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Abstract
Oblivious routing algorithms for general undirected networks were
introduced by Räcke, and this work has led to many subsequent im-
provements and applications. Räcke showed that there is an oblivi-
ous routing algorithm with polylogarithmic competitive ratio (with
respect to edge congestion) for any undirected graph. However,
there are directed networks for which the competitive ratio is in
Ω(

√
n).
To cope with this inherent hardness in general directed net-

works, the concept of oblivious routing with demands chosen ran-
domly from a known demand distribution was introduced recently.
Under this new model, O(log2 n)-competitiveness with high prob-
ability is possible in general directed graphs.

However, it remained an open problem whether or not the
competitive ratio, under this new model, could also be significantly
improved in undirected graphs. In this paper, we rule out this
possibility by providing a lower bound of Ω( log n

log log n
) for the

multicommodity case and Ω(
√

log n) for the single-sink case for
oblivious routing in a random demand model.

We also introduce a natural candidate model for evaluating the
throughput of an oblivious routing scheme which subsumes all sug-
gested models for the throughput of oblivious routing considered so
far. In this general model, we first prove a lower bound Ω( log n

log log n
)

for the competitive ratio of any oblivious routing scheme. Interest-
ingly, the graphs that we consider for the lower bound in this case
are expanders, for which we also obtain a lower bound Ω( log n

log log n
)

on the competitive ratio of congestion based oblivious routing with
adversarial demands.

1 Introduction

The concept of oblivious routing aims at developing rout-
ing algorithms that base their routing decisions only on local
knowledge and that therefore can be implemented very effi-
ciently in a distributed environment. In this paper we study
oblivious routing algorithms that aim to minimize the con-
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gestion, which is defined as the maximum relative load of a
network edge. (The relative load of an edge is the number of
routing paths traversing the edge divided by the capacity of
the edge.) We also consider maximizing throughput, which
is the total flow that we can deliver from sources to sinks
without violating any edge capacity constraints. In this pa-
per, we develop a natural model for proving lower bounds
on the competitive ratio of oblivious routing with respect to
throughput.

Traditionally, for an oblivious routing algorithm the
routing path chosen between a source s and a target t may
only depend on s and t. Valiant and Brebner [16] show e.g.
how to obtain efficient routing algorithms for the hypercube
in this scenario. Their algorithm obtains a competitive
ratio of O(log n), i.e., the congestion of their algorithm
is always within a logarithmic factor of the best possible
congestion. Later Räcke [14] obtained oblivious routing
schemes with polylogarithmic competitive ratio for general
undirected graphs; this competitive ratio was subsequently
improved by Harrelson, Hildrum, and Rao [10]. However,
a serious drawback in this line of research is that already
for very simple directed graphs it is not possible to obtain a
polylogarithmic competitive ratio (see [3]).

Hajiaghayi, Kim, Leighton and Räcke [8] introduced a
new model in which the demands between node-pairs are
not assumed to be a worst-case input for the given oblivious
routing algorithm (as in the standard competitive analysis)
but are drawn from a demand distribution that is known
in advance. In many practical applications this assumption
is justified. They show that for any directed graph, if the
demands for different node-pairs are independent, there is
an oblivious routing algorithm whose congestion is within
O(log2 n) of the optimum congestion, with high probability.
This gives an improvement over the worst case analysis
where in general an oblivious routing algorithm cannot
obtain competitive ratio better than Ω(

√
n).

A problem left open by this work is whether, under this
new model, one can also improve the competitive ratio in
undirected graphs (to possibly O(1)). We rule out such a
possibility by constructing a counterexample. In doing so,
we demonstrate that for undirected graphs there is no strong
qualitative difference between average-case and worst-case
performance of oblivious routing, in contrast to the strong
qualitative difference (O(log2 n) versus Ω(

√
n)) for directed



graphs as observed in [8].

1.1 Related Work. The idea of selecting routing paths
oblivious to the traffic in the network has been intensively
studied for special network topologies, since such algorithms
allow for very efficient implementations due to their simple
structure. Valiant and Brebner [16] initiate the worst case
theoretical analysis for oblivious routing on the hypercube.
They design a randomized packet routing algorithm that
routes any permutation in O(log n) steps. This result gives
a virtual circuit routing algorithm that obtains a competitive
ratio of O(log n) with respect to edge-congestion.

In [14] it was shown that there is an oblivious rout-
ing algorithm with polylogarithmic competitive ratio (w.r.t.
edge-congestion) for any undirected graph. However,
this result was non-constructive in the sense that only an
exponential-time algorithm was given for constructing the
routing scheme. This issue was subsequently addressed by
Bienkowski et al. [4], Harrelson et al. [10], and Azar et al.
[3]; in fact the latter paper shows that the optimum obliv-
ious routing scheme, i.e., the scheme that guarantees the
best possible competitive ratio, can be constructed in poly-
nomial time by using a linear program. This result holds
for edge-congestion, node congestion and in general directed
and undirected graphs. Furthermore, they show that there are
directed graphs such that every oblivious routing algorithm
has a competitive ratio of Ω(

√
n).

The method used by Azar et al. does not enable one to
derive general bounds on the competitive ratio for certain
types of graphs. Another disadvantage of [3] was that it did
not give a polynomial-time construction of the hierarchical
tree decomposition used in [14], which has proven to be use-
ful in many applications (see e.g. [1, 6, 13]). A polynomial
time algorithm for this problem was independently given by
[4] and [10]. Whereas the first result shows a slightly weaker
competitive ratio for the constructed hierarchy than the non-
constructive result in the original paper, the second paper by
Harrelson, Hildrum and Rao has even improved the com-
petitive ratio to O(log2 n log log n). This is currently the
best known bound for oblivious routing in general undirected
graphs.

Hajiaghayi, Kleinberg, Leighton and Räcke [9] consid-
ered the problem of oblivious routing for directed graphs
with a single sink. They show that one cannot obtain a com-
petitive ratio better than Ω(

√
n) and that one can obtain com-

petitive ratio Ω(
√

n log n). They also demonstrate the first
non-trivial upper bounds for competitive ratio of oblivious
routing in undirected networks with node capacities and gen-
eral directed networks. However, these bounds are still far
away from the polylogarithmic ratio that can be obtained on
undirected graphs.

To cope with the inherent hardness of oblivious routing
for general directed networks, Hajiaghayi, Kim, Leighton

and Räcke [8] recently introduced the concept of oblivious
routing with demands chosen randomly from a known de-
mand distribution (the demands for different source-target
pairs are independent in this setting). Under this new model,
they show that it is possible to be O(log2 n)-competitive with
high probability in general directed graphs.

For the cost-measure of throughput instead of conges-
tion, Räcke and Rosen [15] give a distributed online call con-
trol algorithm which is closely related to oblivious through-
put maximization in undirected graphs. Awerbuch et al. [2]
establish nearly tight upper and lower bounds on the per-
formance of oblivious routing schemes in directed bipartite
graphs, in terms of throughput. They show that the perfor-
mance gap between the optimal and the oblivious solution is
inherently polynomial even in this restricted graph class.

1.2 Our Results. We show that there are undirected
graphs for which any oblivious routing algorithm has a com-
petitive ratio of Ω( log n

log log n ), with high probability. For the
case in which all source-target pairs share a common desti-
nation (single-sink case) we show that there are graphs (and
corresponding demand distributions) such that the conges-
tion produced by an oblivious algorithm is with high prob-
ability a factor of Ω(

√
log n) away from the optimum con-

gestion. Thus, we rule out the possibility of improving the
competitive ratio to a constant factor in undirected graphs in
the random demand model. This answers a main open prob-
lem in [8].

One main difficulty in our proofs is that the demand
distribution is assumed to assign demands independently to
different source-target pairs. For the case where demands
between pairs are not independent it is much easier to
develop lower bounds, and e.g. the lower bound of Ω(log n)
developed by Maggs et al. [12] on the 2-dimensional grid
applies to this scenario.

The other main difficulty stems from the fact that we
consider undirected graphs and thus we cannot force the flow
into a particular direction.

As a second objective we analyze the throughput that
a routing protocol that is based on oblivious path selection
can obtain. Here the goal is to satisfy a maximum num-
ber of demand-pairs (i.e., route their demand) without vi-
olating the edge-capacities in the graph (in contrast to the
congestion-model where we route all demands and minimize
the factor by which edge-capacities are violated). We intro-
duce a natural candidate model for evaluating the throughput
of an oblivious routing scheme, which subsumes all models
considered in prior work (including [2, 15]). In this general
model, we prove a lower bound Ω( log n

log log n ) for the compet-
itive ratio of any oblivious routing scheme with respect to
throughput. The exact definition of the model and the proof
of this result is presented in Section 4.

It is worth mentioning that this lower bound also gives a



new class of graphs for which there is an Ω( log n
log log n ) lower

bound on the competitive ratio of congestion based oblivious
routing with adversarial demands.

1.3 Basic Definitions. Our graph terminology is as fol-
lows. We represent the network as a graph G = (V, E),
where V denotes the set of vertices (or nodes) and E denotes
the set of edges. In general an edge may carry a weight that
indicates the physical communication capacity of the corre-
sponding network link. However, for the lower bounds that
we obtain in this paper it is sufficient to consider only graphs
in which all edges have uniform capacity. Therefore, we will
assume that all edge capacities are uniform, in the following.

In this work we consider oblivious routing in a random
demand model that was introduced in [8]. A (demand-
dependent) oblivious routing algorithm specifies for every
positive real value r ∈ R

+ a flow f r
st of value r from s to

t in the network.1 If the demand between s and t is r, it is
routed according to f r

st.
We assume that a demand matrix D specifying a de-

mand for every source-target pair is chosen according to a
probability distribution D. We assume that D assigns de-
mands independently to the demand pairs, i.e., the entry D st

is independent of the entry Ds′t′ .
We consider two different scenarios in this paper. In

the first scenario the goal is to minimize the congestion
of an oblivious routing algorithm, whereas in the second
scenario we consider the throughput that can be obtained in
an oblivious routing model. The precise definition of the
throughput model can be found in Section 4. The following
definitions apply to the congestion based model.

The congestion is defined, as follows. For a given
demand-matrix D and a given routing algorithm, we define
the absolute load of an edge as the amount of flow routed
along this edge. The relative load is the absolute load of an
edge divided by its capacity. The edge-congestion (or just
congestion) is defined to be the maximum relative load of an
edge.

We define Cobl(D) to be the edge-congestion of the
routing guided by the flow paths of oblivious routing for
the demand matrix D. Let Copt(D) be the optimum edge-
congestion for the demand-matrix D. We call the ratio
Cobl(D)/ Copt(D) the competitive ratio for a demand ma-
trix D.

The goal is to create an oblivious routing scheme (based
on knowledge of the demand distribution D) such that the
competitive ratio is O(1) with high (or at least constant)
probability in undirected graphs, when the demands are
chosen from the distribution. We show that this goal cannot

1Note that this definition would not be appropriate for developing upper
bounds because it does not restrict the storage size required for encoding
an oblivious routing algorithm. However, since we are interested in lower
bounds we can use this definition.

be achieved: There are graphs and corresponding demand
distributions such that any oblivious routing scheme has a
large competitive ratio with high probability.

2 The general multicommodity case

In this section we construct an undirected graph G and a de-
mand distribution D such that any oblivious routing algo-
rithm is nearly always (i.e., with high probability according
to the random choice of the demand) far away from an op-
timal solution in terms of congestion. We show that with
high probability the ratio between the congestion created
by an oblivious algorithm and the optimum congestion is
Ω(log n/ log log n).

The construction of the network is as follows. Fix an
odd integer �, and integers k and n such that n = �k

and � = Θ(log5 n) (i.e., k = Ω(log n/ log log n)). The
graph G for our lower bound is obtained by the following
construction.

Start with an n-by-n grid in which all edges have
uniform capacities. We add nodes and edges to this grid in
the following recursive scheme. First, we add a super-source
and a super-sink to the graph, and attach the source to all
nodes in column �n/2� (center column) and the sink to all
nodes in column n (rightmost column) via edges of uniform
capacities. Now, consider two stripes of width n/� around
the center column. The left stripe SL contains nodes {(x, y) |
x ∈ {1, . . . , n}, y ∈ {�n

2 � + 1, . . . , �n
2 � + n

� }} and the
right stripe SR contains nodes {(x, y) | x ∈ {1, . . . , n}, y ∈
{�n

2 �− n
� , . . . , �n

2 �−1}}. We view both stripes as composed
out of � square grids of side-length �k−1. To each of these
square grids we add sources and sinks recursively. We stop
at sub-grids of side-length one.

In the following we refer to a grid that appears in the
above recursive construction, and that has side length n i :=
�k−i+1 as a (sub-)grid on level i. The demand distribution D
for our lower bound is defined as follows. A source in a grid
on level i > 1 becomes active with probability p = 1

log n ,
and in this case it sends a demand of ni to the corresponding
target. An inactive source does not send anything. The
source on level 1 is always active with demand n.

We prove that for this demand distribution any obliv-
ious routing algorithm on G creates congestion Ω(k) =
Ω(log n/ log log n) with high probability, while an optimum
algorithm only creates constant congestion, w.h.p. This gives
the following theorem.

THEOREM 2.1. The competitive ratio of any oblivious
routing algorithm on G with demand distribution D is
Ω(log n/ log log n), with high probability.

We start with the lower bound for the oblivious routing
algorithm.

LEMMA 2.1. For demand distribution D, any oblivious



routing algorithm on G produces a congestion of Ω(k) =
Ω(log n/ log log n) with high probability.

Proof. Fix an oblivious routing scheme. If a node (x, y) lies
in a sub-grid on level k + 1 (sub-grid of side-length 1) in
the construction for G, then all nodes in the y-column lie in
some level k + 1 sub-grid. This means that the union of all
level k + 1 sub-grids forms a set of columns in the grid. In
the following we call these columns the essential columns of
the grid and nodes on essential columns are called essential
nodes (essential nodes are in a sub-grid for every level of the
recursion).

We prove that either the oblivious algorithm creates
edge-congestion Ω(log n) or with high probability there
is an essential node v such that the oblivious routing al-
gorithm sends demand Ω(k) = Ω(log n/ log log n) over
this node. Since the degree of v is constant we get that
the edge-congestion on one of its adjacent edges must be
Ω(log n/ log log n).

We use an inductive argument. The induction step is as
follows.

CLAIM 2.1. Given an active sub-grid Mi on level i such
that the average load on essential nodes within M i due to
sources on levels j < i is at least αi := i−1

4 − i−1
log n . Then,

with high probability, there

• either exists a sub-grid Mi+1 ⊂ Mi with average load
αi+1 = i

4 − i
log n on essential nodes (due to sources on

levels j < i + 1), or

• there is a node inside Mi with load Ω(log n).

Proof. The sub-grid Mi is active, which means that the
source of Mi sends a demand of ni to its target. We first
claim that this demand creates a high load on essential
columns within Mi. Let Ci denote the number of essential
columns that intersect Mi. Half of these columns lie in
the stripe left to the source column and half of them lie
right to the source column. Therefore, in order to reach
the target, all the demand generated by the source of M i

has to cross at least Ci/2 essential columns. Moreover,
most of the demand (say at least 50%) has to cross Ci/2
essential columns inside Mi, because all essential columns
lie in a small stripe of width 2 ni

� ≤ ni/ log n (therefore if
50% of the demand (which is ni) leaves Mi before crossing
Ci/2 essential columns the load on vertical edges leaving M i

would be Ω(log n)).
Hence, we can assume that the average load on the n i·Ci

essential nodes inside Mi due to the source for Mi is at least
(Ci

2 · ni

2 )/(Ci · ni) ≥ 1/4. This means that the average
load on essential nodes inside Mi due to sources on levels
j < i + 1 is at least αi + 1

4 .
It remains to show that there is an active sub-grid that

has high average load. We show by a simple averaging

argument that for many sub-grids of M i the average load
on essential nodes is at least αi+1 = αi + 1

4 − 1
log n .

Let |Vess| denote the number of essential nodes within a
sub-grid. Assume for contradiction that no sub-grid has
average load larger than log n (otherwise we are done) and
that there are less than a = Θ(log2 n) sub-grids that have
average load at least αi+1. Then, the total load is less than
2�·|Vess|·(αi+ 1

4− 1
log n )+a|Vess|·log n < 2�·|Vess|·(αi+ 1

4 ),
where 2� � a log2 n is the number of sub-grids. This is a
contradiction since we assume that the average load is at least
αi + 1

4 .
Hence, there exist at least a = Ω(log2 n) sub-grids with

average load at least αi+1 = αi + 1
4 − 1

log n due to sources on
levels j < i+1. With high probability one of these sub-grids
becomes active since the probability that a sub-grid becomes
active is 1

log n . This proves the claim. �

Note that the source on level 1 is always active. There-
fore the whole grid meets the requirements for Claim 2.1.
Applying the above lemma for k levels we obtain a sub-grid
with side-length one and average load Ω(k) with high prob-
ability. Hence the congestion of the oblivious routing algo-
rithm is Ω(log n/ log log n). �

LEMMA 2.2. With high probability an optimum algorithm
can route the demands generated by D with constant con-
gestion.

Proof. We use a recursive routing scheme. On the first level
we have to decide where to route the demand created by
the source on level 1. Since the right stripe SR separates
the source from its target we have to route the demand
through the sub-grids in SR. The strategy for doing this is
as follows. First, distribute the demand evenly among the
left border node of inactive sub-squares. Then solve the
following routing problems recursively for the sub-squares.
Each active sub-square Mi only has to route its internal
demand (demand for commodities for which source and
target are in Mi). Inactive sub-squares, however, have to
route their internal demand, and, in addition, they have to
push the incoming flow from the left to the right border. We
show by induction that both these routing problems can be
solved. The induction step is as follows.

CLAIM 2.2. Let λi = ( 1
1−2p )i−1. Suppose that for a sub-

grid Mi+1 on level i + 1 with 1 < i + 1 ≤ k + 1 we can
solve the following routing problems:

1. active grid Mi+1:
An active sub-grid Mi+1 can route all its internal
demand with congestion at most 3λk+1.

2. inactive grid Mi+1:
An inactive sub-grid Mi+1 can route all its internal
demand and can route a flow of λi+1 · ni+1 (evenly



distributed among the ni+1 left border nodes) to an
even distribution among the right border nodes with
congestion 3λk+1.

Then we can solve the corresponding routing problems for
Mi with congestion 3λk+1.

REMARK 2.1. Note that the above claim trivially holds for
i+1 = k +1, since sub-grids on level k +1 form individual
vertices. Now the general statement follows via induction
from i + 1 to i. This shows that the proof of Claim 2.2
directly implies the lemma, since the congestion 3λk+1 is
constant.

Proof. [ of Claim 2.2] We start with the proof for an active
sub-grid Mi. The probability p that a sub-grid becomes
active is only 1

log n . Therefore with high probability only 2p�
of the � sub-grids in the stripe SR are active. The demand of
the source is distributed evenly among the left border nodes
of all all inactive sub-grids. There are (1−2p)ni such border
nodes. Hence, each node gets a load of 1/(1 − 2p) < λ i+1.
Note that the source can distribute this load while only
creating a congestion of 1/(1 − 2p) among its outgoing
edges. Now, we use the induction hypothesis as described
in Claim 2.2, and route the flow recursively through the
sub-grids of the stripe. With high probability the maximum
congestion created in one of the sub-grids is at most 3λk+1.

It remains to describe the routing algorithm for an
inactive sub-grid Mi that receives flow λi · ni from the left
side and has to push this flow to the right side. The flow
is first distributed evenly among the left border nodes of the
non-active sub-grids in the left stripe. Then the flow is routed
recursively through the sub-grids in SL. After that the flow
is distributed among the left border nodes of inactive grids
in SR, using the edges between the source and nodes in
the source column. Then it is again routed recursively, and
finally it is distributed evenly among the right border nodes
of Mi.

We argue that each of these phases can be performed
with congestion only 3λk+1. The first part works since
the sub-grids of Mi formed by the first ni/2 − ni/ log n
columns can be viewed as a crossbar. We can route any
multicommodity flow problem between vertices on the left
and on the right with congestion 3 ·dmax where dmax denotes
the maximum flow send or received by a vertex (see Claim .1
in the appendix for a proof). For our problem each node
on the left sends λi and each node on the right receives at
most λi+1 = λi · 1/(1 − 2p), since with high probability
only a fraction of 2p of the sub-grids are active. Hence,
dmax ≤ λi+1.

Therefore, the first and the last step of our routing
can be performed with congestion 3λi+1 ≤ 3λk+1. The
intermediate step of distributing flow between the edges
coming out of the left stripe and edges going into the right

stripe can be done over the source with maximum congestion
λi+1. For the recursive calls we need congestion 3λk+1.
This proves the claim. �

Claim 2.2 directly implies the lemma as argued in
Remark 2.1. �

3 The single sink case

In the following we construct a lower bound of Ω(
√

log n)
on the competitive ratio of oblivious routing algorithms in
the random demand model where all routing requests have a
common destination. We use a similar recursive construction
as in Section 2. However, the exact parameters of the
recursion substantially differ in the following ways.

First of all there is only one target node attached to all
nodes in the nth column of the n-by-n grid. All sources that
we add to the grid will send their demand to this target node.
If we would construct the sources and set up the demand
distribution in the same way as in Section 2 we would create
a lot of load in the network because all sources are far away
from the target node. This load could not be routed with
constant congestion.

Therefore, we choose a different construction in which
the number of sub-grids generated in a recursive step at level
i and the probability pi that a level i sub-grid becomes active
depends on i (in Section 2 each recursive step generated 2�
sub-grids and the probability p = 1

log n for a sub-grid to
become active was independent of i). We use n i to denote the
side-length of sub-grids on level i, and � i = ni

ni+1
to denote

the number of sub-grids generated within a single stripe for
a grid on level i.

We choose integers n, k, κ, and �i for 1 ≤ i ≤ k such
that κ ≥ 2 log4 n(logn +1) = Θ(log5 n), �i = 2i · κ

and n =
∏k

i=1 �i. Then n = κk
√

2k(k−1) and hence
k = Θ(

√
log n).

The sources of our graph G are constructed by the
following recursive process. We start with the n-by-n grid.
We add a source and attach it to all nodes in column � n

2 �
with edges of unit capacity. Around this source column
we consider two stripes (a left stripe SL and a right stripe
SR) of width n

�1
and partition each stripe into �1 sub-squares

of side-length n
�1

. Then we add sources to the sub-squares
recursively.

Note that by the above construction the side-length of
a level i sub-grid is ni =

∏k
j=i �j . We use the following

demand distribution D. The source on level 1 is always
active with demand n. A source on a level i > 1 is
active with probability pi = log4 n/�i−1 and in this case
it has demand ni (note that our choice of κ ensures that
2pj ≤ log n + 1 for 1 ≤ i ≤ k). We prove the following
theorem.

THEOREM 3.1. The competitive ratio of any oblivious



routing algorithm on G with demand distribution D is
Ω(

√
log n), with high probability.

We first show that an oblivious routing algorithm on G
with demand distribution D requires congestion Ω(

√
log n)

with high probability. Then in Lemma 3.2 we show that
an optimum algorithm with high probability only creates
constant congestion for demands from distribution D. This
gives the theorem.

LEMMA 3.1. For demand distribution D, any oblivious
routing algorithm for graph G creates congestion Ω(

√
log n)

with high probability.

Proof. The proof is analogous to the proof of Lemma 2.1.
We make an inductive argument in which in each induction
step we argue that there exists a sub-grid that has high
average load (due to sources on higher levels) and that is
active (i.e., it achieves load for the next level, as well). The
induction step is as follows.

CLAIM 3.1. Given an active sub-grid Mi on level i such
that the average load on essential nodes within M i due to
sources on levels j < i is at least αi := i−1

4 − i−1
log n . Then,

with high probability, there

• either exists a sub-grid Mi+1 ⊂ Mi with average load
αi+1 = i

4 − i
log n on essential nodes (due to sources on

levels j < i + 1), or

• there is a node inside Mi with load Ω(log n).

Proof. Recall that essential nodes are nodes that are in a
sub-grid for every level of the recursion. Let C i denote
the number of essential columns that intersect M i. These
columns all lie in stripe SL or SR and both stripes have
Ci/2 essential columns intersecting them. Hence, a routing
path that does not intersect Ci/2 essential columns inside
Mi has to leave Mi before traveling a horizontal distance
of ni/�i. Since there are only O(ni/�i) vertical edges for
leaving Mi in this region the congestion on vertical edges
is at least Ω(D · �i/ni) where D denotes the demand that is
sent along such routing paths. If D ≥ ni/2 this congestion
is Ω(�i/2) = Ω(log n). Hence, we assume that the source
of Mi (which has demand ni) routes at least 50% of this
demand through a stripe (SL or SR) before leaving Mi.
This results in an average load of ( Ci

2
ni

2 )/(Cini) ≥ 1/4 on
essential nodes within Mi due to the source of Mi.

Adding the load for sources on levels j < i we get an
average load of αi + 1

4 for sources on levels j < i + 1. We
now show that with high probability a sub-grid with average
load αi+1 = αi + 1

4 − 1
log n is active. Let |Vess| denote

the number of essential nodes within a sub-grid and assume
for contradiction that there are less than a = � i/log3 n sub-
grids that have average load less than αi+1. Further, we

can assume that no sub-grid has load log n (otherwise we
are done). Hence, the total load is less than 2�i|Vess|(αi +
1
4 − 1

log n ) + a · |Vess| · log n < 2�i|Vess|(αi + 1/4) since
2�i/ log n � a · log n. This is a contradiction to the
assumption that the average load is αi + 1/4.

Hence, there are at least a = �i/ log3 n sub-grids with
average load αi+1. The expected number of these sub-grids
that become active on the next level is api−1 = Ω(log n).
Therefore, with high probability one of these will be active.
This sub-grid can be used as Mi+1. �

The source of M1 is always active and, hence, M1 fulfills
the requirements of Claim 2.1. Therefore, we can use
induction to create a sub-grid Mk+1 with load Ω(k), with
high probability. �

LEMMA 3.2. With high probability an optimum algorithm
can route the demands generated by D with constant con-
gestion.

Proof. The proof that the optimum algorithm can route the
demands generated by distribution D with constant conges-
tion is more involved than the corresponding proof in
Section 2, because we have to forward all demand that is cre-
ated in the network to the single target node. For the analysis
it is therefore important to analyze how much demand is cre-
ated within a sub-grid Mi.

CLAIM 3.2. All sources within a sub-grid Mi on level i
create a demand of O( 1√

log n
· ni) with high probability.

Proof. The number of level j sub-grids in a grid of level i
is 2j−i · ∏j−1

s=i �s. Such a grid is active with probability

pj = log4 n
�j−1

= log4 n
2j−1κ ≤ 1

2j log n , and in this case creates a

demand of nj =
∏k

s=j �j . Hence the average load create in
Mi is

k∑
j=i

2j−i ·
j−1∏
s=i

�s · pj · nj ≤ k − i

logn
· ni ≤ 1√

log n
· ni .

Let µ = (1/
√

log n) · ni. If the source of Mi is inactive,
the demand created in Mi can be written as a sum of
independent random variables such that the contribution of
each variable is less than µ/ logn. Therefore, the above
bound on the expected load holds with high probability (i.e.,
the probability that the load exceeds β√

log n
ni is less than

n−Ω(β)). �

In the following we assume that every inactive sub-grid
creates a demand of at most c · ni for an appropriate value
c = O(1/

√
log n), and every active sub-grid only creates

demand (c + 1) · ni.
We present a routing algorithm that with high probabil-

ity obtains constant congestion for demand distribution D.



We use the same algorithm as in the proof of Lemma 2.2, i.e.,
an active source routes its demand through sub-grids that are
inactive on the next level. Similarly, an inactive sub-grid that
has to forward flow from its left to its right border sends this
flow through inactive sub-grids.

In contrast to the proof in Section 2 we also have
to describe how to deal with flow that is created within
sub-grids and leaves these sub-grids (in Section 2 demand
generated within a sub-grid was directed to a target in the
grid). We use the following induction step.

CLAIM 3.3. Let λi = (1+ 1
log n )i−1 +c ·∑k−1

j=1 (1+ 1
log n )j .

Suppose that for a sub-grid Mi+1 on level i + 1 with 1 <
i + 1 ≤ k + 1 we can solve the following routing problems:

1. active grid Mi+1:
An active sub-grid Mi+1 can distribute all its internally
created flow evenly on its right border nodes with
congestion only 4λk+1.

2. inactive grid Mi+1:
An inactive sub-grid Mi+1 can distribute an incoming
flow of λi+1 and its internally created flow evenly on its
right border with congestion only 4λk+1.

Then we can solve the corresponding routing problems for
Mi with congestion 4λk+1.

Proof. We first prove the result for inactive sub-grids M i.
An inactive sub-grid first distributes the incoming flow
evenly among left border nodes of inactive sub-clusters in
the left stripe. There are �i sub-grids within this stripe. The
probability for each of them to become active is p i+1 =
log4 n

�i
. This means that the expected number of active sub-

grids is larger than log n, and therefore with high probability
at most say 2pi+1�i are active (a constant factor more than
the expected value). Therefore each inactive sub-cluster in
SL only receives flow 1

1−2pi+1
λi · ni+1 < 1

1−1/(log n+1)λi ·
ni+1 < λi+1ni+1, with high probability. In order to route
the incoming flow from the left border nodes of M i to the
left border nodes of inactive sub-grids in SL we can use the
crossbar property of a rectangular grid as shown in Claim .1.
This step can be done with congestion 3 · dmax ≤ 3 · λi+1 <
3λk+1.

We can route the flow recursively through the sub-
grids in SL with congestion 4λk+1 because of the induction
hypothesis.

The maximum flow that now resides at a right border
node of SL is not more than (1 + 1/log n)λi + c. For
an inactive sub-grid this holds because no more than (1 +
1/logn)λi · ni+1 flow entered the sub-grid, at most c · ni+1

flow was generated inside the grid, and furthermore all
flow was distributed evenly among the ni+1 border nodes
of the sub-grid. For active sub-grids this holds since only
(1 + c)ni+1 flow is generated inside.

Furthermore, we know that the total flow that resides
at the border nodes of SR is at most (λi + c)ni. We now
distribute this flow evenly among the left border nodes of
inactive sub-squares of SR. Since at most a 1/(logn + 1)
fraction of the squares are active (the same argument that
we used for SL above), no border node receives more than
(1 + 1/logn)(λi + c)ni ≤ λi+1ni of this flow. We can
do this distribution by using the edges connecting nodes of
the source column to the source of M i. This step induces
congestion at most (1 + 1/logn)(λi + c).

Now, we can route recursively through the sub-grids
with congestion only 4λk+1.

The total flow at the right border nodes of SR is (λi +
c)ni, and no node carries more than (1+1/logn)(λi +c)+c
of this flow. Finally, we have to distribute this flow evenly
among the right border nodes of M i. By using the crossbar
property we can do this with congestion at most 4λk+1.

The routing algorithm for active sub-grids M i works
similar to the algorithm for inactive sub-grids. In fact it is
simpler since it needs only the second part of routing through
the sub-grids in SR. This also can be done with congestion
4λk+1. �

The sub-grids on level k + 1 fulfill the requirements of
Claim 3.3. Therefore we can make an induction from k + 1
to 1 which gives Lemma 3.2. �

4 Lower bounds for oblivious routing in expander
graphs

In previous sections we have proved lower bounds for the
congestion of oblivious routing schemes in graphs built upon
the grid. In this section we consider oblivious routing in ex-
pander graphs and prove lower bounds for both the conges-
tion and throughput. A general definition of throughput for
oblivious routing schemes has not appeared in prior work,
though throughput-maximization problems with an implicit
connection to oblivious routing were considered in [2, 15].
We begin by presenting a natural definition of throughput
for an oblivious routing scheme.

DEFINITION 4.1. (FEASIBLE DEMAND MATRIX, DOMINATES)
Suppose given a directed or undirected graph G = (V, E)
with non-negative edge capacities {c(e) : e ∈ E}. A matrix
D = (Dij)i,j∈V is called a feasible demand matrix if there
exists a multicommodity flow in G which delivers demand
Dij from i to j, for each i, j ∈ V, and which sends at most
c(e) units of flow on edge e, for each e ∈ E. The set of
feasible demand matrices for G will be denoted by D(G).

If D, D′ ∈ D(G), we say that D dominates D′, denoted
by D′ ≺ D, if D′

ij ≤ Dij for each i, j ∈ V.

DEFINITION 4.2. (THROUGHPUT RATIO) Suppose given
an edge-capacitated graph G = (V, E) as in Definition 4.1,
and suppose given a flow of unit value f ij from i to j,



for each pair of distinct vertices i, j ∈ V. We refer to this
collection of flows f = (fij) as an oblivious routing scheme,
and the throughput ratio of f is defined to be:

τ(f) = max
D∈D(G)

min
D′∈D(G)

��
i,j∈V Dij�
i,j∈V D′

ij

����� D′ ≺ D and ∀e ∈ E
�

i,j∈V

D′
ijfij(e) ≤ c(e)

�
.

Less formally, f has throughput ratio τ if for every feasible
demand matrix D, it is possible to send at least 1/τ fraction
of the throughput of D without exceeding the edge capaci-
ties, by throwing out a non-negative amount of demand for
each commodity and routing the remaining demand using f .
Note that the definition does not specify how the admission
control decision (i.e. the choice of D ′ ≺ D) is to be done in
a distributed manner; in fact it allows for centralized compu-
tation of D′. In this sense, it is a strong definition for proving
lower bounds and a weak one for proving upper bounds.

THEOREM 4.1. If f is an oblivious routing scheme in a
graph G whose congestion ratio is R, then τ(f) ≤ R.

Proof. Given a feasible demand matrix D, we have∑
i,j∈V (G) Dijfij(e) ≤ Rc(e) because the congestion ratio

of f is R. Hence the demand matrix D ′
ij = Dij/R satisfies

D′ ≺ D,
∑

i,j∈V (G) D′
ijfij(e) ≤ c(e), and

�
i,j Dij
�

i,j D′
ij

≤ R.
�

COROLLARY 4.1. For every undirected graph G with n ver-
tices, there is an oblivious routing scheme whose throughput
ratio is O(log2 n log log n).

Proof. It is known [10] that for every undirected graph G
there exists an oblivious routing scheme f whose congestion
ratio is O(log2 n log log n). �

THEOREM 4.2. There exist arbitrarily large graphs G such
that the throughput of any oblivious routing scheme for G is

Ω
(

log n
log log n

)
, where n = |V (G)|.

Proof. Let G be a graph with the following properties: (1)
|V (G)| = n; (2) G is (p + 1)-regular, for some p = O(1);
(3) G has girth g = Ω(log n); (4) G has edge-expansion
α = Ω(1); i.e. for every set U ⊂ V (G) with |U | ≤ n/2, the
number of edges joining U to V (G) \U is at least α|U |; and
(5) the automorphism group of G acts transitively on V (G).
An example of a graph family satisfying these properties
(with n tending to infinity) is the family of expander graphs
constructed by Lubotzky, Phillips, and Sarnak [11]. We will
assume that all edges of G have capacity 1.

Let � = 
logp logp n�. For an edge e = (u, v), the
subgraph B�(e) ⊂ G (consisting of all vertices and edges

reachable from e by a path of length at most �) is a tree
consisting of two complete p-ary trees of depth �, rooted at
u and v, with edge e joining the roots of the two p-ary trees.
Let S(u, e) denote the set of leaves of the subtree rooted at u,
and let S(v, e) denote the set of leaves of the subtree rooted
at v; more formally, S(u, e) = {w : d(w, u) = d(w, v) −
1 = �} and S(v, e) = {w : d(w, v) = d(w, u)−1 = �}. We
have |S(u, e)| = |S(v, e)| = p� = Ω(log n). Let T denote
the set of ordered pairs (i, j) ∈ V (G)2 such that there exists
e = (u, v) ∈ E(G) with i ∈ S(u, e), j ∈ S(v, e). Note that
|T | = p2�(p + 1)n, and that ∀(i, j) ∈ T d(i, j) = 2� + 1.

Consider the demand matrix

(4.1) Dij =
{ n

2(2�+1)|T | if (i, j) ∈ T

0 otherwise.

We claim that Dij ∈ D(G). To see this, consider the routing
scheme f̂ which routes all flow from i to j along the unique
path of length 2� + 1, for all (i, j) ∈ T . The demand matrix
D and the routing scheme f̂ are automorphism-invariant,
i.e. if α is any automorphism of G then Dij = Dα(i),α(j)

and f̂ij(e) = f̂α(i),α(j)(α(e)) for all i, j ∈ V (G), e ∈
E(G). It follows that the edge congestions induced by f̂
are automorphism-invariant, i.e. for all e ∈ E(G), α ∈
Aut(G),

∑
i,j Dij f̂ij(e) =

∑
ij Dij f̂(ij)(α(e)). The total

congestion of all edges in G is∑
e

∑
i,j

Dij f̂ij(e) =
∑
i,j

∑
e

Dij f̂ij(e) =
∑
i,j

(2� + 1)Dij

= (2� + 1)|T | · n

2(2� + 1)|T | =
n

2
.

The action of Aut(G) on E(G) partitions the edge set into
orbits, each containing at least n/2 edges. (Each orbit must
contain at least one incident edge of each vertex.) Since the
edges in each orbit are equally congested, the congestion on
each edge is at most 1. This verifies that D ∈ D(G).

Suppose now that we are given an oblivious routing
scheme f . For a pair (i, j) ∈ T let ηij denote the unique edge
e = (u, v) such that i ∈ S(u, e), j ∈ S(v, e). Let T0 ⊆ T
denote the set of all pairs (i, j) ∈ T such that fij(ηij) < 1/2,
and let T1 = T \ T0. Note that for (i, j) ∈ T0, at least
half the flow from i to j traverses paths of length at least
g − �, where g is the girth of G. By our assumption on
G, g − � ≥ C log(n) for some constant C. Hence for all
(i, j) ∈ T0,

∑
e∈E(G) fij(e) ≥ (C/2) log(n).

We consider the cases |T0| ≥ |T |/2, |T1| ≥ |T |/2
separately. If |T0| ≥ |T |/2, then let D be the demand
matrix defined in (4.1) and let D̃ij = Dij if (i, j) ∈ T0,
0 otherwise. We have D̃ ≺ D hence D̃ ∈ D(G). If D′ ≺ D̃
and

∑
i,j D′

ijfij(e) ≤ 1 for all e ∈ E(G), then

1
2
(p+1)n ≥

∑
e∈E(G)

∑
i,j

D′
ijfij(e) =

∑
i,j

D′
ij

∑
e∈E(G)

fij(e)



≥
∑
i,j

D′
ij · (C/2) log(n),

which implies∑
i,j

D′
ij ≤ (p + 1)n

C log(n)
= O

(
n

log n

)
,

while∑
i,j

D̃ij = |T0|· n

2(2� + 1)|T | ≥
n

4(2� + 1)
= Ω

(
n

log log n

)

Thus τ(f) = Ω
(

log n
log log n

)
.

Assume now that |T1| ≥ |T |/2. The set T may be par-
titioned into 2|E(G)| = (p + 1)n disjoint sets T (u, v) =
S(u, e) × S(v, e), one for each edge e ∈ E(G) and each or-
dering of the endpoints of e. The elements of T (u, v) are
in one-to-one correspondence with edges of the complete
bipartite graph on vertex sets S(u, e), S(v, e), and we may
partition T (u, v) into p� disjoint sets of size p�, correspond-
ing to a partition of the edge set of that complete bipartite
graph into perfect matchings. We have thus partitioned T
into p�(p + 1)n disjoint sets of size p�. Since |T1| ≥ |T |/2,
at least one of the pieces of the partition intersects T1 in a
set T2 whose cardinality is at least p�/2. Let D̃ij = 1 if
(i, j) ∈ T2, 0 otherwise. It is known, e.g. from the work of
Broder, Frieze, and Upfal [5, 7], that there exist edge-disjoint
paths joining i to j for each (i, j) ∈ T2; hence D̃ ∈ D(G).
Let e be the edge which is equal to ηij for all (i, j) ∈ T2. If
D′ ≺ D̃ and

∑
i,j D′

ijfij(e) ≤ 1, then∑
i,j

D′
ij =

∑
(i,j)∈T2

D′
ij ≤ 2

∑
(i,j)∈T2

D′
ijfij(e) ≤ 2,

while ∑
i,j

Dij = |T2| ≥ 1
2
p� = Ω(log n).

Hence τ(f) = Ω(log n). �

Combining this result with Theorem 4.1 we see that the con-
gestion ratio of oblivious routing schemes in the Lubotzky-
Phillips-Sarnak expanders is also Ω(log n/ log log n).

5 Open problems

The main open problem is that whether we can improve the
upper bound O(log2 n) for oblivious routing with random
demands in directed graphs [8] and O(log2 n log log n) for
the adversarial case in undirected graphs [10] to Õ(log n)
for oblivious routing with random demands in undirected
graphs.

We suspect that the graph constructed in Section 2
is indeed has O(1) maximum concurrent-flow minimum

sparsest-cut ratio. Showing this would be instructive since
it shows that the oblivious algorithm of [8] for adversarial
demands is still tight for this graph up to an O((log log n)2)
factor.

Finally, we consider the throughput lower bound proved
in Section 4. While the notion of throughput ratio defined
in that section constitutes quite a strong definition from the
standpoint of lower bounds, it is possible to formulate a still
stronger notion of throughput for oblivious routing schemes.
Namely, given an oblivious routing scheme f we can define
a partial ordering ≺f on demand matrices by specifying that
D′ ≺f D if and only if there exists a multicommodity flow
f ′ in G which routes D′

ij units of demand from i to j,
for each i, j, and which satisfies f ′

ij(e) ≤ Dijfij(e) and∑
i,j∈V f ′

ij(e) ≤ c(e) and all e. (Note that D′ ≺f D implies
that D′ ≺ D.) Now put

τ̂ (f) = max
D∈D(G)

min
D′≺f D

{∑
i,j∈V Dij∑
i,j∈V D′

ij

}
.

Less formally, f satisfies τ̂ ≤ x if for every feasible demand
matrix D, it is possible to send at least 1/x fraction of
the throughput of D without exceeding the edge capacities,
by source-routing packets from i to j according to the
flow distribution fij and dropping packets selectively along
the way, according to the optimal (centralized) admission
control scheme for that flow distribution. It is desirable
to understand whether comparably strong lower bounds on
throughput ratio can be proven under this stricter definition.
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AND H. RÄCKE, Oblivious routing on node-capacitated and
directed graphs, in Proceedings of the 16th ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2005, pp. 782–
790.

[10] C. HARRELSON, K. HILDRUM, AND S. B. RAO, A
polynomial-time tree decomposition to minimize congestion,
in Proceedings of the 15th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2003, pp. 34–43.

[11] A. LUBOTZKY, R. PHILLIPS, AND P. SARNAK, Ramanujan
graphs, Combinatorica, 8 (1988), pp. 261–277.

[12] B. M. MAGGS, F. MEYER AUF DER HEIDE, B. VÖCKING,
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Appendix

CLAIM .1. (CROSSBAR PROPERTY) Let R denote a rectan-
gular n-by-� n

c � grid and suppose that we are given a multi-
commodity flow problem between sources in the left column
and targets in the right column of the grid. Further, let dmax

denote the maximum demand that is sent by any one source
and received by any one target. Then the flow problem can
be solved with congestion c · dmax.

Proof. Partition the targets into � n
c � classes such that no

class contains more than c targets. Assign a column to each

class. We route a demand between source (xs, 1) and target
(xt, �n

c �) by routing it along row xs, to the column for target
(xt, �n

c �), then we route it along this column to row xt, and
finally we route it along row xt to the target. In this way a
row is only shared between one source and one target, and
columns are shared among at most c targets. Therefore the
congestion is at most c · dmax. �


