure 6 shows what an MST looks like, and shows the
corresponding reference tree that is stored implicitly in
the MST.
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Figure 6: Multi-Splay Data Structure – One can always
obtain P from T by a set of rotations on solid edges.


