
Peekaboom: A Game for Locating Objects in Images

Luis von Ahn, Ruoran Liu and Manuel Blum
Computer Science Department, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh PA 15213
{biglou, royliu, mblum}@cs.cmu.edu

ABSTRACT
We introduce Peekaboom, an entertaining web-based game
that can help computers locate objects in images. People
play the game because of its entertainment value, and as a
side effect of them playing, we collect valuable image
metadata, such as which pixels belong to which object in
the image. The collected data could be applied towards
constructing more accurate computer vision algorithms,
which require massive amounts of training and testing data
not currently available. Peekaboom has been played by
thousands of people, some of whom have spent over 12
hours a day playing, and thus far has generated millions of
data points. In addition to its purely utilitarian aspect,
Peekaboom is an example of a new, emerging class of
games, which not only bring people together for leisure
purposes, but also exist to improve artificial intelligence.
Such games appeal to a general audience, while providing
answers to problems that computers cannot yet solve.

Author Keywords
Distributed knowledge acquisition, object segmentation,
object recognition, computer vision, Web-based games.

ACM Classification Keywords:
I.2.6 [Learning]: Knowledge acquisition. H.5.3 [HCI]:
Web-based interaction.

INTRODUCTION
Humans understand and analyze everyday images with
little effort: what objects are in the image, where they are
located, what is the background, what is the foreground,
etc. Computers, on the other hand, still have trouble with
such basic visual tasks as reading distorted text or finding
where in the image a simple object is located. Although
researchers have proposed and tested many impressive
algorithms for computer vision, none have been made to
work reliably and generally.

Most of the best approaches for computer vision (e.g.
[4,5,9,10]) rely on machine learning: train an algorithm to
perform a visual task by showing it example images in
which the task has already been performed. For example,

training an algorithm for testing whether an image contains
a dog would involve presenting it with multiple images of
dogs, each annotated with the precise location of the dog in
the image. After processing enough images, the algorithm
learns to find dogs in arbitrary images. A major problem
with this approach, however, is the lack of training data,
which, obviously, must be prepared by hand. Databases for
training computer vision algorithms currently have
hundreds or at best a few thousand images [13] — orders of
magnitude less than what is required.

In this paper we address the problem of constructing a
massively large database for training computer vision
algorithms. The target database will contain millions of
images, all fully annotated with information about what
objects are in the image, where each object is located, and
how much of the image is necessary to recognize it. Our
database will be similar to those previously shown to be
useful for training computer vision algorithms (e.g. [13]).

To construct such a database, we follow the approach taken
by the ESP Game [1] and introduce a new game called
Peekaboom. Peekaboom is an extremely enjoyable
networked game in which, simply by playing, people help
construct a database for training computer vision
algorithms. We guarantee the database’s correctness even if
the people playing the game don’t intend it. As we will
show in this paper, our game is also very enjoyable, with
some people having played over 40 hours a week. We will
further show that this game can be used to improve image-
search results and to calculate object bounding-boxes
similar to those in Flickr [8] (see Figure 7).

The ESP Game [1] is an interactive system that allows
people to label images while having fun. The ESP Game
collects random images from the Web and outputs word
labels describing the contents of the images. The game has
already collected millions of labels for arbitrary images.
Given an image, the ESP Game can be used to determine
what objects are in the image, but cannot be used to
determine where in the image each object is located. Such
location information is necessary for training and testing
computer vision algorithms, so the data collected by the
ESP Game is not sufficient for our purposes. The game
introduced in this paper, Peekaboom, improves on the data
collected by the ESP Game and, for each object in the
image, outputs precise location information, as well as
other information useful for training computer vision
algorithms. By playing a game, people help us collect data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2006, April 22–28, 2006, Montréal, Québec, Canada.
Copyright 2006 ACM 1-59593-178-3/06/0004...$5.00.

not because they want to be helpful, but because they have
fun. Indeed Peekaboom (or the ESP Game or any game
built on this premise) can be treated as a “human
algorithm”: on input an image, it outputs (with arbitrarily
high probability) a correct annotation of the image. Instead
of using a silicon processor, this “algorithm” runs on a
processor consisting of regular humans interacting
throughout the Web.

In addition to applications in computer vision and image
search, our system makes a significant contribution to HCI
because of the way it addresses the problem: Peekaboom
presents an example of a new line of research devoted to
solving large-scale problems with human computing
power, where people interact with computers to extend the
computational abilities of machines.

BASIC GAME PLAY
Peekaboom, as the name may suggest, is a game with two
main components: “Peek” and “Boom.” Two random
players from the Web participate by taking different roles
in the game — when one player is Peek, the other is Boom.
Peek starts out with a blank screen, while Boom starts with
an image and a word related to it (see Figure 1).

The goal of the game is for Boom to reveal parts of the
image to Peek, so that Peek can guess the associated word.
Boom reveals circular areas of the image by clicking. A
click reveals an area with a 20-pixel radius. Peek, on the
other hand, can enter guesses of what Boom’s word is.
Boom can see Peek’s guesses and can indicate whether
they are hot or cold.

When Peek correctly guesses the word, the players get
points and switch roles; play then proceeds on a new
image-word pair. If the image-word pair is too difficult,

the two players can “pass,” or opt out, of the current image.
Passing creates the same effect as a correct guess from
Peek, except that the players get no points.

To maximize points, Boom has an incentive to reveal only
the areas of the image necessary for Peek to guess the
correct word. For example, if the image contains a car and
a dog and the word associated to the image is “dog,” then
Boom will reveal only those parts of the image that contain
the dog. Thus, given an image-word pair, data from the
game yield the area of the image pertaining to the word.

Pings
Another component of the game are “pings” — ripples that
appear on Peek’s screen when Boom right-clicks on the
image (see Figure 2). If two players were playing with the
image on Figure 2, then many correct words are possible
from Peek’s point of view: elephant, trunk, tusk, ear.
Suppose the correct word is “trunk.” To get Peek to guess
correctly, Boom can “ping” the trunk of the elephant by
right-clicking on it. In doing so, Boom helps to
disambiguate the trunk from the rest of the elephant.

Figure 2. Pings. To help Peek, Boom can “ping” parts of

the image by right-clicking on them.

Figure 1. Peek and Boom. Boom gets an image along with a word related to it, and must reveal parts of the image
for Peek to guess the correct word. Peek can enter multiple guesses that Boom can see.

COW

Hints
Another feature of the game are buttons that allow Boom to
give hints to Peek about how the word relates to the image
(See Figures 1 and 3). Upon Boom’s pressing of one of the
hint buttons, a corresponding flashing placard appears on
Peek’s screen. The reason for having hints is that often the
words can relate to the image in multiple ways: as nouns,
verbs, text, or related nouns (something not in the image,
but related to it).

THE ORIGIN OF IMAGES AND LABELS
All words presented to the players are related to their
corresponding image. On input an image-word pair,
Peekaboom outputs a region of the image that is related to
the word. We obtain millions of images with associated
keyword labels from the ESP Game [1], which we now
describe in more detail.

As mentioned before, the ESP Game is a two-player online
game that pairs random players from the Web. From the
player’s perspective, the goal of the ESP Game is to guess
the word that their partner is typing for each image. Once
both players have typed the same string, they move on to a
next image. Since the players can’t communicate and don’t
know anything about each other, the easiest way for both to
type the same string is by typing something related to the
common image. The string upon which the two players
agree is a very good label for the image. We use the labels
collected from the ESP Game as the words we present to
the players in Peekaboom.

GAME POINTS AND THE BONUS ROUND
Although the exact number of points given to the players
for different actions is not important, we mention it to show
the relative proportions. Furthermore, we mention the
different point strategies used by Peekaboom to keep
players engaged.

Points are given to both Peek and Boom equally whenever
Peek guesses the correct word. In the current
implementation, both obtain 50 points. Points are not
subtracted for passing. Points are also given to both Peek
and Boom for using the hint buttons. Although this might

appear counterintuitive since using hints deducts points in
many other games, we actually want the players to use the
hint buttons. As mentioned above, hints give us additional
information about the relationship between the word and
the image, and therefore we encourage players to use them.
Twenty-five extra points are given to both Peek and Boom
whenever Peek guesses the correct word and Boom had
used a hint. Points are not given for usage of the hot/cold
buttons.

Every time the players correctly complete four images, they
are sent to a “bonus” round. The bonus round is different in
nature from the rest of the game and allows players to
obtain up to 150 points. In the bonus round (see Figure 4),
players simply click on an object in the image. The closer
they are to each other’s clicks, the more points they get. For
example, both players could obtain an image of a car and
be told “click on the car.”

Figure 4. The Peekaboom Bonus Round. Players must

click on the specified object within the image; they
obtain points proportional to how close their clicks are

to each other’s clicks.

Figure 3. Hints. Boom can further help Peek by giving hints about how the word relates to the image: is it a noun
describing something in the image, a noun related to the image, text on the image, or a verb?

Players obtain between 0 and 10 points for every click in
the bonus round, depending on how far the click is from
their partner’s corresponding click. The bonus round is
timed: players have to click on the same place as their
partner as many times as they can in 5 seconds. If the
object is not in the image, players can pass. Because some
images do not contain the object related to the word,
passing in the bonus round generates 25 points for both
players (so we can learn whether the object is there).
Players cannot pass after they have clicked on the image.

There are two reasons for the Peekaboom bonus round.
First, by giving players “bite-size” milestones (getting four
images correctly), we reinforce their incremental success in
the game and thus encourage them to continue playing.
Second, the bonus round is an alternative approach to
collecting training data for computer vision. In it, players
click inside specific objects within an image. Such clicks
give additional information for training computer vision
algorithms. In this paper we do not concern ourselves with
such information, but remark that it is also useful.

COLLECTING IMAGE METADATA
Our goal is to construct a database for training computer
vision algorithms. Here we discuss exactly what
information is collected by Peekaboom and how it is
collected.

On input an image-word pair (coming directly from the
ESP Game), Peekaboom collects the following
information:

• How the word relates to the image. Is it an
object, person, or animal in the image, is it text in
the image, is it a verb describing an action in the
image, is it an object, person, or animal not in the
image but related to it? The ESP Game associates
words to images, but does not say how the word
is related to the image. Figure 3, for instance,
shows multiple ways in which a word can be
related to an image. Hint buttons in Peekaboom
allow us to determine the relation of the word to
the image. This is useful in multiple ways, but for
the purposes of constructing training sets for
computer vision, it allows us to weed out “related
nouns” and to treat “text” separately.

• Pixels necessary to guess the word. When Peek
enters the correct word, the area that Boom has
revealed is precisely enough to guess the word.
That is, we can learn exactly what context is
necessary to determine what the word refers to.
This context information is absolutely necessary
when attempting to determine what type of object
a set of pixels constitutes (see Figure 5).

• The pixels inside the object, animal, or person.
If the word is a noun directly referring to
something in the image, “pings” give us pixels
that are inside the object, person, or animal.

• The most salient aspects of the objects in the
image. By inspecting the sequence of Boom’s
clicks, we gain information about what parts of
the image are salient with respect to the word.
Boom typically reveals the most salient parts of
the image first (e.g., face of a dog instead of the
legs, etc.).

• Elimination of poor image-word pairs. If many
independent pairs of players agree to pass on an
image without taking action on it, then likely
they found it impossibly hard because of poor
picture quality or a dubious relation between the
image and its label. By implementing an eviction
policy for images that we discover are “bad,” we
can improve the quality of the data collected (as
well as the fun level of the game).

When multiple players have gone through the same image,
these pieces of information can be combined intelligently to
give extremely accurate and useful annotations for
computer vision. Later in the paper, for example, we show
how a simple algorithm can use the data produced by
Peekaboom to calculate accurate object bounding-boxes
(see Figure 7).

THE SINGLE PLAYER GAME
Peekaboom is a two-player game. Oftentimes, however,
there will be an odd number of people attempting to play
the game, so the remaining person cannot be paired. To
prevent their frustration, we also have a single-player
version of the game in which the player is matched with a
server-side “bot.”

Our bot acts intelligently to simulate a human player by
being based on pre-recorded games. In other words, we
take data collected from pairs of humans and use it as the
basis for the computer player’s logic. Emulating a Boom
player is fairly simple: the bot can regurgitate the sequence
of recorded clicks to the human. Emulating Peek is much
more complicated; the bot needs to have some concept of
closeness of the human’s clicks to the set of recorded
clicks. For instance, if the human does not reveal the dog in
the picture, the bot should not guess “dog.” Our bot only
reveals a certain pre-recorded guess if enough area has

Figure 5. The image on the left contains a car driving
through the street, while the one on the right has a person
crossing the same street. Both the car and the person are
exactly the same set of pixels up to a rotation by 90
degrees. (Example taken from [11].)

been revealed. Towards this end, it employs a spatial data
structure whose members are circles, each of which
corresponds to a click. Elements of the data structure are
removed as they are clicked on by the human player. When
the data structure becomes empty, the bot gives the correct
answer. Moreover, it has the ability to make incorrect
guesses along the way, based on the relative emptiness of
the spatial data structure.

CHEATING
Peekaboom is a collaborative game: partners work together
to maximize their score. When both partners do not
communicate outside the game environment, we obtain
correct information. However, if the two partners collude to
cheat on the game, the data could be poisoned. For
instance, if Boom and Peek know each other and have an
outside means of communication, then Boom can simply
tell Peek what words to type.

Peekaboom contains multiple anti-cheating mechanisms.
Through a combination of online in-game enforcement and
offline analysis, we are able to detect and deal with
cheating. Before detailing Peekaboom’s anti-cheating
measures, we mention that cheating attempts are
uncommon. Although a minority of players might obtain
satisfaction from “gaming the system,” the majority of
them just want to play the game honestly. Indeed, as
anecdotal evidence, when Peekaboom was tested in a room
with children of ages 9-13, they would cover the word with
their hand to prevent others in the room from seeing the
answers. Nevertheless, Peekaboom does have a full set of
measures to prevent collusion.

• The player queue. When players log on to the
game server, they are not immediately paired off.
Instead, the server makes them wait n seconds,
where n is the number of seconds until the next
matching interval. Currently, matching intervals
happen every 10 seconds, and when they do, the
server matches everyone in the queue with a
partner (any odd person out will be paired with a
bot). With a large number of players in the
system, we can ensure that a player’s partner is
random and prevent colluders from getting
matched just because they clicked “start playing”
at the same time.

• IP address checks. We also check player’s IP
addresses to ensure that they are not paired with
themselves or with others that have a similar
address (similarity in IP addresses can imply
geographical proximity).

• Seed images. Because our system is a web-based
game, one point of concern is that bots (i.e.
automated players) might play the game and
pollute the pool of collected data. To detect them,
we introduce seed images into the system; in other
words, those for which we have hand-verified
metadata. On being presented seed images, if a

player consistently fails to click on the relevant
parts when playing Boom or to guess the correct
words when playing Peek, they will be added to a
blacklist. We discard all current and future game
play data associated with anyone on the blacklist.
Notice that, almost by definition, a computer
program cannot successfully play Peekaboom —
if it were able to do so, then it would be able to
recognize the objects in the images. Therefore, this
strategy prevents bots (as well as otherwise
malicious players) from poisoning our data.

• Limited freedom to enter guesses. Since Boom
can see all of Peek’s guesses, the game allows a
limited form of communication between the
players. Indeed, many of the Peekaboom players
use the guess field as a way to communicate with
their partner. It is not uncommon for the first
guess in a game to be “hi” or for the first guess
after passing on an image to be the correct word
associated with the previous image. It is also not
uncommon for players to type “sorry” after taking
too long on an image. A possible cheating strategy
is to exchange IM screen names through the guess
field and then, using IM, communicate the correct
words. Although we have never observed attempts
to execute such a strategy, we can mitigate it by
not allowing Peek to enter any non-alphabetical
characters (such as numbers). Similarly, we can
prevent Boom from seeing any guesses that are
not words in the dictionary (currently we do allow
Boom to see such guesses because we have not
seen players attempt to cheat in this way).
However, even if players are successful in such a
strategy, the other anti-collusion mechanisms can
deal with the corrupted data.

• Aggregating data from multiple players. In
addition to the above strategies, we aggregate data
from multiple players for a given image-word pair.
By doing this, we can eliminate outliers.

IMPLEMENTATION
We implemented the architecture of the game under the
client-server model. The client application is delivered as a
Java applet, while the server is written purely in Java.
Applets connect to a server, http://www.peekaboom.org,
which then matches the players with games of Peekaboom.
Upon two players’ completion of a match, the server writes
their game play data and scores to disk. We then compile
the collected data into desired formats.

Our implementation of the game contains many features to
improve game-play:

• Spelling check. Incorrectly spelled words are
displayed in a different color to notify players.
This is important because the Peek player usually
types multiple guesses in a short time, often
making spelling mistakes.

• Inappropriate word replacement. Since Boom
can see Peek’s guesses, we do not allow Peek to
enter inappropriate words. Whenever one of
Peek’s guesses is among a list of possible
inappropriate words, we substitute it with another
word chosen from a list of innocent words such as
“love,” “caring,” “ILuvPeekaboom,” etc.

• Top scores list and ranks. The Peekaboom
website prominently displays the cumulative top
scores of the day as well as the top scores of all
time. Furthermore, players are given a rank based
on the total number of points they have
accumulated throughout time (see Figure 6). The
different ranks are: Fresh Meat (0-15,000 points),
Newbie (15,000-75,000 points), Player (75,000-
250,000 points), Gangster (250,000-1,000,000
points) and Godfather (1,000,000 or more points).

We remark that ranks have proven an important
component of Peekaboom’s incentive strategy. Of
the 15,000+ players that have obtained an account,
47% of them have scores that fall within 5,000
points of the rank cutoffs. Given that these
intervals cover less than 2% of the space of
possible cumulative scores, this strongly suggests
that many players simply play to reach a new rank.

Figure 6. Top scores and player ranks. Players are
shown their current rank and the number of points

remaining for the next rank.

ADDITIONAL APPLICATIONS
Before going to the evaluation section, we mention two
additional applications for the data collected by
Peekaboom. A benefit of these applications is that they are
“direct” in that they do not require the training of machine
learning algorithms.

Improving Image-Search Results
Peekaboom gives an accurate estimate of the fraction of the
image related to the word in question. This estimate can be
calculated from the area revealed by Boom. The fraction of
the image related to a word can be used to order image-
search results: images in which the word refers to a higher
fraction of the total pixels should be ranked higher. Much
like the goal of the ESP Game is to label all images on the
Web, we can imagine Peekaboom doing the same and thus
further improving image-search.

Object Bounding-Boxes
In the same vein, Peekaboom can be used to directly
calculate object bounding-boxes similar to those used in
Flickr [8] (see Figure 7). Flickr is a photo sharing service
that allows users to “tag” images with keywords and to
associate keywords with rectangular areas in the image (the
areas and tags, however, are not guaranteed to be correct
since a user can enter anything they wish for their own
images). To exhibit the power of the data collected by
Peekaboom, we show how to use it calculate such
rectangles. We emphasize, however, that the data collected
by Peekaboom is significantly richer and that to calculate
the rectangles, we discard vast amounts of the information
collected by our game.

Since Peekaboom annotates arbitrary images on the Web,
its data allows for an image search engine in which the
results are highlighted (similar to the highlighted words in
Google’s text search results). Using the data obtained in the
first two weeks of game-play, we have implemented a
prototype of such a search engine (see Figure 7). The
search engine can be accessed from the Peekaboom
website: http://www.peekaboom.org.

The bounding boxes were calculated as follows. For a
single play of an image-word pair, we create a matrix of 0s
and 1s. The dimensions of the matrix are the same as the
dimensions of the image (in pixels). At first, every entry in
the matrix is a 0. We add a 1 in every pixel clicked by
Boom, as well as in the circle of radius 20 pixels around the
click. We thus obtain a matrix of 0s and 1s corresponding
to the exact area that was revealed in a single game-play.
Next, we combine different plays of the same image-word
pair by adding their corresponding matrices. This gives a
matrix whose entries are integers corresponding to the
number of different players that revealed each pixel of the
image. On this combined matrix, we apply a threshold of 2,
meaning that we substitute every value less than 2 with 0
and every value greater than 2 with 2. This gives a matrix
corresponding to all the pixels that have been revealed by at
least 2 players. Next, we cluster these pixels and calculate

the bounding boxes by taking, for each cluster, the leftmost,
rightmost, topmost and bottommost points. This algorithm
may produce multiple bounding-boxes for a single image-
word pair. For instance, in Figure 7, we can see that many
of the results for “eyes” have two-bounding boxes, one
corresponding to each eye.

As we will see, the results produced by this simplistic
algorithm are extremely accurate. Such results could be
improved by making intelligent use of the additional data
given by Peekaboom (such as pings, the precise order of
the areas revealed, etc.), but for the purposes of this paper,
we use the simplistic algorithm.

Alternative: Using Ping Data for Pointing
Instead of showing bounding-boxes calculated from
revealed areas, we could show arrows or lines pointing to
the objects (see Figure 8). Such pointers can be easily
calculated from the ping data. The simplest algorithm for
doing so is to select a ping at random and assume it is a
good pointer for the object. We will show that this
simplistic algorithm gives very accurate results. (Figure 8
shows an image in which the different objects have been
located using ping data.) More elaborate algorithms could
give even better results. We remark, however, that simply
“averaging” the pings over multiple players to obtain a
single pointer does not give accurate results. For instance,
if the object was “eyes,” averaging the pings gives a pointer
to a region that is not an eye.

Figure 8. Calculation of object pointers using pings.

EVALUATION: USER STATISTICS
The evaluation of our claims consists of two parts. First, we
must show that the game is indeed enjoyable. Second, we
must show that the data produced by the game is accurate.

It is difficult to evaluate how enjoyable a game really is.
One approach is to ask participants a series of questions
regarding how much they enjoyed playing the game. Our
data for such an approach were extremely positive, but we
follow a different approach in this paper: we present usage
statistics from arbitrary people playing our game online
(this same approach was used by the ESP Game [1]).

Figure 7. Object bounding-boxes obtained from Peekaboom data.

Usage Statistics
Peekaboom was released to a general audience on August 1
of 2005. We present the usage statistics from the period
starting August 1, 2005 and ending September 1, 2005. A
total of 14,153 different people played the game during this
time, generating 1,122,998 pieces of data. By “different
people” we mean different user IDs. By a “piece of data,”
we mean a successful round of Peekaboom in which Peek
correctly guessed the word given Boom’s revealed region.
We mention that an image-word pair can have multiple
pieces of data associated to it if it occurs in multiple games.

If 14,153 people gave us 1,122,998 pieces of data, then on
average each person played on 158.68 images. Since each
session of the game lasts 4 minutes and on average players
go through 8.7 images during a session, in this one month
period each person played on average 72.96 minutes
(without counting time spent waiting for a partner, etc.).

Over 90% of the people played on more than one occasion
(that is, more than 90% of the people played on different
dates). Furthermore, every player in the top scores list
played over 800 games (that’s over 53 hours without
including the time they spent waiting for a partner!). This
undoubtedly attests to how enjoyable the game is.

User Comments
To give a further sense for how much the players enjoyed
the game, we include below some quotes taken from
comments submitted by players using a link on the website:

“The game itself is extremely addictive, as there is an
element of pressure involved in beating the clock, a
drive to score more points, the feeling that you could
always do better next time, and a curiosity about
what is going to come up next. I would say that it
gives the same gut feeling as combining gambling
with charades while riding on a roller coaster. The
good points are that you increase and stimulate your
intelligence, you don't lose all your money and you
don't fall off the ride. The bad point is that you look
at your watch and eight hours have just disappeared!”

“One unfortunate side effect of playing so much in
such a short time was a mild case of carpal tunnel
syndrome in my right hand and forearm, but that
dissipated quickly.”

“This game is like crack. I’ve been Peekaboom-free
for 32 hours. Unlike other games, Peekaboom is
cooperative (rather than competitive).”

EVALUATION: ACCURACY OF COLLECTED DATA
The usefulness of Peekaboom as a data-collection method
rests in the quality of the data we collect. Although the
design of the game inherently ensures correctness of the
data, we wanted to test whether it is as good as what would
be collected directly from volunteers in a non-game setting.
To do so we conducted two experiments to test first the
accuracy of the bounding boxes we defined, and second the
utility of the pointing behavior in the game.

Notice that these experiments are meant to analyze the
correctness of the data, and not whether such data can be
used to train computer vision algorithms. The usefulness of
data about location of objects for training computer vision
algorithms has been previously established [13].

Experiment 1: Accuracy of Bounding Boxes
In the first experiment, we tested whether the bounding
boxes for objects within an image that are calculated from
Peekaboom are as good as bounding boxes people would
make around an object in a non-game setting. We selected
at random 50 image-word pairs from the data pool that had
been successfully played on by at least two independent
pairs of people. The images selected all had nouns as their
word (as opposed to text in the image, or an adjective, etc.;
see Figure 3). All the images chosen had the word refer to a
single object in the image. For each image, Peekaboom
data was used to calculate object bounding boxes using the
method explained in previous sections.

We then had four volunteers make bounding boxes around
the objects for each image, providing us with 200 bounding
boxes drawn by volunteers. The volunteers were asked, for
each image, to draw a bounding box around the object that
the word referred to. We then selected at random one of the
four volunteer’s bounding boxes for each image, so as to
end up with one volunteer-generated bounding box for
every one of the 50 images.

Finally, we tested the amount of overlap between the
bounding boxes generated by Peekaboom and those
generated by our volunteers. The amount of overlap was
determined using the formula:

OVERLAP(A,B) = AREA(A∩B) / AREA(A∪B),

where A and B are the bounding boxes. Notice that if A=B
then OVERLAP(A,B)=1 and if A is disjoint from B then
OVERLAP(A,B)=0. We calculated the average overlap
across the 50 images, as well as the standard deviation.

Results
On average, the overlap between the Peekaboom bounding
boxes and the volunteer-generated ones was 0.754, with
standard deviation 0.109. This means that the Peekaboom
bounding boxes were very close to those generated by the
volunteers. To illustrate, we show in Figure 9 the bounding
box that obtained the lowest overlap score (0.552).

Figure 9. Experiment image with lowest overlap

between a volunteer generated bounding-box (solid
lines) and one generated by Peekaboom (dashed lines).

Given that Peekaboom was not directly built to calculate
bounding boxes, this shows the wide applicability of the
data collected.

Experiment 2: Accuracy of Pings
In the second experiment, we tested whether the object
pointers that are calculated from Peekaboom are indeed
inside the objects. As in the previous experiment, we
selected at random 50 image-label pairs from the data pool
that have been successfully played on by at least two
independent pairs of people. The images selected all had
the word as a “noun” (as opposed to as text in the image, or
an adjective, etc.; see Figure 3). All the images chosen had
the word refer to a single object in the image. For each
image, Peekaboom data was used to calculate object
pointers using the method explained in previous sections.

We then asked three volunteer raters to determine, for each
pointer, whether it was inside the object or not. The raters
were shown examples of pointers inside and outside the
object and were told that “near an object” does not count as
inside the object.

Results
According to all the raters, 100% of the pointers were
inside the object referred to by the word. This gives
positive evidence that ping data is accurate, especially since
it was calculated using such a simplistic algorithm.

GENERALIZING OUR APPROACH
The approach presented in this paper, solving a problem by
having people play games online, can be generalized to
many other problems in Artificial Intelligence. In follow-up
work, for example, we have created two other games,
Verbosity [3] and Phetch [2], in which players solve
problems that computers cannot yet solve. Verbosity
collects common-sense facts to train reasoning algorithms.
For instance, for the word “milk,” the game outputs facts
such as “it is white,” “people usually eat cereal with it,” etc.
Verbosity is a two-player game in which one player
attempts to make the other say a target word (e.g., “milk”)
without using the word. They do so by saying many facts
without using the word itself in their statements (e.g. “it is a
white liquid.”). The underlying game mechanism of
Verbosity is similar in nature to that of Peekaboom.

Much like designing an algorithm to solve a problem,
designing a game to harness valuable human cycles is to a
large extent an “art”: problems usually require a
specifically tailored game. In addition to an original idea,
creating such a game also depends on a broader set of
criteria including looks (the fluidity of the game graphics),
ease of use (an intuitive user interface), cognitive load (the
amount of user attention required to play the game), and
action (the extent to which the game absorbs the user in the
experience). All of these aspects have been treated in this
paper and we believe many of the techniques here
presented generalize to creating other games with a
purpose. Finally, we believe that these design principles,
like the scientific method, don’t just provide ideas, but a

way of thinking: games provide a valuable vehicle to solve
problems that computers cannot yet solve.

ETHICAL CONSIDERATIONS
As with all systems soliciting input from humans, we must
address the ethical issues behind the usage of the collected
data. Towards this end, we inform the players of the
game’s purpose on the Peekaboom website — players
participate willingly and knowingly. Indeed, many people
play because they like the fact that the game has a purpose.

Furthermore, we state on the record that the game’s
purpose is to obtain accurate segmentations of objects from
backgrounds and to train computer vision algorithms to
recognize simple objects. We have no intention of applying
our data towards, for example, military surveillance.

RELATED WORK
We have presented a method for annotating arbitrary
images and we have presented evidence that it produces
high-quality data. We now survey the related work.

The ESP Game
As mentioned before, the ESP Game [1] is two-player
game that collects word labels for arbitrary images.
Peekaboom is similar to the ESP Game and in fact was
inspired by it. We consider Peekaboom an extension of
ESP. Whereas ESP gives data to determine which objects
are in the image, Peekaboom can augment this data with
information about where in the image objects are located.

In terms of game mechanics, Peekaboom is different from
the ESP Game in several ways. First, Peekaboom is
asymmetric: whereas both players in the ESP Game are
performing the same role, players of Peekaboom alternate
in performing different roles. Second, Peekaboom allows a
significantly higher level of interaction among the players.
Whereas in the ESP Game, players cannot communicate at
all, in Peekaboom one of the players can freely
communicate with the other. Third, the usage of hint
buttons has proven very successful in Peekaboom, and such
buttons could as well be incorporated into ESP.

Such differences in game mechanics reflect the difference
in purpose of Peekaboom and ESP.

The Open Mind Initiative
Perhaps less so, Peekaboom is also similar (at least in
spirit) to the Open Mind Initiative (e.g., [11,12]), a
worldwide effort to develop “intelligent” software. Open
Mind collects data from regular Internet users (referred to
as “netizens”) and feeds it to machine learning algorithms.
Volunteers participate by answering questions and teaching
concepts to computer programs. Peekaboom is similar to
Open Mind in that we use regular people on the Internet to
annotate images. However, as with the ESP Game, we put
much greater emphasis on our method being fun.

We don’t expect volunteers to annotate millions of images
on the Web: we expect images to be annotated because
people want to play our game. Whereas a typical Open
Mind activity would ask participants to point to the object

in question, we transform the activity into a two-player
game in which players are not even asked to point to the
object; they do so only as a side effect of playing the game.

LabelMe
LabelMe [9] is a web-based tool for image annotation.
Anybody can annotate data using this tool and thus
contribute to constructing a large database of annotated
objects. The incentive to annotate data is the data itself.
You can only have access to the database once you have
annotated a certain number of images. The main difference
between Peekaboom and LabelMe is the game aspect.
Whereas LabelMe simply asks users to annotate an image,
Peekaboom transforms the process into an enjoyable game.
LabelMe relies on people’s desire to help and thus assumes
that the entered data is correct. On the other hand,
Peekaboom has multiple mechanisms to prevent players
from polluting the data.

Interactive Machine Learning
Another area of related work is that of interactively training
machine learning algorithms (e.g., [6]). In these systems, a
user is given immediate feedback about how well an
algorithm is learning from the examples provided by them.
As with LabelMe, Peekaboom differs from these systems in
the gaming aspect as well as in the assumption that our
users are interested in training an algorithm.

CONCLUSIONS AND FUTURE WORK
Peekaboom is a novel, complete game architecture for
collecting image metadata. Segmenting objects in images
is a unique challenge, and we have tailored a game
specifically to this end. In the very near future, we would
like to make our 1,000,000+ pieces of data available to the
world by formatting it as an image segmentation library.

Like the ESP Game, Peekaboom encompasses much more
than just a Java applet delivered from a website. Rather,
the ideas behind the design and implementation of the
game generalize to a way of harnessing and directing the
power of the most intricate computing device in the world
— the human mind.

Some day computers will be able to segment objects in
images unassisted, but that day is not today. Today we
have engines like Peekaboom that use the wisdom of
humans to help naïve computers get to that point. The
actual process of making computers smarter given
segmentation metadata is beyond the scope of this paper,
since it would require a far more sophisticated
interpretation of the data than the simple bounding box
derivation we have presented. Thus, we see great potential
in future work at the crossroads of human-computer
interaction and artificial intelligence, where the output of
our interactive system helps advance the state of the art in
computer vision.

ACKNOWLEDGEMENTS
We thank Aditya Akella, Laura Dabbish, Takeo Kanade,
Ryan Staake, Manuela Veloso, and the anonymous CHI
2006 reviewers. This work was partially supported by the

National Science Foundation (NSF) grants CCR-0122581
and CCR-0085982 (ALADDIN), and by a generous gift
from Google, Inc. Luis von Ahn was partially supported by
a Microsoft Research Graduate Fellowship.

REFERENCES
1. von Ahn, L., and Dabbish, L. Labeling Images with a

Computer Game. In ACM Conference on Human
Factors in Computing Systems (CHI), 2004, pages 319-
326.

2. von Ahn, L., Ginosar, S., Kedia, M., Ruoran, L. and
Blum, M. Improving Accessibility of the Web with a
Computer Game. To appear in ACM Conference on
Human Factors in Computing Systems (CHI Notes),
2006.

3. von Ahn, L., Kedia, M. and Blum, M. Verbosity: A
Game for Collecting Common-Sense Facts. To appear
in ACM Conference on Human Factors in Computing
Systems (CHI Notes), 2006.

4. Barnard, K., and Forsyth, D. A. Learning the Semantics
of Words and Pictures. International Conference of
Computer Vision, 2001, pages 408-415.

5. Duygulu, P., Barnard, K., de Freitas, N., and Forsyth, D.
A. Object recognition as machine translation: Learning
a lexicon for a fixed image vocabulary. European
Conference on Computer Vision, 2002, pages 97-112.

6. Fails, J. A., and Olsen, D. R. A Design Tool for
Camera-Based Interaction. In ACM Conference on
Human Factors in Computing Systems (CHI), 2003,
pages 449-456.

7. Fleck, M. M., Forsyth, D. A., and Bregler, C. Finding
Naked People. European Conference on Computer
Vision, 1996, pages 593-602.

8. Flickr Photo Sharing Service. http://www.flickr.com.
9. Russell, B.C., Torralba, A. Murphy, K.P. and Freeman,

W.T. LabelMe: a database and web-based tool for
image annotation. MIT AI Lab Memo AIM-2005-025,
September, 2005.

10. Scheniderman, H. and Kanade, T. Object Detection
Using the Statistics of Parts. International Journal of
Computer Vision, 2002.

11. Stork, D. G. and Lam C. P. Open Mind Animals:
Ensuring the quality of data openly contributed over the
World Wide Web. AAAI Workshop on Learning with
Imbalanced Data Sets, 2000, pages 4-9.

12. Stork, D. G. The Open Mind Initiative. IEEE Intelligent
Systems and Their Applications, 14-3, 1999, pp. 19-20.

13. Torralba, A., Murphy, K. P. and Freeman, W. T. The
MIT CSAIL Database of objects and scenes.
http://web.mit.edu/torralba/www/database.html

14. Torralba, A. An example of the importance of context
in vision. http://web.mit.edu/torralba

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

