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Abstract

We propose and study a novel data-structuring paradigm, called active data structures. Like
a time machine, active data structures allow changes to occur not only in the present but
at any point in time—including the past. Unlike most time machines, where changes to the
past are incorporated and propagated automatically by magic, active data structures system-
atically communicate with the affected parties, prompting them to take appropriate actions.
We demonstrate an efficient maintenance of three active data structures: (monotone) priority
queue, dictionary, and compare-and-swap.

These data structures, when paired with the self-adjusting computation framework, create
new possibilities in kinetic and dynamic algorithms engineering. Based on this interaction, we
present three practical algorithms: a new algorithm for 3-d kinetic/dynamic convex hull, an
algorithm for dynamic list-sorting, and an algorithm for dynamic single-source shortest-path
(based on Dijkstra). Our 3-d kinetic convex hull is the first efficient kinetic 3-d convex hull
algorithm that supports dynamic changes simultaneously.

This thesis provides an implementation for selected active data structures and applications,
whose performance is analyzed both theoretically and experimentally.

1 Introduction

Motion is truly ubiquitous in the physical world. Perhaps, equally ubiquitous are contexts in
which critical need arises for computation to support motion effectively. The class of computation
capable of handling motion is often called kinetic algorithms (data structures). In the simplest form,
kinetic algorithms maintain a combinatorial structure as its defining objects undergo a prescribed
motion. Over the past decades the algorithmic study on the subject has made significant theoretical
advances for many problems, yet leaving many important basic problems open [Gui04]. However,
only a small number of these algorithms are successfully implemented and used, mostly because
the algorithms are highly intricate.

This thesis was initially motivated by an open problem in computational geometry—kinetic 3-d
convex hull—that we later made some progress on. By now, it is hard to overstate the importance
of maintaining the convex hull of a set of points. However, while much is known for d = 2 [BGH97,
Gui04], the problem of maintaining the kinetic convex hull for dimension d ≥ 3 has remained open.
For d = 3, the best known algorithm re-computes the convex hull entirely as need arises. Our
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approach to solving the kinetic 3-d convex hull problem has centered on devising a general-purpose
technique for handling motion and other types of changes. We attempted to extend the self-
adjusting computation framework [Aca05, ABB+05, ABBT06] to support motion (i.e. continuous
changes). This study poses two fundamental questions which we answer affirmatively in this thesis:

1. Is there a natural class of data structures that are closely related to the behaviors of incre-
mental computation (or more generally, dynamic/kinetic algorithms) of which the design and
analysis of dynamic/kinetic algorithms can take advantage?

2. If these data structures exist, can they be integrated to self-adjusting computation to alleviate
the task of dynamic/kinetic algorithms engineering in a natural way?

We propose and study a novel data-structuring paradigm, called active data structures. Like a
time machine, active data structures allow changes to occur not only in the present but at any point
in time—including the past. Unlike most time machines, where changes to the past are incorporated
and propagated automatically by magic, active data structures systematically communicate with
the affected, prompting them to take appropriate actions. We demonstrate an efficient maintenance
of three active data structures: (monotone) priority queue, dictionary, and compare-and-swap.

Given a time machine and an ordinary algorithm, it is not hard to simulate a dynamic/kinetic
algorithm. An ordinary algorithm refers to long-familiar algorithms that cannot account for changes
that take place on the fly. As an example, consider constructing a dynamic shortest-path algorithm.
First, start the time machine. Then, run Dijkstra to the given graph G. This computes the shortest-
path for the graph G. To update the graph G, tell the time machine to revert to the beginning of
time, update the graph, and tell the time machine to return to the present. The resulting shortest-
path now corresponds to the new graph, as desired. Even though no time machine are publicly
accessible, self-adjusting computation somewhat mimics that behavior.

Active data structures can naturally interact with self-adjusting computation. This thesis pro-
vides an implementation for selected active data structures and applications. We show that active
data structures can help simplify and improve many dynamic algorithms. Section 4 illustrates a
simple use of active data structures to the dynamic list-sorting problem.

In Section 5, we describe a new practical algorithm for maintaining the kinetic 3-d convex hull
based on active data structures. This algorithm greatly improves on the naive method. We verify
the effective of our approach both theoretically and empirically. We describe an algorithm for
dynamic shortest-path in Section 6. We conclude this paper by discussing about work in progress
and pointing out some directions for future work.

2 History and Background

The ability to efficiently maintain the output of a computation as the input undergoes changes
has been proven crucial in a countless number of real-world applications. Dynamic changes are
discrete changes involving insertions and deletions of objects in the input. Algorithms that handle
dynamic changes are called dynamic algorithms. Over the past decades, the algorithms community
has extensively studied this class of algorithms and made significant theoretical advances. De-
spite tremendous efforts, many of these algorithms are never successfully implemented, as they are
complicated, making the task of implementing and debugging them highly strenuous.
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Over the same period of time, the programming languages community has put efforts into de-
veloping tools to cope with and combat the implementation challenges of dynamic algorithms. A
major line of research has focused on devising techniques for transforming static programs to their
dynamic counterparts. Many of these techniques build on the idea of incremental computation.
Early work on incremental computation [DRT81, PT89, ABH02, Car02] has shown that the tech-
nique can deliver competitive performance to handcraft algorithms and are applicable to a broad
range of problems.

2.1 Self-Adjusting Computation

Self-adjusting computation is an attempt to bring together techniques in the algorithms commu-
nity and the programming languages community. The approach provides a technique for semi-
automatically transforming static programs to programs that can adjust to changes to their inputs
(and internal states). The transformation in the self-adjusting computation framework does not
generate a dynamic-algorithm description for the given static algorithm. Instead, think of self-
adjusting computation as a special machine that learns about actions that a program (an algorithm)
performs and is capable of intelligently re-executing parts of the program as changes occur. We
term the process of smart re-execution “change-propagation”. A smart re-execution, as opposed
a blind re-execution, selectively re-executes parts of computations as needed and reuses results
of computations whenever permissible. Theoretical evidence suggests that smart re-execution is
highly effective for many classes of problems.

Self-adjusting computation relies on two key ideas: dynamic dependence graph (or DDG) and
memoization [Aca05, ABH02]. During the execution of a self-adjusting program, the run-time
system builds a DDG, which records the relationship between computation and data. After a self-
adjusting program completes its execution, the user can change any computation data (e.g., the
inputs) and update the output by performing a change propagation. This change-and-propagate
step can be repeated. The change-propagation algorithm updates the computation by mimicking
a from-scratch execution.

We state some definitions and certain properties of self-adjusting programs. A detailed treat-
ment of the subject can be found in [Aca05, ABB+05, ABBT06, ABH+04].

Definition 1 Let I the set of possible start states (inputs). A class of input changes is a relation
∆ ⊆ I × I. The modification from I to I ′ is said to conform the class of input change ∆ if and
only if (I, I ′) ∈ ∆. For output-sensitive algorithms, ∆ can be parameterized according to the output
change.

Definition 2 A trace model consists of a set of possible traces T . For a set of algorithms A,
a trace generator is the function T : A × I → T , and a trace distance is the function δtr (·, ·) :
T × T → Z

+.

Let Eφ[X] denote the expectation of the random variable X with respect to the probability-
density function φ, we define expected-case stability as follows.

Definition 3 (Expected-Case Stability) For a trace model, let P be a randomized program,
let ∆n a class of input changes parametrized n, possibly the size of the input, and let φ(·) be a
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probability-density function on bit strings {0, 1}∗. For all n ∈ N, define

d(n) = max
(I,I′)∈∆n

Eφ[δtr

(

tr(P, I), tr(P, I ′)
)

].

We say that P is expected S-stable for ∆ and φ if d(·) ∈ S.

Note that expected O(f(·)) stable, Ω(f(·)) stable, and Θ(f(·)) are all valid uses of the stability
notation. Worst-case stability is defined by dropping the expectation from the definition.

We define monotonicity of a program as in Acar et al. [ABH+04] and state the following theo-
rems, which are useful in the sequel.

Theorem 4 (Stability Theorem [ABH+04]) If an algorithm is O(f(n))-stable for a class of
input changes ∆, then each operation will take at most O(f(n) log n).

However, if the discrepancy set has a bounded size, then each operation can be performed in
O(f(n)).

Theorem 5 (Triangle Inequality for Change Propagation) Let P be a monotone program
with respect to the class of changes ∆1 and ∆2. Suppose that P is O(f(n)) and O(g(n)) stable
for ∆1 and ∆2, respectively, for some measure n. P is also monotone with respect to the class of
changes (∆1 ◦ ∆2) obtained by composing ∆1 and ∆2, then P is O(f(n)+g(n)) stable for ∆1 o ∆2.

A proof of this theorem is supplied in the appendix.

3 Active Data Structures

We introduce a new data structuring paradigm, called active data structures. Akin to the retroactive
data structures [DIL04], active data structures allow the data-structure operations to take place
not only in the present but also in the past. When an operation is performed, an active data
structure, in addition to fixing the internal states, identifies which other operations take on new
resulting values and notifies them to adjust to the changes. This capability has an important
software-engineering benefit: composibility.

Consider a database for bank accounts at a financial company. Suppose that, at 12pm, we dis-
cover that an important transaction performed earlier at 9am was erroneous, and we need to correct
it. Most traditional systems would need to rollback the transactions to 9am, where we then correct
the record and recommit subsequent transactions. Using a retroactive data structure [DIL04], one
would, in one-step, magically tell the data structure to correct the operation performed at 9am and
rejoice. However, it is often inadequate to make corrections only internally to the data structure.
In this example, suppose further that a banker performed a query at 10am, whose result is used in
an investment plan recorded to the database at 11am. It is critical to notify the person performing
the query at 10am to consider the new value and update the plan.

Comparison to Persistent Data Structures. While persistent data structures and active
data structures both consider the notion of time, they are inherently different—both in terms of
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Figure 1: The ability to change the past can be important. Many real-world applications also
require composibility.

their functionalities and the underlying ideas. A persistent data structure is characterized by the
ability to access any past versions of the data structure. In terms of changes, the simplest form of
persistency, called partial persistency, allows changes only in the present and queries for any past
versions. A fully persistent data structure, although allowing changes to occur in the past, does not
propagate the effects of the changes to the present. Instead, it creates a new branch in the version
tree, as illustrated in Figure 2.

Time/Versions

An action in the past causes 

the version tree to branches off 

Figure 2: Changes to the past in a fully persistent data structure.

Comparison to Retroactive Data Structures. Even though retroactive data structures
and active data structures appear highly related as they both allow changes to occur in the present
and in the past, they significantly differ. In a retroactive data structure, operations performed on
the data structure are reflected only internally. An outside party who retrieves some data from
the data structure has no way of knowing that the data is outdated. This is illustrated by the
bank-database example mentioned earlier. In an active data structure, the affected parties will be
communicated.

The Notion of Time and Maintaining a Virtual Time Line. In order for the notion
of time to make sense, we assume a time line is somehow maintained so that each action can be
timestamped with a unique time. In practice, a virtual time line can be maintained efficiently using
an order-maintenance data structure [DS87, BCD+02]. These order-maintenance data structures
can simulate a virtual time line in amortized O(1). In what follows, we assume a time line is the
set of non-negative reals (R+ ∪ {0}), and each time-stamp is a unique real number t ∈ R

+ ∪ {0}.
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3.1 Defining Active Data Structures

We introduce vocabularies for discussing about active data structures. For comparison, consider
a usual data structure D with operations operation1, operation2, operation3, . . . , operationk. In
a usual data structure, all operations are performed at the present time, altering the state of the
data structure and destroying the previous version. An active data structure enables performing
(or undoing) the operations at any time. We define 3 meta-operations that characterize active data
structures as follows:

• The meta-operation perform(“operationi(·)”, t) will perform the operation operationi at the
time t. If operationi(·) returns a value ri, then the meta-operation returns the value ri.

• The meta-operation undo(t) causes an undo of the operation at the time t.

• The meta-operation update(t) informs the data structure to “synchronize” up to time t. This
operation will become more clear once it appears in context.

In addition, we assume the existence of a discrepancy set; this is maintained either by the data
structure itself or as a part of another framework (cf. self-adjusting computation). The discrepancy
set is a list of entities (e.g., a data structure operation, human interaction) that need to take some
actions, because the information the entity receives has changed since the last communication.
In the banking example, an entity could be Bob, who needs to know that the information he
obtained is now outdated. The idea of the discrepancy set is that, as soon as an entity is identify as
discrepant, it is inserted to the set. The entries of the discrepancy set are removed and processed
in an increasing order of time until the set becomes empty, at which point the data structure is
fully synchronized with the current reality. In practice, the discrepancy set can be maintained in a
priority queue.

3.2 Active Compare-and-Swap

We begin our discussion of active data structures by introducing a basic data structure, called
compare-and-swap. Despite its fancy name, a compare-and-swap data structure is a plain-old data
structure commonly found in algorithms. Without the notion of time, the data structure has only
one operation, touch, and maintains a boolean variable b, whose value is initially false. If the
data structure is touched, the variable b changes to true and remains true for the rest of the time.
The touch operation returns the current status of b and subsequently updates the value of b.

This simple data structure appears extensively as a tiny component of bigger data structures
and algorithms. It is, for example, a part of the bit vector in many implementations of depth-first
search, indicating whether or not a node has been visited. The name compare-and-swap emerges
from the actions it performs. In many applications, once b is set to true no more operation will be
performed on the corresponding object.

Similar to a regular compare-and-swap, an active compare-and-swap has only one operation,
touch, which can be both performed and undone at an arbitrary time. We formally describe an
active compare-and-swap as follows. This description outlines the general characteristics of the data
structure; an efficient compare-and-swap will be discussed later. Let S be the set of times at which
the data structure is touched. Initially S is an empty set. For the purpose of this presentation,
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think of S as a global variable, which is updated as operations are performed on the data structure.
Like any active data structures, an active compare-and-swap supports the following:

• Support for the meta-operation perform. The operation perform(“touch”, t)—performing
a touch at time t—maintains the following invariants. The return value of the operation is
false if and only if t < min S, with min ∅ = +∞. After the operation, the set S is augmented
to contain t. That is, S := S ∪ {t}.

• Support for the meta-operation undo. The operation undo(t)—undoes a touch at time
t—updates the set S as S := S \ {t}.

• Support for the meta-operation update. The operation checks if the return value of the
touch operation at that time has changed. If the value is changed, it tells the discrepancy
set that the person who retrieves this information is discrepant.

We point out that both of these operations may alter the return values of some other touch

operations. An active compare-and-swap data structure has to be able to identify these operations
and re-synchronize accordingly.

Efficient Compare-and-Swap. In the remaining of this section, we describe an efficient
maintenance of an active compare-and-swap data structure. For ease, we maintain the set S in a
balanced search tree (e.g. red-black tree). Maintaining S as a combination of a priority queue and a
hash table is an equally viable option and will yield the same asymptotic bounds. The needed basic
set operations, including finding the minimum, can be trivially performed on a balanced binary
search tree in O(log |S|).

As mentioned earlier, an operation can affect the return values of other operations. We observe
that, in this particular data structure, an operation can affect at most 1 other operation. Performing
a touch at the time t will cause a side-effect if and only if t < min S, in which case the return value
of the old minimum is altered. An undo of the operation at time t causes a side-effect if only if t is
the current minimum of S, in which case the return value of the second minimum of S is changed.
We note that the number of active touch’s T is same as |S| throughout, and establish the following
theorem.

Theorem 6 An active compare-and-swap can be maintained in O(log T ) for all operations, where
T is the number of active touch’s. We say that a touch operation is active if it has been performed
and has not been undone.

3.3 Active Monotone Priority Queue

We consider the problem of maintaining an active monotone priority queue. The monotone assump-
tion greatly simplifies the problem but suffices for many applications; at the end of this section, we
discuss problems with generalizing this to an unrestricted priority queue. Without loss of generality,
we assume that the keys (a.k.a. priorities) are positive real numbers (R+) Informally, a monotone
priority queue disallows inserting a key smaller than latest minimum removed by the deletemin
operation. We precisely formulate the problem and formally state this assumption below.
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Let DM be the set of times at which a deletemin occurs. Let INS be the set of ordered pairs of
the form (k, t). Each entry (k, t) ∈ INS denotes the insertion point of the key k at the time t. We
assume for simplicity that no duplicate keys are inserted.

Definition 7 Let PQ(t) be the set containing all keys inserted on or before the time t that have not
been removed by the deletemin operation. The set PQ(t) is a hypothetical snapshot of the priority
queue at time t. Initially PQ(0) = ∅.

Definition 8 (Monotone Assumption) Let f(t) := minPQ(t). A priority queue is said to be
monotone if for all t1, t2 ∈ DM with t1 < t2, f(t1) < f(t2).

Our priority queue supports two operations: insert and deletemin. The problem of maintaining
active priority queue has the following characteristics:

• Support for the meta-operation perform. The operation perform(“insert(k)”, t)—performing
an insertion of the key k at time t—causes the following changes: INS := INS∪ {(k, t)}. This
operation returns nothing.

The operation perform(“deleteMin”, t) calculates the return value as min PQ(t) and alters
DM to DM∪ {t}. We note that this description does not describe how to efficiently maintain
such a structure.

• Support for the meta-operation undo. The operation undo(t) for an insert operation
simply removes the corresponding (∗, t) from INS. Similarly, the operation undo(t) for an
deleteMin operation removes t from DM.

* * * * * * * *

Efficient Monotone Priority Queue. We give a solution to the problem of efficiently main-
taining an active monotone priority queue. Our data structure maintains 2 balanced binary search
trees (e.g. red-black, AVL tree): TDM and TINS, corresponding to the sets DM and INS, respectively.
The tree TDM is naturally ordered by time. The other tree TINS is indexed by first the key then
the the time. That is, (k1, t1) < (k2, t2) if and only if (k1 < k2) or ((k1 = k2) ∧ (t1 < t2)). Each
deletemin—a node of TDM—is linked with a node of TINS whose key is the result of that deletemin.
Each node of TINS is vice versa linked with its corresponding deletemin when applicable.

As an active data structure, our active priority queue is responsible for identifying the operations
whose return values are affected, in addition to maintaining the invariants stated earlier. The
problem of identifying the affected operations are discussed later. We will now focus on the problem
of the maintaining the aforementioned invariants:

• The operation perform(“insert(k)”, t) results in an insertion of the key (k, t) to the tree TINS.
The undo operation for an insert is handled vice versa by removing the key (k, t) from the
tree.

• The operation perform(“deletemin”, t) adds an entry t to the tree TDM, and its undo operation
removes t from TDM. The return value of perform(“deletemin”, t) is derived as follows.
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Compute t− := max{t′ ∈ DM : t′ < t}, with max ∅ = −∞. If t− = −∞, report the minimum
key in TINS. Otherwise, query TDM for the corresponding value the delete; call this value
k−. Make another query to TINS for k∗ := min{k′ ∈ Keys(INS) : k′ > k−}, where Keys(INS)
contains all the keys existed in INS. Report k∗. It is trivial to fix the cross-links between the
two trees.

* * * * * * * *

A Ray-shooting Game and Discrepancy Detection. We introduce a “ray-shooting” game,
which illustrates the processing of finding the affected operations. Every sequence of operations
in a retroactive data structure can be visually represented as follows. Consider a two-dimensional
diagram, whose horizontal axis represents time and vertical axis represents the keys of the elements
of interest. Recall that each key is a positive real number. An example of such diagram is shown in
Figure 3 (left). Each horizontal line represents the lifespan of its corresponding key. It originates
where the key is inserted and extends to the right either indefinitely if it is never removed by
a deletemin or until it vanishes at the time when removed by a deletemin. Each vertical line
represents a deletemin operation. It always originates from the horizontal axis and extends upward
up to the height of the key that the deletemin operation returns.
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Figure 3: Visualizing an Active Priority Queue using Ray-shooting

The task of identifying the affected operations can thought of as two cases of ray shooting:
rightward and upward. Inserting a key k at time t is equivalent to ray-shooting rightward from
the point (t, k), as depicted in the point A in Figure 3 (right). We say that a line segment is
occupied if it meets with another line segment of a different orientation. Removing a key will
“free” a vertical segment; such a segment is affected. A new return value for that deletemin can
be calculated by performing an upward ray-shooting as depicted at point B in Figure 3 (right).
The two other operations can be handled similarly. With the monotonicity assumption, these ray-
shooting operations can be efficiently performed on the two trees in O(log T ), where T is the total
number of active operations on the data structure. As before, an operation is active if it has been
performed but not undone.

Theorem 9 An active monotone priority queue can be maintained in an amortized O(log T ) for

9



all operations, where T is the number of active operations.

We point out that an active full priority queue is much more involved, as it demands a point-
location data structure. In particular, the trick that allows us to compute the current minimum
will not generalize, because it relies on the monotonicity assumption. We conclude the discussion
of active priority queues by listing a number of applications that admit the monotone assumption.
In Dijkstra, the distance of the nodes as maintained in a priority is monotone. The same is true
for Prim’s algorithm for computing a minimum spanning tree. A monotone priority queue can also
be used to ensure that certain operations are performed in order. Two real-world applications that
illustrate such use are discussed in a subsequent section.

3.4 Active Dictionary

A dictionary data structure supports three basic operations: insert(key, data), lookup(key), and
delete(key). Let U be the universe of keys the dictionary supports. We assume that either U is
totally ordered or there exists a universal hash function h : U → [m] for m ∈ N. This assumption
is realistic and allows an easy maintenance of an active dictionary.

Like other active data structures we discuss, an active dictionary has the same three operations—
insert, lookup, and delete—wrapped in the meta-operations perform, undo, and update. In order to
support these operations, an active dictionary maintains the following structures internally. Each
key k ∈ U is associated with three sets: INS(k), DEL(k), QUERY(k). First, the set INS(k) keeps
track of all insert operations performed on the key k. Entries of this set take the form (t, d), where
t denotes the time and d is the data associated with that insertion. Second, the set DEL(k) contains
the times at which delete operations are performed on the key k. Finally, the set QUERY(k) records
the times at which queries to the key k take place. These sets can be trivially maintained for the
required data structure operations.

Efficient Active Dictionary. The problem of maintaining an active dictionary can be reduced
to a simpler problem in the following manner. When an operation about a key k is received, the data
structure refers to the three sets—INS(k), DEL(k), and QUERY(k)—on which actions are performed.
We note that it suffices to consider only these three sets to support any operations regarding the
key k. Because of our assumption about the universe of keys, locating the corresponding three sets
can be easily accomplished by a hash table or a (balanced) binary search tree.

We now turn our focus to maintaining the three sets for each key and how they can be used
to support all dictionary operations. Therefore, when the context is clear, we drop the mention of
key. Consider Figure 4. The sets INS and DEL combine to a set of intervals in which the key is
present in the dictionary. Formally, let

d>(t) := {t′ ∈ DEL : t′ > t}

and
IV := {(α, inf d>(α)) : α ∈ TIME(INS)} ,

where (α, β) denotes the open-interval from α to β (exclusive), and inf(·) is the infimum. We note
that at most one interval is unbounded, corresponding to an insertion which is never deleted. A
lookup at time t finds the key (and its corresponding data) if and only t lies in one of the intervals
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Figure 4: The sets INS and DEL combine to a set of intervals in which the key is present in the
dictionary.

of IV. If a lookup at time t satisfies t ∈ (α, β) for (α, β) ∈ IV, then the lookup operation finds the
key, where the data is the data of the insertion at time α.

Let Tk be the number of operations on which the key k. The sets INS, DEL, and QUERY can
be trivially represented with balanced binary search trees, where needed operations take at most
O(log Tk) time.

Theorem 10 For a fixed key k, an active dictionary can be maintained in an amortized O(log Tk)
for all operations, where Tk is the number of active operations on the key k. Let n the total number
of keys. Assume that a balanced binary search tree is used to locate the right triple of sets; then,
every operation in the active dictionary runs in O(log n + log Tk).

4 Dynamic Heap Sort

We demonstrate how an active data structure can be used in conjunction with the self-adjusting li-
brary to implement a dynamic algorithm. We consider a simple problem of maintaining a sorted list:
Given a list L, the algorithm maintains sort(L) under possible changes to L—insertions/deletions
of elements. In the static scenario, this can be easily accomplished by a heap as in Algorithm 1.

Algorithm 1 Simple Heap Sort on a List L

1: PQ ← ∅
2: foreach x ∈ L do PQ ← PQ ∪ {x}
3: L′ ← nil

4: while PQ is not empty do
5: x ← deleteMin(PQ)
6: Append x to L′

7: end while

The Standard ML code in Figure 5 shows a dynamic (self-adjusting) heap sort, using an active
priority queue. The function feed inserts the list elements of L into the priority queue, and the
function reel assembles a sorted list based on the deleteMin operation.
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fun feed l =

l o→ (fn c ⇒
(case c of

ML.NIL ⇒ ()

| ML.CONS(h, t) ⇒ t o→ (fn ct ⇒ liftFeed ([Box.indexOf h],ct) (fn t ⇒
let val () = PQ.insert mpq h

in feed t

end))))

fun reel () =

(PQ.deleteMin mpq) o→ (fn vopt ⇒
case vopt of

NONE ⇒ ML.write ML.NIL

| SOME(h) ⇒ liftReel ([Box.indexOf h])(fn () ⇒
let val tail = C.modref(reel ())

in ML.write (ML.CONS(h, tail))

end))

Figure 5: Dynamic Heap Sort in Standard ML

5 Dynamic and Kinetic Convex Hull in 3-d

Figure 6: 3-d convex hull of a set of points

Informally, the convex hull of a set of points S, denoted CH(S), is the smallest polyhedron
enclosing these points. An example of the convex hull of a set of points is given in Figure 6.
Formal treatments of the material can be found in a standard computational geometry text [BY98,
dBSvKO00]. The problem of maintaining convex hulls has been studied extensively both in the
ordinary and the dynamic (incremental) settings [Gra72, OvL81, Ove83, Mul91c, dBSvKO00, BJ02,
Cha06]. We discuss some essential preliminaries here.

5.1 Preliminaries

Let O be the universe of points. For the purpose of this discussion, O is a finite subset of R
3. As

common in literature, a convex hull is defined by means of its boundary, which consists of faces.
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For simplicity, each face of a convex hull is an oriented triangle, consisting of three directed edges.
Faces and edges are presented as ordered tuples of points. This is illustrated in Figure 7.

CCW

A

B

C

Figure 7: An Oriented Face

Let the face in the figure be called f . We write edges(f) to refer to the set of edges of a face.
For example, the edge (A,B) represents an edge that goes from A to B, and the face (A,B,C)
represents a face where the points A,B and C are ordered counter-clockwise in that order. The
edges of the face (A,B,C) is the set edges(f) = {(A,B), (B,C), (C,A)}. We write flip(e) to
denote the edge that runs in the reverse direction of e, i.e. flip((A,B)) = (B,A).

We employ the simplicial complex representation for storing the convex hull. In the simplest
form, a convex hull is maintained in a dictionary DH . The dictionary supports three operations:
insert(key, data), lookup(key, and delete(key). We assume that no duplicate keys exist. The dictio-
nary maintains a mapping from edges to faces. By carefully choosing the orientation of the edges,
this mapping is sufficient for traversing the convex hull. Each face (p1, p2, p3) corresponds to three
directed edges (p1, p2), (p2, p3), (p3, p1). We note that even though (p1, p2, p3) is not a unique rep-
resentation of the corresponding face, the set of edges {(p1, p2), (p2, p3), (p3, p1)} provides a unique
representation of the face.

CCW

CCW

e

F

G

Figure 8: Adjacent faces F and G share an edge e.

We observe that if two adjacent faces F and G share an edge e, one direction of e belongs to
F , and the other belongs to G. This is illustrated in Figure 8. This observation implies that the
neighbors of a face f with directed edges −→e1 ,−→e2 ,−→e3 are the faces associated to flip(−→e1), flip(−→e2),
flip(−→e3).
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Facts about Randomized Computation in Computational Geometry. We introduce
more notations and definitions and reiterate a lemma of Clarkson and Shor for bounding the number
of objects at conflict with a particular region. Assume that each region is defined by at most b
objects for some b ∈ Z+. Let F i

j(S) denote the subset of regions of F(S) containing exactly the
regions that are defined by precisely i objects of S and are at conflict with precisely j objects of S.
We further define

F i
≤j(S) =

⋃

k≤j

F i
k(S) and Fj(S) =

⋃

k∈Z+

Fk
j (S)

A r-random sample of a finite set of objects S is an r-subset of S chosen at random (i.e. with
probability 1/

(

n
r

)

). We note that the model of equal chance mentioned earlier always yields an
|Si|-random sample at the i-th stage.

Let fj(r, S) be the expected size of E[|Fj(R)|], where the expectation is taken over r-random
samples of S.

Lemma 11 (Clarkson and Shor [CS89])

E[|F i
≤j(S)|] = O

(

jif0(bn/jc, S
)

Proof: We supply a proof due to Clarkson and Shor [CS89] for completeness. The proof uses the
random-sampling technique. Let R be an r-random sampling of S. First, we note that a region
v ∈ F i

j(S) is free of conflicts with objects in a set R ⊆ O if and only if all i objects defining v
belong to R while all j objects at conflict with v lie elsewhere. That is, Pr(v ∈ F0(R)) is given by:

Pr(v ∈ F0(R)) =

(

n−i−j
r−i

)

(

n
r

) =
(n− i− j)!r!(n − r)!

(n− r − j)!(r − i)!n!
≥

1

4

r · · · (r − i + 1)

n · · · (n− i + 1)

The expectation E[|F i
0(R)|] is computed as follows.

E[|F i
0(R)|] =

n−i
∑

j=0

∑

v∈F i
j (S)

Pr(v ∈ F0(R)) ≥

j
∑

k=0

∑

v∈F i
j (S)

Pr(v ∈ F0(R))

≥

( j
∑

k=0

∣

∣F i
k(S)

∣

∣

)

1

4

r · · · (r − i + 1)

n · · · (n− i + 1)
=

∣

∣F i
≤j

∣

∣

1

4

r · · · (r − i + 1)

n · · · (n − i + 1)

Therefore,
∣

∣

∣
F i
≤j

∣

∣

∣
= O(jif0(bn/jc, S)).

Facts about 3-d Convex Hulls. Few properties of convex hulls in the three-dimensional
space are worth mentioning. Using the notation presented earlier, we point out that, in the context
of 3D convex hulls, F0(R) is the set of faces of the convex hull of the set R. Thus, f0(r, S) is the
expected number of faces on a r-random sample of S. The following lemma is well-known; we state
it without a proof.

Lemma 12 Assume general position of points. For 3D convex hulls,

f0(r,O) = O(r).
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Since each face is defined by 3 points, it immediately follows from this lemma and Lemma 11
that the expected number of faces at conflict with at most j points is linear in the number of input
points.

* * * * * * * *

A Model of Equal Chance. We describe a randomized model for sequences of insertions
and deletions. The model is a variant of the models introduced and studied by Mulmuley [Mul91a,
Mul91c, Mul91b], Boissonnatet al. [BDS+92], and Schwarzkopf [Sch91].

In this model, an adversary chooses the universe O and a sequence δ ∈ {+,−}∗ of a finite
length. The entry δi denotes the action to take place at the i-th step: + for an insert, and −
for a delete. The algorithm starts with S0 = ∅ and goes through stages. There are two possible
transitions from Si to Si+1, depending on the value of δi:

• For an insertion, the algorithm picks a point p ∈ O\Si uniformly at random, resulting in
Si+1 = Si ∪ {p}.

• For a deletion, the algorithm picks a point p ∈ Si uniformly at random, resulting in Si+1 =
Si\{p}.

This description implies that Si is equally likely to be any one of the |Si|-subsets of O.

* * * * * * * *

Kinetic Setting. Instead of stationery points, the locations of points in the kinetic setting
change as a function time. The reader is referred to the survey papers of Guibas [Gui04] for a
comprehensive treatment of the subject. In a nutshell, the location of a point p is determined as
(xp(t), yp(t), zp(t)). The combinatorial structure of interest (convex hull, in this case) is maintained
as the time progresses.

5.2 An Algorithm for Maintaining 3-d Convex Hulls

This section outlines an algorithm for maintaining 3D convex hulls that we dynamize and kinetize.
The algorithm is a slight modification of the standard incremental convex hull. Our variant of
incremental convex hull uses the simplicial complex representation and maintains the conflict graph
somewhat differently from the version described in Schwarzkopf et al. [dBSvKO00]. We provide a
pseudo-code of the algorithm in Algorithm 2.

As typical with most incremental algorithms, the main function (hull) takes a list of points L
and constructs the convex hull by incrementally inserting each point. The algorithm assumes the
list L is pre-permuted.

In order to compute the hull efficiently, the algorithm maintains various relations between
points, edges, and faces. As described earlier, the convex hull is maintained as a mapping from
edges to faces. In addition, the algorithm maintains a conflict map and a visibility map. A conflict
map associates each face with a list of points (not yet inserted) that conflicts with the face. A
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visibility hint provides a partial mapping for which point sees which face. This is a hint rather than
a complete mapping for reasons that will soon be apparent.

We say that a point p is at a direct conflict with the face f if the ray −→cp penetrates the face
f . Immediately before the insertion of the point with rank i, the following three invariants hold:
1) the hull is the convex hull of the points of all points with rank less than i, 2) for any point pj

with j > i, V maps pj to a face, 3) and each face f of the hull has a conflict list consisting of all
remaining points with direct conflicts with the face f .

These functions are represented using three different dictionaries: the convex hull dictionary
(H), the conflict dictionary (C), and the visibility dictionary (V ). The pseudo-code assumes that
the hull, the visibility and conflict maps are initialized to contain the convex hull of the first three
points and the resulting conflict and visibility maps. In addition, the algorithm uses a priority
queue data structure that supports insert and deleteMin operations.

To insert a point p on the hull, the algorithm first finds a face f that is visible to the point p
being inserted. The algorithm then checks if f is in the hull. If not, then p is inside the hull, in
which case the hull remains the same. Otherwise the algorithm calls the rip function to remove
all the faces that are visible from p by using one of the edges of the face f . The function returns
the set of points π that conflict with the removed faces, the boundary edges E of the hull that are
adjacent to ripped out faces, and the partial hull H. The region removed from the hull is then
tented at p by calling the tent function.

Given a point p, a set of boundary edges E , and a set of points π, the tent function extends
the hull by inserting the point p to the hull. This requires making a face from each boundary edge
and the point p. For each new face f , the function determines the points π′ that conflict with f
and updates the conflict dictionary. The algorithm then identifies the point pm with the minimum
rank that conflicts with f and updates the visibility map by mapping the pm to f .

A dynamic algorithm is derived from applying syntactic transformation techniques of self-
adjusting computation. By pairing the dynamic algorithm with our kinetic library [ABTV06],
we obtain a kinetic algorithm for 3-d convex hull that also supports dynamic changes.

5.3 Analysis of the Algorithm

We present a few facts (and their proofs) about the algorithm, and informally argue about its
efficiency. The input to the algorithm is a permutation of points drawn from a finite universe O.
We assume that dynamic changes obey the model of equal chance (described in the preliminaries).
Let τ(n) denote the expected number of faces of the convex hull with n points. It is well-known
that τ(n) = O(n).

Lemma 13 (Constant Degree) Record all edges ever created through the lifetime of an Incre-
mental Hull 3D. Create a graph G, whose nodes are the points of O and whose edges are those
edges. Let d be the average degree of this graph (i.e. d = 1

n

∑

v∈V (G) degG(v). Then,

E[d] = O(1) .

Proof: Consider the degree sum D =
∑

v∈V (G) degG(v). For the point being inserted at the i-th

step to the hull, let Di be the increase in the degree. We find that D =
∑n

i=1 Di. The lemma
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Algorithm 2 Modified Incremental Hull 3D

function hull (L) =

while (L 6= nil) do

p ← first (L)
case lookupV (p) of

Found(f):
(e, , )← edges(f)
case lookupH (e) of

Found f:

(π,E) ← rip (p, e)
tent (p, π, E)

NotFound: deleteV (p)
NotFound:

L ← next (L)

function rip(p, e) =

E ← ∅
π ← ∅
Q← flipe

while (Q 6= ∅) do

e ← deleteMin(Q)
case lookupH (flipe) of

Found(f):
if isVisible(p, f) then

π ← π ∪ lookupC(f)
(e1, e2, e3)← edgesf

deleteH (e1, f)
deleteH (e2, f)
deleteH (e3, f)
deleteC(f)
Q ← Q ∪ {e1, e2, e3} \ {e}

else E ← E ∪ {e}
NotFound:

return (π, E)

function tent(p, π, E) =

for each e = (p1, p2) ∈ E do

f ← (p2, p1, p)
π′ ← {p ∈ π : −→pcp ∩ f 6= ∅}
(e1, e2, e3)← edgesf

insertH (e1, f)
insertH (e2, f)
insertH (e3, f)
insertC(f, π′)
π ← π\π′

pm ← arg minq∈π′rank(q)
deleteV (pm)
insertV (pm, f)

follows, as E[Di] = O(1).

Lemma 14 Assume that rank(p∗) < r. Let F be the set of faces “ripped” during the insertion
of the point pr. Let F ′ be the set of faces “ripped” during the insertion of the point pr under the
presence of p∗. Then, E[|F∆F ′|] ≤ C/r for some constant C ∈ R

+.

Proof: First, we bound the size of F\F ′. A face f is ripped initially but is not ripped when p∗

is present if and only if p∗ is at conflict with f . Thus, we have F\F ′ = {f ∈ CH(Sr−1) : {pr, p
∗} ⊆

F(f)} = {f ∈ F2(Sr−1 ∪ {pr, p
∗}) : F(f) = {pr, p

∗}}. According to the model of equal chance, we
establish

E[|F\F ′|] =
1

(

|O|
r+1

)

∑

R⊆O
|R|=r+1

1

r + 1

∑

p∗∈R

1

r

∑

pr∈R
pr 6=p∗

|{f ∈ F2(R) : F(f) = {pr, p
∗}}|

≤
1

r2

1
( |O|
r+1

)

∑

R⊆O
|R|=r+1

|F2(R)| ≤
O(τ(r + 1))

r2
≤ C1/r

for a suitable C1 ∈ R
+.

Then, we approximate the size of F ′\F by observing that f ∈ F ′\F if and only if f is at conflict
with pr and p∗ ∈ Defn(f). Thus, F ′\F = {f ∈ CH(Sr−1 ∪ {p

∗}) : p∗ ∈ Defn(f) and pr ∈ F(f)}. It
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follows that

E[|F ′\F |] =
1

( |O|
r+1

)

∑

R⊆O
|R|=r+1

1

r + 1

∑

pr∈R

1

r

∑

p∗∈R
p∗ 6=pr

|{f ∈ CH(R\{pr}) : p∗ ∈ Defn(f) and pr ∈ F(f)}|

≤
1

( |O|
r+1

)

∑

R⊆O
|R|=r+1

1

r + 1

∑

pr∈R

3

r
|{f ∈ CH(R\{pr}) : pr ∈ F(f)}| ≤ C2/r

We remark that {f ∈ CH(R\{pr}) : pr ∈ F(f)} ⊆ {f ∈ F≤2(R) : pr ∈ F(f)}.

Lemma 15 Let G be the set of faces “tented” during the insertion of the point pr. Let G′ be defined
similarly except in the presence of p∗. Then, |G∆G′| ≤ C/i for some constant C ∈ R

+.

The proof is similar to that of the previous lemma and is omitted.

Theorem 16 The algorithm for maintain convex hulls in 3-d outlined in Algorithm 2 is O(logn)-
stable with respect to dynamic (and kinetic) changes in the model of equal chance.

Sketch of Proof: We argue that the trace differences for each point being inserted can be
thought of as structural differences at the particular step. Following from two previous lemmas, we
conclude that the total trace differences is at most

∑n
r=1(C1 + C2)/r = O(log n).

We further argue that every kinetic change can be simulated by deleting the relevant point
and re-inserting it. An actual kinetic change is much cheaper than this simulation. Applying
Theorem 5, we establish that the algorithm is also O(log n)-stable for kinetic changes (assuming
that each point is equally likely to participate in a kinetic event).

5.4 Implementation and Experimental Evaluation

We implemented a variant of the algorithm described earlier. The implementation differs from the
description in Algorithm 2, as we find that, in practice, the algorithm can perform well even if
the program-monotonicity assumption is relaxed. The implementation also stores the convex hull
in a dynamized treap—an equivalence of an active dictionary. We note that even though Treaps
allow for non-exact queries, in the scope of our use, Treaps and active dictionaries provide the
same interface and functionalities. We suspect that an active dictionary will have less overhead
than a Treap, since the dynamic behaviors of our Treap have to pay the overhead of self-adjusting
computation.

We evaluate the effectiveness of our algorithm through a set of benchmarks, of which two are
reported and discussed:

Time for initial run: This experiment measures the total time it takes to run the dynamic
version on a given input. In order to determine the overhead our techniques, we divide this
time by the time for running the static version of the same program.

18



Average time for a deletion/insertion: This experiment mimics a dynamic change in the
model of equal chance discussed earlier. It measures the average time taken to perform an
insertion/deletion. We start by running a self-adjusting application on a given input list. We
then delete the first element in the input list and perform a change propagation. Next, we
insert the element back into the list and perform a change propagation. We perform this
delete-propagate-insert-propagate operation for each element. Note that after each delete-
propagate-insert-propagate operation, the input list is the same as the original input. We
compute the average time for an insertion/deletion as the ratio of the total time to the
number of insertions and deletions (2n for an input of size n).

Figure 9 (left) shows the initial run graph, and the one on the right shows an average time for
a dynamic change.
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Figure 9: Experimental Results for the Convex Hull in 3D

Figure 10: Frames from kinetic simulation. The convex hull is maintained by our code, but the
figures were generated with Povray.

Kinetic Simulation. We run a kinetic simulation for the following scenario and produce a
video clip; few frames of the clip are displayed in Figure 10. Consider a perfectly elastic unit sphere
with a number of gas molecules inside of it. As the gas molecules hit the surface of the sphere, they
bounce off without losing any energy (i.e. angle of incident is the same as angle of reflection, the
velocity is maintained). Further development on the display engine may allow a real-time display
of this simulation.
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6 Dynamic Single-Source Shortest-Path

We study the Dijkstra algorithm for computing the single-source shortest-path in a graph. As
pointed out earlier, the distance of the node removed from the priority admits the monotone
property. Our study shows that, with an appropriate graph representation, the combination of self-
adjusting computation and retroactive priority queue can yield a simple implementation of dynamic
single-source shortest-path with competitive performance to that of Ramalingam and Reps [RR96]
if theirs used a binary heap.

We have implemented the graph represetation and dynamized the Dijkstra algorithm. Our al-
gorithm is O(‖δ‖ log‖δ‖)-stable, where δ is the sum of degrees of nodes whose distances change. We
further note that our dynamic single-source shortest-path algorithm can be trivially used to devise
a dynamic all-pair shortest-path algorithm. The performance, however, may not be comparable to
the best asymptotic bounds to date.

7 Discussions and Conclusion

In this thesis, we present a study of a new data-structuring paradigm and demonstrate some
practical use of it. We show that a number of data structures can be efficiently maintained,
delivering tremendous impacts on the design, analysis, and implementation of dynamic and kinetic
algorithms. The approach has been proven effective in practice, as supported by the experimental
evidence.

We mention some work in progress and point out certain directions that this work can be
extended. There are many other data structures that we have yet to investigate. Even though
a priority queue can simulate a queue, we wonder if it is possible to construct an active queue
that beats O(log T ) runtime. In general, it is natural to find a non-trivial lower-bound for this
class of data structure. Another interesting data structure to consider is union-find. An efficient
active union-find data structure may enable the development of dynamic minimum spanning tree
algorithm based on Prim’s algorithm.
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A The Triangle Inequality Theorem

Theorem 17 (Triangle Inequality for Change Propagation) Let P be a monotone program
with respect to the class of changes ∆1 and ∆2. Suppose that P is O(f(n)) and O(g(n)) stable
for ∆1 and ∆2, respectively, for some measure n. P is also monotone with respect to the class of
changes (∆1 ◦ ∆2) obtained by composing ∆1 and ∆2, then P is O(f(n)+g(n)) stable for ∆1 o ∆2.

Proof: Let T0, T1, and T2 be the traces of P with some inputs I0, I1, and I2, respectively, such
that I1 = ∆1(I0), and I2 = ∆2(I1). Note that I2 = (∆2 ◦ ∆1)(I0).

To prove the theorem, we will show that the distance δtr (T2, T0) between T2 and T0 is bounded
by δtr (T2, T1) + δtr (T1, T0). Let w (·) denote the weight of a vertex. We know by definition that
the following hold.

δtr (T2, T0) =
∑

v∈T2\T0

w (v) +
∑

v∈T0\T2

w (v)

δtr (T2, T1) + δtr (T1, T0) =

(

∑

v∈T2\T1

w (v) +
∑

v∈T1\T2

w (v)

)

+

(

∑

v∈T0\T1

w (v) +
∑

v∈T1\T2

w (v)

)

.

It therefore suffices to show that T2 \T0 ⊆ (T2 \T1)∪ (T1 \T0) and T0 \T2 ⊆ (T0 \T1)∪ (T1 \T2).
This follows directly from the following basic property of sets: for any three sets A,B,C, it is true
that (A \ C) ⊆ (A \B) ∪ (B \ C).

We conclude that δtr (T2, T0) ≤ δtr (T2, T1)+ δtr (T1, T0). Since P is O(f(n)) and O(g(n)) stable
for ∆1 and ∆2, respectively, we have δtr ((, T )1 , T0) ∈ O(f(n)) and δtr ((, T )2 , T1) ∈ O(g(n)). It
therefore follows that P is O(f(n) + g(n)) stable for the changes ∆2 ◦ ∆1.

The theorem implies that composing (batching) a constant number of changes does not change
the asymptotic complexity of change propagation with respect to the maximum of the change
propagations with respect to each change.

* * * * * * * *

Remarks. We note that triangle inequality does not hold if the program is not monotone
with respect to the change obtained by composition. For example, if the changes are insertions
and deletions, then they may swap the position of two elements in a list (unless of course they
are restricted to affect the same location). In this case, the program may not be monotone with
respect to a swap, and the theorem will not hold. In fact, it is easy to construct examples of such
programs. For example, consider some program that takes the input list [1, 2, 3]. Suppose that the
program traverses the list from head to tail, and performs large amount of work for the item 2 but
performs constant work for all other elements. Now, if we delete 3 perform a change propagation
and insert it back before 2 and run change propagation, then both change propagation will take
constant time (i.e., the inputs are [1, 2, 3], [1, 2], [1, 3, 2]). If instead, we delete 2 and insert it in
front of 3 and perform change propagation, then the result for 3 will be found in the memo, but the
result for 2 will not be found—since 3 comes after 2 re-using the result for 3 will delete the result
for 2. Thus the result for 2 will have to be recomputed requiring possibly non-constant time.
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B Code for Active Priority Queue

(*

* Active Monotone Priority Queue

*

* Kanat Tangwongsan

*

*)

functor HAPriorityQueue (structure Item : PQUEUE_ITEM) : PQUEUE =

struct

exception NYI

exception delOpsTreapScrewedUp

exception InconsistentPQ

structure C = Comb

(* define deleteMinClosure *)

structure deleteMinClosure =

struct

type t = TimeStamps.t*(unit Modref.t)*

((TimeStamps.t*Item.t) option Modref.t)

end

structure KeysNode =

struct

type vtype = Item.keyt*TimeStamps.t

type data = Item.datat*(deleteMinClosure.t option ref)

fun compare((x,xt),(y,yt)) =

(case Item.compare(x, y) of

EQUAL => TimeStamps.compare(xt, yt)

| x => x)

fun toString _ = raise NYI

end

structure DelOpsNode =

struct

(* store a bunch of deleteMinClosures *)

type vtype = TimeStamps.t

type data = deleteMinClosure.t

val compare = TimeStamps.compare

fun toString _ = raise NYI

end

(* Definitions of the two traps *)

structure KeysTreap = BinaryTree (KeysNode)

structure DelOpsTreap = BinaryTree (DelOpsNode)
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type pqt = ((KeysNode.data KeysTreap.t)*

(DelOpsNode.data DelOpsTreap.t)) ref

type t = pqt

type keyt = Item.keyt

type datat = Item.datat

type eltt = Item.t

val dPrint = fn _ => () (*print*) (* fn _ => () *)

fun new () : pqt = ref (KeysTreap.empty, DelOpsTreap.empty)

(**********************************************************************

Utility functions

**********************************************************************)

fun pickUpClosure (qr:pqt) key =

let val (o_kt, _) = !qr

in case KeysTreap.lookup o_kt key of

NONE => NONE

| SOME(_,clsRef) => !clsRef

end

fun eliminateKey (qr:pqt) key =

let val (o_kt,o_dt) = !qr

val kt’ = KeysTreap.delete o_kt key

in qr := (kt’, o_dt)

end

fun scheduleWakeUp cls =

let

val (ts,synA,_) = cls

in case TimeStamps.compare (ts, !Modref.now) of

LESS => ()

| _ => C.iwrite’ (fn _ => false) synA ()

end

fun doRemoveInsert (qr:pqt) x () =

let val wCls : deleteMinClosure.t option = pickUpClosure qr x

(* val () = print "eliminating an insert\n" *)

val () = eliminateKey qr x

in case wCls of

NONE => ()

| SOME(cls) => scheduleWakeUp cls

end

(* NOTE: fetchMinAtTime has a side-effect of removing all "future"

* insertions whose keys are bigger the smallest element not yet
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* used

*)

fun fetchMinAtTime (qr:pqt) time : (KeysNode.vtype*KeysNode.data) option =

let

fun findMin pvMinItem pvTs : (KeysNode.vtype*KeysNode.data) option =

let val (o_kt, o_dt) = !qr

val curMin =

let val (lastKey, _) = Item.explode pvMinItem

in KeysTreap.minStrictGT o_kt (lastKey, pvTs)

end

in case curMin of

NONE => NONE

| SOME(wKey as (k,curMinTs),(v,_)) =>

(case TimeStamps.compare (curMinTs, time) of

LESS => curMin

| _ =>

let val () = dPrint "fetchMinAtTime: deleting out of time key\n"

in (doRemoveInsert qr wKey ();

findMin (Item.implode(k,v)) curMinTs)

end)

(* | _ => curMin*)

end

val (o_kt, o_dt) = !qr

val prevDelMin : (DelOpsNode.vtype*DelOpsNode.data) option =

DelOpsTreap.maxStrictLT o_dt time

in

case prevDelMin of

(*(dPrint ("no prev dM\n");KeysTreap.findMinOpt o_kt)*)

NONE => (case (KeysTreap.findMinOpt o_kt) of

NONE => NONE

| SOME(wMin as (wKey as (_,ts),_)) =>

(case TimeStamps.compare (ts, time) of

LESS => SOME(wMin)

| _ => (doRemoveInsert qr wKey ();

fetchMinAtTime qr time)))

| SOME(_,(_,_,dm)) =>

(case (Modref.deref dm) of

NONE => NONE

| SOME(ts,lastMin) => findMin lastMin ts)

end

fun findBiggerKey (qr:pqt) key =

let val (o_kt,o_dt) = !qr

(* val tl = map (fn (x,_) => x) (KeysTreap.toListPre o_kt)

val str = foldr (fn (x,s) => (Item.keyToString x)^" "^s) "" tl

val () = dPrint (str^"\n")*)

in case KeysTreap.minStrictGT o_kt key of

NONE => (* find the NONE value *)

let
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val wCls =

case (KeysTreap.findMaxOpt o_kt) of

NONE => DelOpsTreap.findMinOpt o_dt

| SOME(_,(_,dmc)) =>

(case (!dmc) of

NONE => NONE

| SOME(ts,_,_) => DelOpsTreap.minStrictGT o_dt ts)

in

case wCls of

NONE => NONE

| SOME(_,dmc) => (SOME dmc)

end

| SOME(_,(_,dmc)) => !dmc

end

fun nextClosure (qr:pqt) ts =

let val (_,o_dt) = !qr

in case (DelOpsTreap.minStrictGT o_dt ts) of

NONE => NONE

| SOME(_,v) => SOME(v)

end

fun eliminateClosure (qr:pqt) ts =

let val (o_kt, o_dt) = !qr

val dt’ = DelOpsTreap.delete o_dt ts

in qr := (o_kt, dt’)

end

fun writeEqOption (a, b) =

case (a,b) of

(NONE, NONE) => true

| (SOME x, SOME y) => Item.writeEq (x, y)

| _ => false

fun writeClosureEqOption (a,b) =

case (a,b) of

(NONE, NONE) => true

| (SOME(xt,x),SOME(yt,y)) =>

(TimeStamps.compare(xt,yt)=EQUAL)

andalso Item.writeEq(x,y)

| _ => false

fun disassociateKey qr c2 =

let

val (kt,_) = !qr

in

case (Modref.deref c2) of

NONE => () (* dPrint ("disassoc: found nothing\n") *)

| SOME(ts,elt) =>

let val (k,_) = Item.explode elt

val key = (k,ts)

25



in case (KeysTreap.lookup kt key) of

NONE => ()

| SOME(_,mr) =>

(case (!mr) of

NONE => ()

| SOME(_) => mr := NONE)

end

end

fun grabKey (qr:pqt) (kk:KeysNode.vtype) (nc:deleteMinClosure.t) =

let

val (kt,_) = !qr

(* val () = dPrint "grabKey.. init\n" *)

in

case (KeysTreap.lookup kt kk) of

NONE => raise InconsistentPQ

| SOME(_,mr) =>

(case (!mr) of

NONE => mr := SOME(nc)

| SOME(cls) =>

let (* val () = dPrint "grabKey: SOME/cls\n" *)

(* val () = disassociateKey cls*)

val () = scheduleWakeUp cls

val () = mr := (SOME nc)

in ()

end)

end

(***********************************************************************)

fun c2reader c2 =

(case (Modref.deref c2) of

NONE => "NONE"

|SOME (_,d) => let val (k,v) = Item.explode d

in "SOME("^(Item.keyToString k)^")"

end) handle _ => "undef."

fun clsToHolder cls =

let val (_,_,c2) = cls

in

c2reader c2

end

(**********************************************************************

Action components

**********************************************************************)

fun action_removeInsert (qr:pqt) x () = doRemoveInsert qr x ()

fun action_removeDelMin (qr:pqt) ts () =

let val wCls : deleteMinClosure.t option = nextClosure qr ts
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(* val () = print "eliminating a delMin\n" *)

val () = eliminateClosure qr ts

in case wCls of

NONE => ()

| SOME(cls) => scheduleWakeUp cls

end

fun action_addInsert (qr:pqt) x =

let

val (o_kt, o_dt) = !qr

val (k, v) = Item.explode x

(* val () = dPrint ("insert: "^(Item.keyToString k)^"\n") *)

val insTime = Modref.insertTime ()

val keyPack = (k, insTime)

val () = TimeStamps.setInv (insTime, action_removeInsert qr keyPack)

val () = (case (findBiggerKey qr keyPack) of

NONE => () (* dPrint ("none to wake up\n") *)

| SOME(cls) =>

let

(* val () = dPrint ("call swaking up..who’s holding"^(clsToHolder cls)^"\n") *)

in scheduleWakeUp cls

end)

val hv = (v, ref NONE)

val kt’ = KeysTreap.insert o_kt (keyPack,hv)

in

qr := (kt’, o_dt)

end

fun action_addDelMin (qr:pqt) =

let

val (synA,synB,outputM) = (Modref.new (), Modref.empty (), Modref.empty())

val delMinTime = Modref.insertTime ()

val () = TimeStamps.setInv (delMinTime, action_removeDelMin qr delMinTime)

val (kt,dt) = !qr

val closure = (delMinTime,synA,synB)

val key = delMinTime

val dt’ = DelOpsTreap.insert dt (key,closure)

val () = qr := (kt, dt’)

fun fwrap_pre () =

C.iread synA (fn () =>

let

(* precond: *)

(* val () = dPrint "i am up\n" *)

(* val (keys,_)= !qr

val tl = map (fn ((x,_),_) => x) (KeysTreap.toListPre keys)

val str = foldr (fn (x,s) => (Item.keyToString x)^" "^s) "" tl
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val () = dPrint (str^"\n") *)

val curMinCls : (TimeStamps.t*Item.t) option =

(case (fetchMinAtTime qr delMinTime) of (* should be delMinTime not now*)

NONE => NONE

| SOME((k,ts),(v,_)) =>

let (*val () = dPrint ("curmin is"^(Item.keyToString k)^"\n") *)

val () = if TimeStamps.compare(ts, delMinTime) = LESS then

()

else raise Crap

in SOME(ts, Item.implode (k,v))

end)

(* val () = dPrint ("before writing to c2: originally c2 = "^(c2reader c2)^"\n")*)

val () =

(if (writeClosureEqOption (curMinCls, Modref.deref synB)) then

()

else disassociateKey qr synB) handle _ => ()

in

C.iwrite’ writeClosureEqOption synB curMinCls

end)

fun fwrap_post () =

C.iread synB (fn tvalue =>

let

(* val () = dPrint "c2 invoked\n" *)

val closure = (delMinTime,synA,synB)

val () = (case tvalue of

NONE => ()

| SOME(ts,kk) =>

let val (k’,_) = Item.explode kk

in grabKey qr (k’,ts) closure

end)

(* val () = dPrint "postc2:y\n" *)

val value = case tvalue of

NONE => NONE

| SOME(_,x) => SOME(x)

(* val () = dPrint "transfering to c3\n" *)

in

C.iwrite’ writeEqOption outputM value

end)

val _ = fwrap_pre ()

val _ = fwrap_post ()

in

outputM

end

fun insert qr x = action_addInsert qr x

fun deleteMin (qr:pqt) = action_addDelMin qr

end
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