
Approximating the k-Multicut Problem

Daniel Golovin∗ Viswanath Nagarajan† Mohit Singh‡

Abstract

We study the k-multicut problem: Given an edge-
weighted undirected graph, a set of l pairs of vertices,
and a target k ≤ l, find the minimum cost set of
edges whose removal disconnects at least k pairs. This
generalizes the well known multicut problem, where
k = l. We show that the k-multicut problem on trees
can be approximated within a factor of 8

3 + ε, for any

fixed ε > 0, and within O(log2 n log log n) on general
graphs, where n is the number of vertices in the graph.

For any fixed ε > 0, we also obtain a polynomial
time algorithm for k-multicut on trees which returns a
solution of cost at most (2 + ε) · OPT , that separates
at least (1 − ε) · k pairs, where OPT is the cost of the
optimal solution separating k pairs.

Our techniques also give a simple 2-approximation
algorithm for the multicut problem on trees using total
unimodularity, matching the best known algorithm [8].

1 Introduction

Graph cut problems are widely studied in the area of
approximation algorithms. The most basic cut problem
is the s-t minimum cut problem, for which Ford and
Fulkerson gave an exact algorithm [3]. Since then,
many different cut problems have been considered, some
examples are [7, 8, 15]. Many of these cut problems are
useful sub-routines in solving other problems [22]. The
study of these cut problems has also given rise to many
new and interesting techniques.

In a multicut problem, we are a given a graph
G = (V,E), a cost function on the edges, and a set
of pairs (si, ti) : 1 ≤ i ≤ l. The objective is to select
a minimum cost set of edges which separates all the
pairs. Garg, Vazirani and Yannakakis [7, 8] gave an
approximation algorithm for the multicut problem.

∗Dept of Computer Science, Carnegie Mellon University.
Email: dgolovin@cs.cmu.edu. Supported by NSF ITR grants

CCR-0122581 (The ALADDIN project) and IIS-0121678
†Tepper School of Business, Carnegie Mellon University.

Email: viswa@cmu.edu. Supported by NSF ITR grant CCR-

0122581 (The ALADDIN project)
‡Tepper School of Business, Carnegie Mellon University.

Email: mohits@andrew.cmu.edu. Supported by NSF ITR grant

CCR-0122581 (The ALADDIN project) and NSF grant CCF-

0430751

In this paper, we study a generalization of the
multicut problem, the k-multicut problem. Here, in
addition to the set of pairs, we are given a target k ≤ l,
and the goal is to select a minimum cost set of edges
which separates at least k pairs.

Similar generalizations for other optimization prob-
lems like Set Cover [5], and MST [6] have been studied
before, where the objective is not to satisfy all of the
constraints, but rather to satisfy only a specified num-
ber of them. These problems are motivated by the pres-
ence of outliers in real life data; one may want to find
a solution not affected by these outliers. One way to
model this is to ask for a solution that satisfies only a
specified number of constraints.

Our work makes use of two concepts from com-
binatorial optimization: total unimodularity and La-
grangian relaxation. Totally unimodular matrices are a
common feature in combinatorial optimization, used to
show the integrality of a polytope [16]. For example,
the Bipartite Matching polytope and Maximum Flow
polytope are integral, since their constraint matrices are
totally unimodular(TU). In approximation algorithms,
total unimodularity has been used in the context of re-
ducing a hard problem to simpler instances, with a TU
constraint matrix [2, 10, 11, 13, 18].

Lagrangian relaxation has been used to obtain ap-
proximation algorithms for a variety of problems. These
problems typically have a single, or a few complicating
constraints. Some examples are the k-median problem
[12], constrained MST [19], k-MST [6], and bounded
degree MST [14]. In the k-median problem [12] , the
hard constraint is the requirement to open at most k
facilities. Using Lagrangian relaxation, this constraint
is brought into the objective function, and the resulting
relaxation is the (easier) facility location problem.

1.1 Our Results and Techniques. Garg et al [8]
gave a 2-approximation algorithm for the multicut prob-
lem in trees via a primal-dual algorithm. We give a
different proof showing that the primal (cut) LP has an
integrality gap of 2. Our proof involves reducing general
instances of multicut on trees to a special family of non-
crossing instances, which have integral LP relaxations.
Although our approach does not show that integrality
gap of the dual multicommodity flow problem on trees

is 2, it leads to a constant factor approximation algo-
rithm for the k-multicut problem on trees. We obtain
the following approximation for k-multicut on trees.

Theorem 1.1. Given any instance of k-multicut on
trees, and a fixed ε > 0, there exists an algorithm
running in polynomial time, which returns a solution
of cost at most (8

3 + ε) ·OPT where OPT is the cost of
the optimal solution.

We again reduce general instances to non-crossing in-
stances, and show that the linear programming relax-
ation for special non-crossing instances has a small in-
tegrality gap. This is described in Section 3.

We also show that if we can relax the target k by a
small factor, then we get an improved guarantee for the
cost of the solution.

Theorem 1.2. Given any instance of k-multicut on
trees, and a fixed ε > 0, there exists a polynomial time
algorithm which returns a solution separating at least
(1−ε)k pairs, and has cost at most (2+ε)·OPT . Above,
OPT is the cost of the optimal solution separating at
least k pairs.

Observe that this is not a bi-criteria approximation
in the usual sense, where there is a tradeoff between the
approximation factors of the two criteria. Here, the two
criteria compete together with the time complexity in
a manner similar to a PTAS. We prove Theorem 1.2 in
Section 4. Here again, we use the Lagrangian relaxation
to prove the existence of a good integral solution.
This involves an interesting tree decomposition, and a
bucketing argument.

We also note that solving the k-multicut problem
in trees leads to an approximation algorithm in general
graphs using the Räcke decomposition [17]. This is
discussed in Section 5.

Theorem 1.3. Given a polynomial time α-
approximation algorithm for k-multicut in trees,
there is a polynomial time O(α · log2 n log log n)-
approximation algorithm for k-multicut in general
graphs.

1.2 Related Work. Garg et al [7] gave an O(log l)-
approximation algorithm for multicut in general graphs.
As mentioned earlier, Garg et al [8] obtained an
improved guarantee of 2 for multicut on trees.
Hochbaum [11] gave a family of problems for which 2-
approximation algorithms could be obtained using total
unimodularity. But all these problems had half-integral
linear relaxations. Hochbaum [11] left as an open ques-
tion, whether there is a 2-approximation algorithm for
multicut on trees based on TU matrices. In this pa-
per, we answer this question in the affirmative. This

is interesting as the linear relaxation for multicut on
trees is not half-integral [8]. A similar question for the
problem of augmenting a spanning tree to a 2-edge con-
nected subgraph is answered by Ravi [18], matching the
2-approximation algorithm of JáJá and Frederickson [4].

We note that the results in Theorem 1.1, and
the 2-approximation algorithm for multicut on trees
(Section 2), have been obtained independently by Levin
and Segev [21], using similar techniques.

2 Multicut in Trees using Total Unimodularity

An instance of multicut on trees consists of a tree
T = (V,E), a cost function on the edges c : E → R+,
and a set of l pairs of vertices P = {(si, ti) : 1 ≤ i ≤ l}.
We are required to find a minimum cost set of edges F
which separates each pair in P. That is, for each pair
(si, ti) there must be an edge ei ∈ F such that ei is on
the unique path from si to ti in the tree T . We also
assume without loss of generality that tree T is rooted
at a special vertex r. Thus a tree multicut instance can
be denoted as a tuple (T, r, c,P). Such an instance is
called non-crossing, if for each pair (si, ti) ∈ P, si is a
descendent of ti in the rooted tree (T, r).

In this section, we show a simple 2-approximation
algorithm for multicut on trees, which matches the best
known algorithm [8]. We first show that the natural LP
relaxation for non-crossing instances is totally unimod-
ular, and hence integral. Then we show how general
multicut instances on trees can be reduced (via an LP)
to non-crossing instances while losing a factor of 2, and
thus obtain a 2-approximation.

We consider the following LP-relaxation for multi-
cut on trees, as in [8].

minimize
∑

e∈H cexe

subject to
(MLP)

∑

e∈Pi
xe ≥ 1 ∀ 1 ≤ i ≤ l

xe ≥ 0 ∀ e ∈ E

Here Pi is the unique tree path from si to ti. For
an instance I of multicut on trees, we will denote its
LP relaxation by MLP (I). We first prove the following
lemma for non-crossing instances.

Lemma 2.1. For any non-crossing instance I of multi-
cut on trees, MLP (I) is integral.

Proof. We prove the lemma by showing that the con-
straint matrix of MLP (I) is totally unimodular. Di-
rect every edge in the tree T towards the root r. The
constraint matrix can now be interpreted as a network
matrix: arcs of T correspond to the columns of the ma-
trix, and each constraint corresponds to a directed path
from si to ti. All the edges in this directed path are

forward and have a coefficient of 1. Hence, the matrix
is totally unimodular ([16], page 548), and the lemma
follows.

We now show how Lemma 2.1 can be used to give an
alternate proof of the integrality gap of 2 for MLP on
general instances of multicut on trees.

Theorem 2.1. ([8]) Given any instance I =
(T, r, c,P) of multicut on trees, the linear programming
relaxation MLP (I) has an integrality gap of at most 2.

Proof. Let x∗ be an optimal solution to MLP (I). Using
the solution x∗, we formulate a non-crossing instance
I ′ = (T, r, c,P ′) of multicut on the same rooted tree.

For each pair (si, ti) ∈ P (the original instance),
we include one pair in P ′ (the non-crossing instance)
as follows. Let ui be the highest common ancestor of si

and ti. Let Pi denote the path from si to ti, P ′
i the path

from si to ui, and P ′′
i the path from ui to ti. Clearly

Pi = P ′
i ∪ P ′′

i . From MLP (I),
∑

e∈Pi
x∗

e ≥ 1. Hence,

either
∑

e∈P ′

i
x∗

e ≥ 1
2 or

∑

e∈P ′′

i
x∗

e ≥ 1
2 . If the former

is true, then include the pair (si, ui) in P ′; else include
the pair (ui, ti) in P ′.

Clearly, the instance constructed is non-crossing.
Also, 2x∗ is a feasible solution to the linear program-
ming relaxation MLP (I ′) for the new instance. But
from Lemma 2.1, MLP (I ′) is integral. So, 2x∗ ≥
∑

j λjyj , where
∑

j λj = 1, λj ≥ 0, and the yj are inte-
gral vertices of the polytope MLP (I ′). Hence, for some
j, we must have 2c · x∗ ≥ c · yj . Note that yj is also a
feasible solution to the original multicut instance I: any
solution that separates every pair in P ′ also separates
every pair in P. Thus the integrality gap of MLP (I) is
at most 2.

The above proof can also be used to obtain a poly-
nomial time 2-approximation algorithm for the multicut
problem on trees.

3 k-Multicut in Trees

An instance of k-multicut on trees consists of a rooted
tree (T, r), a non-negative cost function c on the edges of
T , a set of pairs of vertices P = {(si, ti)|1 ≤ i ≤ l}, and
a target k ≤ l. The goal is to choose a minimum cost set
of edges F , such that it separates at least k pairs in P.
We denote such an instance by a tuple (T, r, c,P, k). In
this paper, when the k-multicut instance is clear from
the context, we refer to a “pair in P” simply as a “pair”.

In this section, we present a constant factor approxi-
mation algorithm for k-multicut on trees. Our approach
is similar to the previous section. We reduce general in-
stances on the tree to non-crossing instances, and prove

that the LP relaxation for non-crossing instances (suit-
ably modified) has a small integrality gap. We con-
sider the following LP relaxation for k-multicut on trees.
Again, Pi denotes the unique si-ti path in T .

minimize
∑

e cexe

subject to
∑

e∈Pi
xe ≥ yi ∀ 1 ≤ i ≤ l

(BLP)
∑l

i=1 yi ≥ k
0 ≤ yi ≤ 1 ∀ 1 ≤ i ≤ l
xe ≥ 0 ∀ e ∈ E

The following theorem formalizes why a reduction
from general tree instances to non-crossing instances
would work. The proof is similar to Theorem 2.1, and
is given in the appendix.

Theorem 3.1. Suppose BLP (I ′) has an integrality
gap of at most ρ for every non-crossing instance I ′ of
k-multicut on trees. Then BLP (I) has an integrality
gap of at most 2ρ for any instance I of k-multicut on
trees.

However, the integrality gap of BLP can be arbi-
trarily bad even for non-crossing instances (see Figure
1). We show that the integrality gap is due to costly
edges in the optimum solution. We get rid of the costly
edges by pruning, and then prove that BLP for such
modified non-crossing instances has a small integrality
gap.

r

v1 v2 vn

u

Figure 1: The pairs to be separated are (r, vi) for 1 ≤ i ≤ l

and the target k = 1. All edges cost 1. The LP solution has
cost 1

l
as it selects the edge (r, u) with weight 1

l
while any

integral solution must pay cost 1.

In Section 3.1, we show that, for any fixed ε > 0, we
can obtain a (4

3 + ε) approximation algorithm for non-
crossing k-multicut in trees, using the linear relaxation
BLP . In Section 3.2, we show how this can be extended
to obtain an (8

3 +ε) approximation algorithm for general
instances of k-multicut in trees.

3.1 LP-based Approximation for Non-crossing

Instances. In this section we consider only non-
crossing instances. To overcome the high integrality gap

of BLP , we perform a preprocessing step. A similar
idea, of pruning to reduce the integrality gap has been
employed in the constrained MST problem [19], and the
k-MST problem [6].

Given a non-crossing instance I of the k-multicut
problem, let OPT denote the cost of its optimum
solution. For any fixed ε > 0, let H be the set of all
edges of cost more than ε · OPT . Clearly, the optimum
solution can pick at most 1

ε edges from H. We first
guess the value of OPT , and the edges in H picked by
the optimum solution. For each such guess, we create a
new reduced instance. We argue later (in Section 3.2)
that there are at most n · n1/ε reduced instances. For
every reduced instance, we solve its LP relaxation, and
show that its fractional optimum can be rounded to an
integral solution within a factor of 4/3 + ε. Finally, we
output the cheapest solution found over all the guesses.

Theorem 3.2. Given any non-crossing instance I of
k-multicut on trees, there exists an integral solution of
cost at most 4

3OPTLP + Cmax, where OPTLP is the
optimal value of BLP (I), and Cmax is the maximum
edge cost in I.

Proof. We begin by solving the Lagrangian relaxation
of BLP (I) after dualizing the target constraint.

LR(λ) = min
∑

e cexe + λ(k − ∑l
i=1 yi)

subject to
∑

e∈Pi
xe ≥ yi ∀ 1 ≤ i ≤ l

0 ≤ yi ≤ 1 ∀ 1 ≤ i ≤ l
xe ≥ 0 ∀ e ∈ E

The constraint matrix of the above linear program
is totally unimodular. This is a simple corollary of
Lemma 2.1 (see also [16]). So, the optimal solution
to this linear program for any fixed λ > 0 is integral.
Solving the Lagrangian relaxation and its dual, we
obtain two integral solutions S1 and S2 such that the
optimal solution to BLP is a convex combination of
these two solutions. Formally,

Fact 3.1. At the optimal Lagrange multiplier λ∗, there
exist two integral solutions S1 = (x1, y1) and S2 =
(x2, y2) such that,

1. S1 and S2 are both optimal solutions to LR(λ∗)

2. Solution S1 satisfies k1 =
∑l

i=1 y1
i ≤ k, and

solution S2 satisfies k2 =
∑l

i=1 y2
i ≥ k.

3. µ1(x
1, y1)+µ2(x

2, y2) is an optimal solution to the
linear program BLP (I), where µ1 and µ2 satisfy
µ1 + µ2 = 1 and µ1k1 + µ2k2 = k.

For a discussion on Lagrangian relaxation, see chapter
II.3 in [16].

From Fact 3.1, the optimum value of BLP (I),
OPTLP = µ1 · c(S1) + µ2 · c(S2), where c(S1) and
c(S2) are the costs of the edges chosen in S1 and S2

respectively.
Using solutions S1 and S2, we construct two feasible

integral solutions Q1 and Q2 such that, the cheaper
of Q1 and Q2 costs at most 4

3OPTLP + Cmax. If
k1 = k (respectively, k2 = k), solution S1 (respectively,
S2) would be an optimal integer solution to BLP (I).
Below, we assume that k1 < k < k2.
Computing solution Q1: The first solution Q1 is
constructed by picking a subset of edges from S2 that
separates at least k pairs. Let F2 = {e ∈ E(T)|x2(e) =
1} be the set of edges chosen by solution S2. Consider
an assignment of the pairs separated in S2 to edges
of F2 as follows: edge e ∈ F2 is assigned the pairs it
separates in solution S2. If a pair is separated by two or
more edges, it is assigned arbitrarily to any one of these
edges. Let Π(e) denote the set of pairs assigned to edge
e. For a set of edges Q, let Π(Q) denote

⋃

e∈Q Π(e).
Clearly, {Π(e)|e ∈ F2} forms a partition of all the pairs
separated in S2. Define the price of an edge to be
p(e) = ce

|Π(e)| .

Constructing Solution Q1:

Order the edges in F2 in increasing order of prices.
Let the ordering be (e1, e2, . . . , er).
Initialize Q1 ← φ, i ← 1.
While (|Π(Q1)| < k)

Q1 ← Q1 ∪ {ei}
i ← i + 1

Claim 1. Q1 is a feasible solution to the k-multicut
instance I.

Proof. Since |Π(F2)| = k2 > k, the procedure eventu-
ally terminates , and from the termination condition we
get |Π(Q1)| ≥ k.

Claim 2. c(Q1) ≤ k
k2

c(S2) + Cmax.

Proof. We show that the edges in Q′
1 = {e1, . . . , ei−1} =

Q1 \ {ei} (i.e. Q1 except its last edge) cost no more
than k

k2

c(S2). As Q′
1 has the edges of smallest price,

the weighted average price of edges in Q′
1 is at most

that of all edges in F2. i.e.,
∑

e∈Q′

1

|Π(e)| · p(e)
∑

e∈Q′

1

|Π(e)| ≤
∑

e∈F2
|Π(e)|p(e)

∑

e∈F2
|Π(e)|

This implies
∑

e∈Q′

1

ce ≤ c(S2)
k2

·
∑

e∈Q′

1

|Π(e)| < k
k2

c(S2).

The last inequality |Π(Q′
1)| < k follows from the

termination condition. Now an additional edge ei can
cost at most Cmax, and we have the claim.

Computing solution Q2: Now we construct the
second solution Q2. First, we pick all the edges in S1.
This separates k1 ≤ k pairs. Hence, there are at least
k2 − k1 pairs in S2 which have not been separated by
edges in S1. We select a set of edges F ⊆ F2 such that
it separates at least k − k1 of the k2 − k1 remaining
pairs of S2. We can do this in a manner identical to
the construction of solution Q1. The solution Q2 then
consists of the edges F1

⋃

F . So Q2 is a feasible solution,
satisfying:

Claim 3. c(Q2) ≤ c(S1) + k−k1

k2−k1

c(S2) + Cmax

The following lemma shows that the better of the two
solutions Q1 and Q2 is a good approximation.

Lemma 3.1. min{c(Q1), c(Q2)} ≤ 4
3OPTLP + Cmax.

1

Proof. We will prove

min{
k
k2

c(S2)

OPTLP
,
c(S1) + k−k1

k2−k1

c(S2)

OPTLP
} ≤ 4

3
(1)

Using Claims 2 and 3, this implies Lemma 3.1. Recall
that the optimal LP value OPTLP = µ1c(S1)+µ2c(S2),
and µ1 = k2−k

k2−k1

and µ2 = k−k1

k2−k1

. For notational

convenience, we let k1 = a1 ·k, k2 = a2 ·k, and r = c(S1)
c(S2)

.

It is clear that for any instance, and solutions S1 and
S2, 0 < a1, r < 1 and a2 > 1. To prove (1), it suffices
to show

max
0<a1,r<1 a2>1

min{f(a1, a2, r), g(a1, a2, r)} ≤ 4

3

f(a1, a2, r) =
a2 − a1

a2(r(a2 − 1) + 1 − a1)

g(a1, a2, r) =
r(a2 − a1) + 1 − a1

r(a2 − 1) + 1 − a1

For any fixed values of 0 < a1 < 1 and a2 > 1, f
is decreasing with r while g is increasing. Thus the
maximum value of min{f(a1, a2, r), g(a1, a2, r)} as r
varies over the interval (0, 1), is attained as r → 0,
r → 1, or at f(a1, a2, r) = g(a1, a2, r). It is easy
to check that the minimum of these two functions as
r goes to 0 or 1 is 1. Now we consider the case
f(a1, a2, r) = g(a1, a2, r). Solving for r, we get r =
a1(a2−1)
a2(a2−a1)

. At this value of r, f(a1, a2, r) = g(a1, a2, r) =
(a2−a1)

2

a1(a2−1)2+a2(1−a1)(a2−a1)
≤ 4

3 for 0 < a1 < 1 and

a2 > 1. This can be verified by rearranging the terms in
the inequality to get (a1+a2−2)2+4(a2−1)(1−a1)

2 ≥ 0,
which is clearly true.

1Segev [20] pointed out that it suffices to use solution S2

instead of Q1 for the lemma to hold.

Theorem 3.2 now follows.

We note that non-crossing instances of k-multicut
can be solved in polynomial time by dynamic program-
ming. We assume, without loss of generality, that the
tree is binary (by adding edges of cost ∞). This is for
the sake of the dynamic program only. A state in the
dynamic program corresponds to: the subtree rooted at
a vertex v, the first edge eup that is cut on the path from
v to r, and the number of pairs t with one end point be-
low v that are separated. So we have a table M [v, eup, t]
with n2l entries. M [v, eup, t] is the minimum cost of a
set of edges that separates exactly t pairs among those
with an end point below v, satisfying the condition that
eup is the first edge cut on the path from v to r. The
entry for leaves is trivial. The entry M [v, eup, t] for an
internal vertex v is obtained from the entries M [v1, ∗, ∗]
and M [v2, ∗, ∗], where v1 and v2 are the two children of
v. Formally, M [v, eup, t] is given by the following recur-
rence

min
0≤z≤t

M [v1, eup, z] + M [v2, eup, t − z − q1 − q2]
(neither of (u, v1) and (u, v2) is picked),

M [v1, (u, v1), z]
+M [v2, eup, t − z − p1 − q2]

(only (u, v1) is picked),
M [v1, eup, z]
+M [v2, (u, v2), t − z − q1 − p2]

(only (u, v2) is picked),
M [v1, (u, v1), z]
+M [v2, (u, v2), t − z − p1 − p2]

(both (u, v1) and (u, v2) are picked)

Above, p1 (respectively, p2) is the number of pairs with
the lower vertex at v1 (respectively, v2). Similarly, q1

(respectively, q2) is the number of pairs with the lower
vertex at v1 (respectively, v2) and which are separated
by eup.

However, we need a bounded integrality gap of the
linear relaxation BLP , for the reduction in Theorem 3.1
to apply. Thus we do not directly get a 2-approximation
algorithm for k-multicut on trees. In Theorem 3.2, we
proved an integrality gap v 4/3 for pruned non-crossing
instances. In the next section, we use this to obtain an
approximation algorithm for k-multicut on trees with a
guarantee v 8/3.

3.2 From Non-crossing Instances to General

Tree Instances. In this section, we present our ap-
proximation algorithm for k-multicut on trees. As men-
tioned, the basic idea is to reduce general instances to
non-crossing instances. However, it is important to per-
form the preprocessing of large cost edges before reduc-
ing to non-crossing instances. We summarize our algo-
rithm k-TM (for a fixed ε > 0) in Figure 2.

Input: A k-multicut instance I = (T, r, c,P, k) on a tree.

1. Guess the value of the optimal solution, OPT . Let H = {e ∈ E(T)|ce > ε · OPT}.

2. For every M ⊆ H, of size at most 1
ε , do

(a) Let P ′ be the pairs in P separated by M .

(b) Let T ′ be the tree obtained from T , by contracting all edges in H.

(c) Form a new instance I ′ = (T ′, r, c,P \ P ′, k − |P ′|), and solve BLP (I ′) to get a fractional
solution x∗.

(d) Use Theorem 3.1 to obtain a non-crossing instance I ′′ from x∗.

(e) Solve I ′′ (with target k − |P ′|) optimally by dynamic programming, to get a solution yM (if
feasible).

3. Return the cheapest (feasible) solution yM
⋃

M that is found.

Output: An 8
3 + ε approximate solution to I.

Figure 2: Algorithm k-TM

We first argue the correctness of this algorithm, and
establish an approximation ratio of 8/3 + ε. Let y∗

denote the optimal solution to I, and OPT its cost.
Assume that the algorithm guessed the correct value of
the optimal solution, OPT , and also the edges M ⊆ H
chosen by y∗. I ′ is the new (reduced) instance, and
x∗ is the optimal solution to BLP (I ′). Let z∗ denote
the restriction of y∗ to the edges of T ′. Note that
c(y∗) = c(z∗) + c(M). Since y∗ is a feasible solution
to I, z∗ is clearly a feasible solution to I ′, and hence
also to BLP (I ′). So, the optimal value of BLP (I ′),
opt(BLP (I ′)) = c(x∗) ≤ c(z∗). From Theorem 3.1,
the optimal value of the non-crossing instance I ′′,
opt(BLP (I ′′)) ≤ 2 · opt(BLP (I ′)) ≤ 2 · c(z∗). Using
Theorem 3.2, the best integer solution to I ′′, yM has
cost at most 4

3 · opt(BLP (I ′′)) + max{ce|e ∈ T ′} ≤
8
3c(z∗) + ε · OPT . Thus, the solution yM

⋃

M to I has
cost at most 8

3c(z∗)+ε·OPT+c(M) ≤ 8
3c(y∗)+ε·OPT =

(8
3 + ε)OPT .

It is easy to see that this algorithm runs in poly-
nomial time. We could run through possible values of
OPT in time log1+ε Cmax using a binary search (assum-
ing minimum edge cost is 1). However, note that there
are only n distinct possibilities for the set H of costly
edges (by considering edges in a sorted order). So, in-
stead of guessing OPT , we run this algorithm n times,
one for each possible subset H. In each run of the algo-
rithm, step 2 is run at most n1/ε times. We can solve
non-crossing instances of k-multicut (Step 2e) using a
dynamic program in time O(n2 · l2). So the time taken
by step 2 is dominated by the time taken to solve the
LP in step 2c, tLP . Thus, we can bound the running

time of the whole algorithm by O(n1+1/ε(n2 · l2 + tLP))
which is polynomial. This proves Theorem 1.1.

4 Bi-criteria Approximation Algorithm

In this section, we present a (2 + ε, 1 − ε) bi-criteria
approximation algorithm for k-multicut on trees, i.e.,
for every fixed ε > 0, our algorithm finds a solution in
polynomial time, that separates at least (1 − ε)k pairs,
and costs at most (2+ ε)OPT . Here OPT is the cost of
the optimal solution to the k-multicut instance. This is
unlike usual bi-criteria approximations, where there is a
trade off between the two criteria being approximated.
Here the trade off is between the running time and the
approximation of both criteria, similar to a PTAS.

The bi-criteria approximation algorithm Relax-k-
TM is the same as algorithm k-TM (Section 3.2), with
the following modifications: in the pruning step (step 1),
we consider all edges of cost larger than (ε

16)9 · OPT ;
and in solving the non-crossing instance I ′′ (step 2e),
we set the target to (1 − ε

16)(k − |P ′|).
As before, to prove that the solution returned by the

dynamic program has small cost, it suffices to show that
non-crossing instances have small integrality gap. The
following theorem proves this integrality gap guarantee.

Theorem 4.1. Given any non-crossing instance I of
k-multicut on trees and a fixed 0 < δ ≤ 1

81 , there exists

an integral solution that separates at least (1 − δ1/4)k
pairs in I, and costs at most (1 + 4δ1/4)OPTLP +
2
δ2 Cmax. Here OPTLP is the optimal value of BLP (I),
and Cmax is the maximum edge cost in I.

Before we prove Theorem 4.1, we prove Theorem 1.2

using Theorem 4.1.
Proof of Theorem 1.2: Consider the run of Relax-

k-TM when it correctly guesses the optimal value
OPT , and the edges M ⊆ H of the optimal solution.
We follow the notation in the proof of Theorem 1.1
(Section 3.2). y∗ is the optimal solution to I, and z∗

denotes the restriction of y∗ to the tree T ′. Clearly,
c(y∗) = c(z∗) + c(M). Recall that the optimal value of
the linear program BLP (I ′), opt(BLP (I ′)) ≤ 2 · c(z∗).
Using Theorem 4.1 on the non-crossing instance I ′′ with
δ = (ε

16)4, we know that there exists an integer solution
s∗, separating at least (1− ε

16)(k−|P ′|) pairs, and having
cost,

c(s∗) ≤ (1 + ε
4)opt(BLP (I ′)) + 2

(ε/16)8 Cmax

≤ 2(1 + ε
4) · c(z∗) + 2

(ε/16)8 Cmax

≤ 2(1 + ε
4) · c(z∗) + ε

8 · OPT

where the last inequality follows from the pruning
step. Now, yM is the best solution separating at least
(1 − ε

16)(k − |P ′|) pairs in I ′′. So the cost of the final
solution,

c(yM) + c(M) ≤ c(s∗) + c(M)
≤ 2(1 + ε

4) · c(z∗) + ε
8 · OPT + c(M)

< (2 + ε) · OPT

Also, the number of pairs of I separated by the final
solution is at least (1− ε

16)(k− |P ′|) + |P ′| ≥ (1− ε
16)k.

This proves Theorem 1.2.

Proof of Theorem 4.1 As in the proof of Theorem 3.2,
we use the two integral solutions S1 and S2 obtained at
the optimal Lagrange multiplier (Fact 3.1). Recall that
k1 (respectively, k2) is the number of pairs separated by
solution S1 (respectively, S2), and k1 < k < k2. Also
Q1 and Q2 denote the solutions constructed in the proof
of Theorem 3.2. The idea of this proof is to construct a
new family of solutions using S1 and S2. We then show
that one of the new solutions, or one of the solutions
S1, S2, Q1 or Q2 satisfies the conditions of Theorem
4.1. Observe that each of S2, Q1 and Q2 separates at
least k pairs, and are feasible solutions for our problem.
Whenever we use one of the other solutions, we will
show that they separate the required number of pairs.

We begin by describing how to create the new family
of solutions. We break the tree into a collection T of
small subtrees by removing a few edges in the tree. From
each subtree, we pick the edges of either solution S1

or solution S2 (not both). We do this in such a way
as to separate at least (1 − 2

√
δ)k pairs in total. The

family of subtrees T will be edge disjoint, and the pairs
separated by solutions S1 and S2 in these subtrees will
also be disjoint. This gives us the freedom to combine

the solutions S1 and S2 from each subtree independently.
Below, we say that a pair (s, t) is contained in a subtree
if the tree path between s and t lies completely in the
subtree.

Lemma 4.1. There exists a set of at most 2
δ2 edges

F such that T \ F can be decomposed into a family
T = {T1, . . . Tr} of edge disjoint subtrees satisfying:

1. Any two distinct subtrees in T have at most one
vertex in common.

2. Any pair that is not contained in a single subtree
in T is separated by some edge in F .

3. In each subtree Ti ∈ T , the number of pairs
contained in Ti that are separated by edges in
S1 (respectively, S2) is at most δ2k1 (respectively,
δ2k2).

Proof. First we show how to construct an edge set F1,
and a decomposition of T \ F1 into a family T1 of
subtrees. This family will satisfy properties 1, 2, and
3 only for solution S1. We start with the rooted tree
(T, r). In each step, find a deepest edge e = (u, v), where
u is the parent of v, such that the subtree below v has
at least δ2k1 pairs separated by edges of S1 inside the
subtree. If there is no such edge, we include each subtree
hanging from the root into T1, and our construction is
complete. Otherwise, we include e in F1 and include
each subtree hanging from v (with v as its root) into
T1. Since the k-multicut instance is non-crossing, there
is no pair with end points in two different subtrees of v;
so property 2 holds. We then recurse on the remaining
tree. Clearly, each time an edge is included in F1, we
decrease the number of pairs to be considered by at least
δ2k1. Hence, there can be at most 1

δ2 edges in F1. Each
subtree in this family has at most δ2k1 pairs separated
by edges of S1. From the construction, it is clear that
properties 1 and 2 hold.

Now consider the same procedure on the original
tree T , to get a set of edges F2 corresponding to solution
S2. We set F = F1 ∪ F2. For each edge e ∈ F , mark
the child vertex of e. The root r is also marked. Now in
forest T \F , each subtree hanging from a marked vertex
is returned as a distinct subtree. It is easy to check that
these subtrees satisfy all the conditions in the lemma.

Our solution will always contain all edges in F .
Clearly, any pair of S1 or S2 that has been separated
by e ∈ F belongs to our solution. By property 2 of
Lemma 4.1, each of the remaining pairs separated by
S1 or S2 can be assigned to a unique subtree. We
denote the number of pairs in solution S1 assigned to a
subtree Ti by w1(Ti). Similarly, we define the function

w2(Ti) for each subtree Ti. Observe that w1(Ti) ≤ δ2k1

and w2(Ti) ≤ δ2k2 for each i. For pairs which are
separated by edges in F , we arbitrarily assign the pair
to any one edge in F that separates it. We then
introduce a dummy subtree Te, for each edge e ∈ F .
We assign a w1(respectively, w2) weight to the dummy
subtree, equal to be the number of pairs separated by
S1 (respectively, S2) that are assigned to e. If w1(Te) >
δ2k1 or w2(Te) > δ2k2, we introduce multiple dummy
subtrees for this edge so that the weight is distributed
to satisfy the inequality wi(T

′) ≤ δ2ki (i = 1, 2), for
each dummy subtree T ′ of e. Let T1, . . . , Tl denote the
subtrees given by Lemma 4.1, along with the dummy
subtrees. Observe that

∑

j wi(Tj) = ki for i = 1, 2.
Also, if a pair contributes to the w1 or w2 weight of one
subtree, it does not contribute any weight to any other
subtree.

Next we bucket the subtrees T1, . . . , Tl in such a way
that each bucket Bj (except the last) has almost equal
w1 weight as well as w2 weight.

Lemma 4.2. There exists a partition B1, . . . , Bt+1 of
T = {T1, . . . , Tl} into t + 1 buckets, such that δki ≤
∑

T∈Bj
wi(T) ≤ δki + 3δ2ki for each i = 1, 2 and for

each 1 ≤ j ≤ t. Also, 1
δ+3δ2 − 1 ≤ t ≤ 1

δ .

Proof. We construct the buckets in a greedy fashion.

1. S ← {T1, . . . , Tl}, n1, n2 ← 0, j ← 1, B1 ← φ.
// Open bucket B1

2. While (S 6= φ) do:

(a) i ← argminl{nl

kl
: l = 1, 2}.

(b) Pick T ′ ∈ S such that wi(T
′)

ki
≥ w3−i(T

′)
k3−i

.

(c) Bj ← Bj

⋃{T ′}, S ← S \ {T ′}.
(d) n1 ← n1 + w1(T

′), n2 ← n2 + w2(T
′).

(e) If
w1(Bj)

k1

≥ δ and
w1(Bj)

k1

≥ δ,
// Close bucket Bj and Open bucket Bj+1

j ← j + 1 and Bj ← φ.

3. t ← j − 1, return buckets B1, . . . , Bj .

Here, n1 (n2) denotes the total w1-weight (w2-weight)
of the subtrees that have been assigned to buckets so

far. Since
Pl

j=1
w1(Tj)

k1

=
Pl

j=1
w2(Tj)

k2

= 1, it is clear that
there is always a subtree T ′ ∈ S satisfying the condition

of step 2b. Each subtree T ′ ∈ T satisfies wi(T
′)

ki
≤ δ2

(i = 1, 2). So, at each iteration in the while loop of step
2, |n1

k1

− n2

k2

| ≤ δ2.
The following argument is true for all but the last

bucket. For bucket Bj (1 ≤ j ≤ t), let βj = |w1(Bj)
k1

−
w2(Bj)

k2

|. We will show that βj ≤ 2δ2. Let m1 and m2

denote the values of variables n1 and n2 respectively, at
the point when bucket Bj is opened. Similarly, p1 and
p2 denote the values of variables n1 and n2, at the point
when bucket Bj is closed. Clearly, p1 = m1 + w1(Bj)
and p2 = m2 + w2(Bj). From the preceding argument,

|m1+w1(Bj)
k1

− m2+w2(Bj)
k2

| and |m1

k1

− m2

k2

| are at most δ2.

δ2 ≥ |w1(Bj)
k1

− w2(Bj)
k2

+ m1

k1

− m2

k2

|
≥ |w1(Bj)

k1

− w2(Bj)
k2

| − |m1

k1

− m2

k2

|
≥ βj − δ2

Thus βj ≤ 2δ2. So
wi(Bj)

ki
≤ 2δ2 +

w3−i(Bj)
k3−i

(i = 1, 2).

Consider the point just before the addition of the last

subtree to Bj . Suppose
wi(Bj)

ki
< δ before adding this

subtree. After Bj was closed (step 2e),
wi(Bj)

ki
≥ δ.

Since each subtree can increase this ratio by at most

δ2,
wi(Bj)

ki
≤ δ + δ2. Thus

w3−i(Bj)
k3−i

≤ δ + 3δ2. So for

each bucket Bj , we have δki ≤ wi(Bj) ≤ (δ + 3δ2)ki

(i = 1, 2). Since the total w1 weight (over T) is exactly
k1, the number of buckets is 1

δ+3δ2 ≤ t + 1 ≤ 1
δ . This

proves Lemma 4.2.

Recall that µ1 = k2−k
k2−k1

and µ2 = k−k1

k2−k1

. Let
t1 = bµ1tc, and t2 = bµ2tc. We leave out the last bucket
Bt+1, and define t integral solutions R1, . . . , Rt using
buckets B1, . . . , Bt. For each 1 ≤ i ≤ t, solution Ri picks
edges of S1 in all subtrees in buckets Bi, . . . , Bt1+i−1

and edges of S2 in buckets Bt1+i, . . . , Bt1+t2+i−1 where
indexes are modulo t. In addition, all these solutions
contain F .

Claim 4. There exists an 1 ≤ i ≤ t such that c(Ri) ≤
OPTLP + c(E0) ≤ OPTLP + 2

δ2 Cmax.

Proof. The total cost of these t solutions is at most
t1 · c(S1) + t2 · c(S2) + t · c(F) ≤ t ·OPTLP + t · c(F). So
the cheapest of these solutions costs at most OPTLP +
c(F) ≤ OPTLP + 2

δ2 Cmax.

Claim 5. The number of pairs separated by any Ri is
at least (1 − 4δ − δ

µ)k, where µ = min{µ1, µ2}

Proof. We prove it for solution R1 and the same argu-
ment holds for each Ri. Firstly, observe that the number
of pairs separated by R1 is

sep(R1) ≥
t1

∑

i=1

w1(Bi) +

t1+t2
∑

i=t1+1

w2(Bi)

Above, the first term in the RHS is just the pairs
separated by solution S1 assigned to subtrees Tj ∈ Bi

for 1 ≤ i ≤ t1, and the second term is the pairs
separated by solution S2 assigned to subtrees Tj ∈ Bi

for t1 + 1 ≤ i ≤ t1 + t2. Recall that none of the pairs
is assigned to two distinct subtrees (dummy or real).
Now, using wj(Bi) ≥ δkj for each j = 1, 2, we have that
sep(R1) ≥ δk1 · t1 + δk2 · t2 ≥ (µ1k1 + µ2k2)δt − δ(k1 +
k2) ≥ k

1+3δ − δk − δk
µ ≥ (1 − 4δ − δ

µ)k.

First assume that µ >
√

δ. Then the number of pairs
separated by each solution is at least (1 − 2

√
δ)k (for

δ ≤ 1
9) proving Theorem 4.1. Else, µ <

√
δ, and from

Claim 6, for µ ≤
√

δ, and γ = δ
1

4 we have an integral
solution which has cost at most (1 + 4δ1/4)OPTLP +
Cmax, and separates at least (1 − δ1/4)k pairs, proving
Theorem 4.1 for this case as well.

5 k-Multicut in General Graphs

We extend our solution on trees to general graphs using
the Räcke decomposition tree of a graph [17]. Räcke
showed how to obtain a hierarchical decomposition, TG,
of any undirected capacitated graph G, that allows one
to reduce any multi-commodity flow instance on G to
one on TG. This reduction loses only a poly-logarithmic
factor in the congestion, henceforth called the conges-
tion gap β. For efficient algorithms to generate such
decompositions see [9]. The best congestion gap known
to date, β = O(log2 n log log n), was given by Harrelson
et al [9]. Alon et al. [1] showed how this decomposi-
tion tree can be used to simulate multicuts in graphs by
multicuts in trees. In particular, we get the following
lemma.

Lemma 5.1. ([1]) For any multicut instance M =
{(si, ti)|1 ≤ i ≤ l}, cG ≤ cT ≤ 2βcG, where cG is the
optimal value of M in G, and cT is the optimal value
of M in TG.

Proof of Theorem 1.3: Consider a k-multicut in-
stance IG on G with pairs P, and target k. Let the op-
timal solution E∗ separate pairs P ∗ = {(si, ti)|1 ≤ i ≤
k} ⊆ P. Then by Lemma 5.1, there exists a multicut Et

in tree TG, separating pairs P ∗, of cost at most 2β ·OPT .
Here OPT is the optimal value of the k-multicut in-
stance in G. Define a k-multicut instance IT on TG with
the same pairs P, and target k. Et is clearly a feasible
solution to IT . Thus, an α-approximate solution to IT

costs at most 2αβ ·OPT . From the proof of Lemma 5.1,
any feasible solution to IT is also feasible in IG and of
the same cost. Thus we have a 2αβ-approximation al-
gorithm for k-multicut on general graphs.

6 Conclusions and Open Problems

In this paper, we showed a new proof of the 2-
approximation for multicut on trees, using totally uni-
modular matrices. It will be interesting to see more ex-
amples of proving integrality gaps using total unimod-

ularity, or other notions of proving integrality like total
dual integrality. A similar issue is addressed in Hassin
and Segev [10]

In Section 3, we saw that the linear relaxation BLP
has an integrality gap of . 4

3 for pruned non-crossing
instances. We have an example which shows that the
analysis of Section 3 is tight. It would be interesting to
construct an example showing an integrality gap larger
than 1 + c, for some constant c > 0, for pruned non-
crossing instances.

To obtain improved guarantees for our algorithm
k-TM, it suffices to show the existence of a small
integrality gap of BLP . It is not necessary to have an
efficient rounding scheme. This can be seen in Section
4, where the algorithm Relax-k-TM was essentially
the same as k-TM, although the analysis was more
intricate.

7 Acknowledgements

We would like to thank R. Ravi for useful discussions
and comments on this paper. We also thank Danny
Segev for comments on this paper.

References

[1] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buch-
binder, and Joseph (Seffi) Naor. A general approach
to online network optimization problems. Proc. ACM-

SIAM symposium on Discrete algorithms, pages 577–
586, 2004.

[2] Chandra Chekuri, Marcelo Mydlarz, and F. Bruce
Shepherd. Multicommodity demand flow in a tree.
In Proc. International Colloquium on Automata, Lan-

guages and Programming, pages 410–425, 2003.
[3] Lester R. Ford and Delbert R. Fulkerson. Maximal flow

through a network. Canadian Journal of Mathematics,
8:399–404, 1956.

[4] Greg N. Frederickson and Joseph JáJá. Approximation
algorithm for several graph augmentation problems.
SIAM J. Comput., 10(2):270–283, 1981.

[5] Rajiv Gandhi, Samir Khuller, and Aravind Srinivasan.
Approximation algorithms for partial covering prob-
lems. J. Algorithms, 53(1):55–84, 2004.

[6] Naveen Garg. Saving an epsilon: a 2-approximation for
the k-MST problem in graphs. Proc. ACM Symposium

on Theory of Computing, pages 396–402, 2005.
[7] Naveen Garg, Vijay V. Vazirani, and Mihalis Yan-

nakakis. Approximate max-flow min-(multi)cut the-
orems and their applications. Proc. ACM Symposium

on Theory of Computing, pages 698–707, 1993.
[8] Naveen Garg, Vijay V. Vazirani, and Mihalis Yan-

nakakis. Primal-dual approximation algorithms for in-
tegral flow and multicut in trees. Algorithmica, 18:3–
20, 1997.

[9] Chris Harrelson, Kirsten Hildrum, and Satish Rao. A
polynomial-time tree decomposition to minimize con-
gestion. Proc. ACM Symposium on Parallel Algorithms

and Architectures, pages 34–43, 2003.
[10] Refael Hassin and Danny Segev. Rounding to an

integral program. Proc. International Workshop on

Efficient and Experimental Algorithms, pages 44–54,
2005.

[11] Dorit S. Hochbaum. Instant recognition of half in-
tegrality and 2-approximations. Proc. International

Workshop on Approximation Algorithms for Combina-

torial Optimization, pages 99–110, 1998.
[12] Kamal Jain and Vijay V. Vazirani. Primal-dual ap-

proximation algorithms for metric facility location and
k-median problems. Proc. IEEE Symposium on Foun-

dations of Computer Science, page 2, 1999.
[13] Stavros G. Kolliopoulos and Clifford Stein. Approxi-

mation algorithms for single-source unsplittable flow.
SIAM J. Comput., 31(3):919–946, 2001.

[14] Jochen Könemann and R. Ravi. A matter of de-
gree: improved approximation algorithms for degree-
bounded minimum spanning trees. Proc. ACM sympo-

sium on Theory of computing, pages 537–546, 2000.
[15] Tom Leighton and Satish Rao. Multicommodity max-

flow min-cut theorems and their use in designing
approximation algorithms. J. ACM, 46(6):787–832,
1999.

[16] George L. Nemhauser and Laurence A. Wolsey. Integer
and Combinatorial Optimization. 1999.

[17] Harald Räcke. Minimizing congestion in general net-
works. Proc. IEEE Symposium on Foundations of

Computer Science, pages 43–52, 2002.
[18] R. Ravi. 2-approximation for augmentating a tree to be

2-edge connected using total unimodularity. Personal
Communication. 2004.

[19] R. Ravi and Michel X. Goemans. The constrained
minimum spanning tree problem. Proc. Scandinavian

Workshop on Algorithm Theory, pages 66–75, 1996.
[20] Danny Segev. Personal Communication. 2005.
[21] Danny Segev and Asaf Levin. Partial multicuts in

trees. To appear, Workshop on Approximation and

Online Algorithms, 2005.
[22] David B. Shmoys. Cut problems and their application

to divide-and-conquer. Approximation Algorithms for

NP-hard Problems, pages 192–235, 1997.

A Proofs

A.1 Proof of Theorem 3.1 The proof is similar to
proof of Theorem 2.1. Take any instance of k-multicut
on trees, i.e., a rooted tree (T, r), a set of pairs P
to separate, and a target k. Let (x∗, y∗) denote the
optimum solution to BLP (I). We create a non-crossing
instance of the k-multicut problem. For every pair
(si, ti) ∈ P, let ui denote the highest common ancestor
of si and ti. Let Pi denote the path from si to ti, P ′

i

the path from si to ui, and P ′′
i the path from ui to ti.

Clearly Pi = P ′
i ∪ P ′′

i . Also,
∑

e∈P i x∗
e ≥ yi. Hence,

either
∑

e∈P ′i x∗
e ≥ yi

2 or
∑

e∈P ′′i x∗
e ≥ yi

2 . If the former
is true, then include the pair (si, ui) in P ′ else include
the pair (ui, ti).

The new instance consists of the pairs in P ′ and
target k. Clearly, the new instance is non-crossing. We
claim that (2x∗, y∗) is feasible solution to BLP (I ′). The
last three set of constraints are clearly satisfied. The
feasibility of the first set of constraints follows from the
way P ′ was selected. By the assumption in the theorem,
the integrality gap of BLP (I ′) is at most ρ. Now, an
argument as in Theorem 2.1 shows that the integrality
gap of BLP (I) is at most 2ρ.

A.2 Claim in proof of Theorem 4.1

Claim 6. Suppose the solutions S1 and S2 at the opti-
mal Lagrange multiplier satisfy min{µ1, µ2} = µ. Then
for any µ < γ ≤ 1

3 , there is an integer solution that
separates at least (1 − µ

γ)k pairs, and costs at most

(1 + 4γ)OPTLP + Cmax

Proof. Suppose µ = µ1. Then solution S2 has cost at
most OPTLP

µ2

= OPTLP

1−µ ≤ (1+2µ)OPTLP (for µ < 1/2),

which is at most (1 + 2γ)OPTLP . Since S2 separates
k2 ≥ k pairs, it is the claimed solution.

Now suppose µ = µ2. If k − k1 ≤ µ
γ k, solution

S1 separates k1 ≥ (1 − µ
γ)k pairs, and costs at most

OPTLP . So S1 is the claimed solution.
Else, k − k1 ≥ µ

γ k. In this case, we show that
the integer solution constructed in Theorem 3.2 is the
claimed solution. Clearly that solution separates at
least k pairs. Now, k2−k1 ≥ 1

µ ·
µ
γ k = k

γ . i.e. k2 > k
γ . So,

in the proof of Lemma 3.1, a2 = k2/k > 1
γ . In this case,

we can bound the expression (a2−a1)
2

a1(a2−1)2+a2(1−a1)(a2−a1)

by 1
(1−γ)2 ≤ (1 + 4γ) (for γ ≤ 1/3). Thus, the

integer solution given by Theorem 3.2 has cost at most
(1 + 4γ)OPTLP + Cmax.

To complete the claim made in Theorem 4.1, we use
µ = δ1/2, and γ = δ1/4.

