
Pro�t Maximizing Mechanisms for the Extended Multicasting Game

Shuchi Chawla, David Kitchin

Department of Computer Science

Carnegie Mellon University.

fschawla,dkitching@andrew.cmu.edu

Uday Rajan, Amitabh Sinha

Graduate School of Industrial Administration

Carnegie Mellon University.

furajan,asinhag@andrew.cmu.edu

Abstract

We consider the design of multicast networks when
both edges and nodes are sel�sh agents. Our ob-
jective is a budget-balanced, strategy-proof mech-
anism which selects the set of clients to receive ser-
vice and extracts payments from those clients. It
constructs a network to provide the service, pays
edges to participate in the network, and aims to
maximize pro�t from the transaction. We intro-
duce the notion of pro�t guaranteeing mechanisms,
and show the existence of one such mechanism.
The mechanism provides guarantees of the form
that in a suÆciently pro�table market, it obtains
some fraction of the obtainable pro�t, and if the
market is suÆciently unpro�table, then the mech-
anism demonstrates that no pro�table solution ex-
ists. The mechanism runs in polynomial time. To
our knowledge, this is the �rst study of mechanisms
for designing multicast networks in which edge val-
ues are unknown.

1 Introduction

The design of multicast networks in a game-
theoretic setting has received a lot of attention
among researchers recently. Given a network with
a distinguished node (root) and clients at other
nodes, the problem is to select a set of users for
service and construct a multicast tree connecting
these users to the root. Clients are willing to pay
some maximum amount of money for receiving the
service and agents owning edges charge a minimum
fee for participating (known as their values). The
task is to charge fees from clients and pay agents
owning the edges so as to maximize pro�t from the

transaction. The problem was introduced by Her-
zog, et al [9].

From an optimization perspective, given a graph
with values associated with nodes (clients) and
edges, this problem reduces to �nding a subset of
the graph that maximizes the sum of values of se-
lected nodes minus the sum of values of selected
edges (this is the eÆciency/surplus of the solution).
This problem is known to be NP-hard [5].

Several variants of the problem have been stud-
ied in the approximation algorithms literature.
Most notable is the Prize Collecting Steiner Tree

(PCST) problem, which is to �nd a subset that
minimizes the cost of selected edges plus the values
of the nodes that are not selected. For the optimal
solution, this is the same as maximizing eÆciency.
However, in terms of approximation, the two prob-
lems are di�erent. In particular, the problem of
maximizing eÆciency is inapproximable in polyno-
mial time (as we show in a later section), whereas
Goemans, et al [8] achieve a 2-approximation for
PCST.

From a game theory perspective, the problem be-
comes harder as we now have to pay (sel�sh) edges
and charge (sel�sh) nodes in such a way that they
reveal their values truthfully. So far game theorists
have studied a simpler subproblem in which edge
costs are known [3, 5, 10, 13]. The objectives for
this subproblem have been two-fold: to recover the
cost of constructing the network from the nodes
(Budget Balance), and to output the most eÆcient
solution { where the di�erence between the total
value of selected nodes and total cost of selected
edges is maximized. It is well known that the two
objectives cannot be met simultaneously [13, 4].

For this subproblem, two kinds of mechanisms
have been proposed. The �rst kind output the most

1

eÆcient solution (albeit in exponential time or for
simple networks such as trees[5, 13]), but are un-
able to recover the cost of edges from nodes. The
second kind [10] are budget balanced and occasion-
ally make a pro�t. However, they give no guarantee
on the eÆciency loss of the solution.

In this paper, we study the problem from a dif-
ferent perspective. We aim to maximize the pro�t

from the solution, and we do so when edge costs
are unknown (edges are owned by sel�sh agents).
We call this the Extended Multicasting Game.

The extended multicasting game has a avor
very similar to dual auctions. It is well known that
in dual auctions, no reasonable approximation to
eÆciency can be achieved without making distribu-
tional assumptions about the input. McAfee [12]
and later Tatur [15] have shown that using the as-
sumption that all bidders derive their values from
a common distribution, it is possible to achieve al-
most a 1� 1=n fraction of the maximum eÆciency
by using a simple direct auction that rejects the
least eÆcient trade.

Fiat et al [6] were the �rst ones to consider
the question of pro�t maximization in the context
of multicasting games. However, like others they
dealt with the case when edge costs are known.
Their mechanism either needs to be provided with
the multicast tree, or it needs exponential time to
construct the tree. They propose pro�t maximiz-
ing auctions and suggest that these could be used
at every node to maximize pro�t in the multicast-
ing game. There has been no further work in this
area to our knowledge.

1.1 Our results

Our objective is a truthful polynomial time mecha-
nism which aims to maximize the pro�t while con-
structing a multicast network. To get around the
inapproximability of the problem, our mechanism
outputs an approximately pro�table solution if the
optimal solution is suÆciently pro�table. If the op-
timal (non-trivial) solution is suÆciently unprof-
itable, we demonstrate that no pro�table solution
exists. For other cases, we output a non-negative
pro�t solution but give no guarantee for the amount
of pro�t obtained. Since pro�t is always bounded
above by the eÆciency of the solution, our mecha-

nism also gives guarantees for the eÆciency of the
solution when the optimal solution is suÆciently
pro�table. It also satis�es other desirable proper-
ties such as CS, IR and NPT (described in the next
section). We call such a mechanism a pro�t guaran-
teeing mechanism. We make no assumptions on the
distribution from which the utilities of the agents
are drawn; however, we use a notion of competitive-

ness of the input, and justify the need for it. We
also show that any mechanism that seeks to max-
imize pro�t must be of the same general form as
our mechanism.

The rest of this paper is structured as follows.
In the following section, we de�ne the problem and
discuss related work, some of which we use in our
work. In Section 3, we describe some hardness re-
sults. Motivated by these, we de�ne criteria for
evaluating pro�t maximizing mechanisms in Sec-
tion 4. We also discuss some general properties
that any pro�t maximizing mechanism must have.
Then in Section 4.2, we give a pro�t maximizing
mechanism for the case of unknown edge values and
known node values. In Section 4.3, we extend this
mechanism to handle the case of unknown node
values when there is suÆcient competition among
clients at nodes. Finally in Section 4.4, we give a
budget balanced mechanism for the situation where
there is not enough competition among clients. We
conclude in Section 5.

2 Problem De�nition and Re-

lated Work

We are given a graph G = (V;E), with a root node
r 2 V (the multicast source). Each node contains
a set of clients, each with a private value (utility)
ui for receiving the multicast. The utility of a node
is the sum of utilities of clients at the node. Let U
denote the total utility of all clients in the graph.
Each edge is also owned by an agent who has a
private value ce for its participation cost.

The multicaster is required to implement a mech-
anism that takes the following inputs: all clients bid
the maximum amount that they are willing to pay
for receiving the service and all edges bid their min-
imum asks for participating in the solution. The
multicaster then computes a solution that consists

2

of a set of clients that receive the service, a set of
edges that connect these clients to the root node
and a vector of fees taken from the clients (pi) and
payments made to the edges (pe). Any residual
money is the multicaster's pro�t, which we wish to
maximize.

Formally, let T denote a multicast tree; TV and
TE respectively denote the set of selected nodes
and edges. Also, de�ne p(TV) =

P
i2TV

pi and
p(TE) =

P
e2TE

pe. In terms of the original util-
ities of the agents, we also de�ne u(TV) (abbre-
viated u(T)) and c(TE) (abbreviated c(T)). The
pro�t of the solution is �(T) = p(TV) � p(TE).
We assume that all agents are rational (sel�sh) and
wish to maximize their own pro�t. For a client i
and a bid vector b, let pi(b) denote the payment
asked from the client. We use indicator variables
1i2TV (1e2TE) which are 1 if node i (edge e) is se-
lected for service, and 0 otherwise. The client bids
argmaxbifui1i2TV � pi(b)g. Similarly, edge e bids
argmaxbefpe(b)� ce1e2TEg.

A mechanism is strategy-proof (SP) if for all
clients i, bi = ui is a dominant strategy irrespective
of the bids of other agents and for all edges, be = ce
is a dominant strategy. Formally, for all i and all
vectors b, ui 2 argmaxbifui1i2TV � pi(b)g, and for
all edges ce 2 argmaxbefpe(b)� ce1e2TEg. We only
consider strategy-proof mechanisms.

The following are some natural constraints which
any mechanism must satisfy:

1. No Positive Transfers (NPT): We must not pay
clients to participate; i.e., pi � 0 for all clients
i. Similarly, pe � 0 for all edges e.

2. Individual Rationality (IR), also called Volun-
tary Participation: Every participating agent
must have non-negative net utility. That is,
pi � ui8i 2 V , and pe � ce8e 2 E.

3. Consumer Sovereignty (CS): For every client
i, if ui is increased high enough and all else
is held constant, then client i is guaranteed
service. There is no notion of CS for edges.

4. Polynomial Time Computability (PC): All
computation is done in polynomial time.

There are two other objectives which are crucial,
but can be compromised to some extent.

1. EÆciency: The eÆciency of a solution T is
f(T) = u(T) � c(T). It follows from IR and
NPT that the pro�t of a solution is always
at most the eÆciency of the solution, that
is, �(T) � f(T). Hence if we generate a so-
lution with non-negative pro�t, then the ef-
�ciency of the solution is also non-negative.
A mechanism is called eÆcient if it outputs
argmaxT f(T). Let T � denote the most eÆ-
cient solution.

2. Budget Balance (BB): A strong version of BB
requires that �(T) = 0. However, in the con-
text of pro�t maximization, we relax this to
�(T) � 0.

2.1 Related Work

The �eld of algorithmic mechanism design was
brought into focus by Nisan and Ronen [14]. They
consider strategy-proof mechanisms for the short-
est path problem (among others). They use the
VCG mechanism, and show that in the worst case,
the mechanism overpays the selected edges by an
O(n) factor of their cost. Archer and Tardos [1] ex-
tend that result and show that any strategy-proof
mechanism in the class ofmin-functionmechanisms
must also overpay by the same factor.
The MST Game. Fortunately, this overpayment
is not a problem for the minimum spanning tree
problem. MST is a subproblem of our problem,
and assumes that every node must be connected to
the root. Bikhchandani, et al [2] give an elegant
strategy-proof mechanism (which we call the VST

mechanism) based on the Vickrey auction [16]. Es-
sentially, if an edge is selected in the MST, its pay-
ment is the cost of the second-cheapest edge across
the cut induced by the selected edge. Edges which
are not selected are paid nothing. We call this the
Vickrey price of the edge that is selected in the
MST. We make use of this result to induce truth-
fulness of edges, using the following lemma.

Lemma 1 The VST mechanism is strategy-proof

even if only a subtree T 0 � MST is selected, so

long as the decision process for determining T 0 uses

the tree's Vickrey prices as its edge costs.

Proof: An edge which is not in the MST cannot
get selected by bidding higher; if it bids lower, it

3

can get selected only at a Vickrey price lower than
its own utility, resulting in a loss. An edge which
is in the MST cannot gain by bidding lower, since
it is paid its Vickrey price which is independent of
it. By bidding higher, it may get dropped.

Further, Vickrey payments are determined by
edges which are not in the MST; hence, by chang-
ing its bid, an edge in the MST cannot a�ect the
Vickrey payment to any other edge in the MST. 2

Another special case of the extended multicast
problem is when edge costs are known and all
agents are at the nodes. Moulin and Shenker [13]
study this problem in great detail, reviewing var-
ious EÆcient and BB mechanisms including the
Marginal Cost (each node is charged the marginal
cost of serving it), and Shapley Value (the cost
of each edge is distributed equally to each node
downstream of it) mechanisms. Feigenbaum, et al
[5] consider the computational cost of these mech-
anisms, and show them to be feasible only on tree
networks. Jain and Vazirani [10] give an approxi-
mate budget-balanced group strategyproof mecha-
nism which is polynomial time for any network and
also gives a cost-sharing function for the nodes.

Cancellable Auctions. The recent research on
cancellable auctions by Fiat, et al [6] is also of
note. An auction is cancellable if the auctioneer
has the option of canceling the auction if some pre-
speci�ed criterion (such as minimum revenue) is
not met, and this does not a�ect the strategy of the
participants. The notion of cancellability is help-
ful in multicast network problems because it allows
for pruning of the multicast tree based on revenue
achieved from nodes while still retaining truthful-
ness. Fiat, et al give a randomized auction that is
cancellable and when run with at least two bidders,
is guaranteed to generate at least 1

4 th of the rev-
enue achievable by any truthful auction. We use
the auction devised by them in one of our mecha-
nisms in Section 4.3.

The Prize collecting Steiner tree problem.

The Prize collecting Steiner tree problem (PCST)
is closely related to the problem of �nding a max-
imum eÆciency multicast tree. Given (G; c; u; r),
the objective of PCST is to �nd a tree T which
minimizes PC(T) = c(T)+u(T), where u(T) is the
sum of utilities of nodes not in the tree. For any
tree T , we have PC(T) = U�f(T), so that the two

problems are equivalent from an optimization point
of view. We use � to denote the approximation ra-
tio of some algorithm which approximates PCST.
Goemans and Williamson [8] give a � = (2� 1

jV j�1)-
approximation, the best known so far. We refer to
their algorithm as GW, and use it in our work; a
description of the algorithm as well as proofs of the
following useful lemmas appear in the appendix.

Lemma 2 Let T be the solution produced when

GW runs on (G; c; u; r). Let G0 be the subgraph

of G induced by TV . Then GW continues to output

T when run on (G0; c; u; r).

Lemma 3 Let G0 be obtained from G by increasing

the cost of a single edge e from ce to c0e. Then the

set of nodes selected in the GW solution to G0 is a

subset of the set of nodes selected in G. Moreover,

if e was not part of the solution in G, then it is not
part of the solution in G0 either.

3 Hardness

It is well known that it is impossible to simulta-
neously achieve EÆciency and BB for a large class
of mechanism design problems [13]. The multicas-
ting problem is more notorious, as it is NP-hard
to determine the most eÆcient solution, even when
u and c are known. In fact it is also NP-hard to
compute whether or not a non-trivial positive eÆ-
ciency solution exists. This was �rst proved in [5].
We provide an alternate proof here, which leads to
a stronger hardness of approximation result.

Theorem 4 Given a graph G = (V;E) with a root

node r 2 V , non-negative node utilities ui, and

non-negative edge costs ce, it is NP-complete to de-

termine whether there exists a tree T rooted at r
such that f(T) > 0. Hence it is also impossible to

approximate f(T) within any factor at all.

Proof: We use a reduction from the decision ver-
sion of PCST to prove this. The decision version,
also NP-hard, is to determine if there exists a tree
T rooted at r with c(T) + u(T) � z (given z < U).

We construct a new graph G0 by taking a copy
of G and adding a new node r0. There is only one
new edge, (r; r0) of cost U � z. De�ne the natural

4

bijection between trees in G rooted at r and trees
in G0 rooted at r0 by T (2 G) 7! T 0(2 G0). It is
easy to see the following relation: c(T) + u(T) <
z () u(T 0)�c(T 0) > 0. Hence a polynomial time
algorithm which decides the existence of a solution
of positive eÆciency implies a polynomial time al-
gorithm for the decision version of PCST. Since an
approximation algorithm for eÆciency would still
be able to decide whether or not there exists a tree
with positive eÆciency, it is also impossible to ap-
proximate eÆciency within any factor. 2

The following impossibility result due to Feigen-
baum, et al [4] states that we cannot achieve a rea-
sonable trade-o� between EÆciency and BB even
if exponential computation is allowed. This result
holds even when edge costs are known and G is a
tree. For completeness, we include a proof sketch.

Theorem 5 A strategy-proof mechanism for mul-

ticast cost sharing satisfying NPT, IR and CS can-

not achieve both -approximate eÆciency and �-
approximate budget balance for any constants and

�.

Proof Sketch: Consider a network in which there
are p clients at a node, each with utility u and
there is a single link from the root to the node of
cost (p � 1)u + Æ with Æ > 0. Any -approximate
eÆcient solution must include all the p clients even
if one of them lowers its bid to Æ + � < u. Thus for
SP, the mechanism can charge at most Æ from each
user. The mechanism can make at most pÆ from
clients and pays at least (p � 1)u + Æ to the edge.
Thus for appropriate values of u and Æ, it fails to
be �-approximate budget balanced. 2

Comment 1 Notice that if we take p = 2 in the

above example, then even though for the optimal

solution f(T) is arbitrarily close to 1
2U , any budget

balanced mechanism satisfying SP and other prop-

erties must output the empty solution and will fail

to give any approximation to eÆciency.

Theorem 4 suggests that we should try to achieve
an approximation for pro�t at least in the case
when we are guaranteed that a suÆciently prof-
itable solution exists. This motivates our de�nition
of pro�t guaranteeing mechanisms in the next sec-
tion. In order to de�ne the antecedent that a \suÆ-
ciently pro�table solution exists", we need a notion

of the maximum revenue that can be raised from
the input. In particular, for every node i, we let
ri denote the maximum revenue that any strategy-
proof mechanism can raise from the agents at that
node1. Note that this may be much less than the
total utility at the node, but is a more reasonable
target to compare with. R denotes the sum of ri
over all nodes, and r(T) =

P
i2T ri.

4 Pro�t Guaranteeing Mecha-

nisms

Given such strong hardness results, it is not imme-
diately clear how the performance of a mechanism
for designing multicast networks should be mea-
sured. We give the following de�nition for a pro�t
guaranteeing mechanism that we use as a yardstick
in evaluating our mechanisms.

De�nition 1 An (�; �)-pro�t guaranteeing mech-

anism, where � 2 [0; 1] and � � 1, satis�es the
following criteria:

1. SP, IR, NPT, CS, and PC.

2. If the optimal eÆciency f(T �) = (1 � Æ)R,
where Æ < �, it �nds a tree with pro�t at least

k(Æ)R where k(Æ) � 0 is decreasing in Æ.
(k(Æ) increases as f(T �) increases).

3. If for every tree T , c(T) � �r(T), it demon-

strates that no non-trivial positive surplus tree

exists.

4. If neither of the conditions in 2 and 3 above

are met, the mechanism returns a solution with

non-negative pro�t (possibly the trivial solu-

tion, with no node served and no edges se-

lected).

From Theorem 4, it is clear that it is impossible
to obtain a mechanism that is (�; �)-pro�t guaran-
teeing with either � = 1 or � = 1. From comment 1
we also get that � � 1

2 . The best that can be done
is to obtain as large � and as small � as possible.

We begin with a characterization of a mecha-
nism that aims to maximize pro�t. Observe that

1For a discussion of the maximum revenue that can be
raised, refer to [6]

5

without making any distributional assumptions, for
a mechanism to be strategy-proof, the payments
made to edges and received from clients should be
bid-independent [1, 6]. That is, for an edge e, pe
should be a function of be0 6=e and bi2TV . Similarly,
pi should be a function of be2TE and bi0 6=i.

Now consider the following example: there is a
single client i connected by a single edge e to the
root. The client's utility is u and the edge's cost
is c. If c � u, every mechanism outputs the empty
solution. Consider the case when c < u. In or-
der to induce strategy-proofness, we must charge
the client pi = pi(c) and pay the edge pe = pe(u),
where pi and pe are non decreasing functions with
pi(c) � c and pe(u) � u. Also, the mechanism
should output an empty solution if pi(c) < pe(u).
Since pi and pe are non decreasing, given a value
of c, if we increase the value of u, the pro�t made
by the mechanism decreases or stays the same. On
the other hand, the eÆciency of the solution in-
creases. Thus such a mechanism cannot achieve
pro�t that is a constant fraction of the eÆciency of
the optimal solution. This justi�es our argument
that we cannot compare our mechanism's perfor-
mance with the maximum eÆciency; instead, we
should compare it with some other measure of the
maximum achievable pro�t.

The next lemma shows that in order to obtain a
constant fraction of the achievable pro�t, a mech-
anism should use other edges' (clients') values to
determine the payment (fee) to an edge (client).
Moreover, for achievable pro�t to be high, there
should be some amount of competition among the
clients and edges.

Lemma 6 Let M be a mechanism that is (�; �)-
pro�t guaranteeing for some constants � and �. Let
pV be a function specifying the total fees charged by

M from all clients and pE be the function used by it
to determine the total payment for all edges. Then,

pV should be a function of the utilities of clients

(among other inputs) and pE should be a function

of costs of edges (among other inputs).

Proof: Assume to the contrary that the claim does
not hold and (without loss of generality) pV does
not depend on the utilities of clients.

Consider the behavior of M on the following ex-
ample: There are two clients at the same node and

two edges connecting this node to the root. Let
the respective utilities and costs be u1 = u2 = u,
and c1 = c2 = c. Now, let r(u) be the maxi-
mum revenue that can be generated at the node
by a strategy-proof mechanism. Notice that r(u)
is strictly increasing in u. Observe that a truthful
auction can make a pro�t of r(u) � c by running
a Vickrey auction on edges and generating r(u)
from the node. Let u be high enough such that
r(u)� c > (1� �)r(u).

M makes a pro�t of �(M) = pV (c) � pE(c; u).
Since M is (�; �)-pro�t guaranteeing, this should
be at least k(�)(r(u) � c), where k(�) is the guar-
antee given by the mechanism.

Let us increase u and decrease c simultaneously.
If pE is a function of u, it has to be non decreas-
ing in u because otherwise as u increases, there ex-
ist suÆciently low values of c for which edges will
refuse to participate, while r(u)� c > (1� �)r(u),
violating the (�; �)-pro�t guarantee of M .

Now keeping c constant, we increase u. No-
tice that �(M) decreases or stays constant, while
r(u) � c increases. Thus at some point, �(M) <
k(�)(r(u)� c). This contradicts the fact that M is
(�; �)-pro�t guaranteeing.

2

The above lemma suggests that a pro�t guaran-
teeing mechanism should have the following form:
It should run pro�t maximizing auctions among
clients and among edges separately, and then com-
bine these using some algorithm to determine the
�nal solution. This is a basic outline of our pro�t
guaranteeing mechanism.

Some details still need to be taken care of. We
should determine the set of clients/edges in the
�nal solution after we have run the auctions so
that we know the amount of payment to be made
to edges and obtained from nodes. However, for
this mechanism to remain strategy-proof, these
auctions should be cancellable (as de�ned in Sec-
tion 2.1). Further, in order for the mechanism's
performance to have a good upper bound to com-
pare against, we need our input to be competitive.

4.1 Competitive Inputs

The preceding discussion motivates the need for
competition among the agents. As observed in pre-

6

vious studies [1, 6, 7], one cannot hope to achieve a
good approximation to pro�t in a highly uncompet-
itive market. In the case of auctions, if a market has
a single high value agent, no strategy-proof mecha-
nism can extract a reasonable fraction of his utility.
On the other hand, the best �xed price mechanism
that has knowledge of bidders' values, would simply
ask the highest bidder for all his value.

Similarly in the case of multicast mechanisms, if
there is a cut containing only one edge, there is no
way of inducing truthtelling for that edge without
paying huge sums of money to it. This is similar to
a monopoly situation. Hence we restrict our atten-
tion to competitive markets, where there are suÆ-
ciently many players so that they can play against
each other and the mechanism bene�ts from the
advantages of a free-market system. We use the fol-
lowing two de�nitions of competition among edges
and nodes.

De�nition 2 Consider a graph G = (V;E) with

edge costs c. For a cut [S1 : S2], let cS1;S2 denote

the cheapest edge across the cut. G is �-competitive

if there is a constant � such that for every set V 0 �
V , across every cut [S : V 0 n S], there are at least

two edges of cost no more than (1 + �)cS;V 0nS.

De�nition 3 Consider a graph G = (V;E). G is

node competitive if there are at least two clients at
every node.

A graph is called �-competitive if it is both �-edge
competitive and node competitive.

4.2 Known Node Utilities

In this section we design and analyze a pro�t guar-
anteeing mechanism for designing multicast net-
works when node utilities are known but the edges
are sel�sh agents. We assume that the graph is �-
edge competitive. Notice that when node utilities
are known, we do not have to bother about truth-
fulness at nodes, and so we can charge them their
true values. Thus we have r = u at every node. In
this section, we use r and u interchangeably.

Before describing the mechanism, we �rst con-
sider the simple case where the set of nodes being
served has been determined and we are to only se-
lect edges and assign payments to them. Clearly,

when the set of nodes to be served is known,
the most eÆcient solution is to pick the minimum
Steiner tree on these nodes. Since computing the
minimum Steiner tree is NP-hard, we adopt the
simpler solution of picking the MST which is a 2-
approximation to the cost of the Steiner tree. We
assign Vickrey payments to edges as described in
Section 2.1. Also, �-competitiveness of the input
guarantees that these payments will never be more
than (1 + �) times the cost of the MST, which is
2(1+�) times the cost of the most eÆcient solution.

We will use the above as a subroutine in the main
algorithm. Our mechanism is as follows.
Mechanism M1

1. Ask edges to reveal their bids.

2. Use GW to approximately solve PCST using
the revealed edge and node utilities. Let V 0 be
the set of nodes selected for service, and de�ne
G0 = (V 0; E0) to be the subgraph of G induced
by V 0.

3. Construct a minimum spanning tree T1 on G0.
The edges in T1 are paid their Vickrey prices.
Prune the solution from bottom up to im-
prove its eÆciency based on Vickrey prices on
edges2.:

(a) For each node i, let e(i) denote its parent
edge in the MST and ch(i) its children
nodes.

(b) Compute the surplus of each node as fol-
lows. The surplus of a leaf node is �(i) =
pi � pe(i). For an internal node, the sur-
plus is pi � pe(i) +

P
j2ch(i):�(j)>0 �(j).

(c) Identify all nodes with negative surplus.
Delete such nodes, and also delete the
subtrees rooted at these nodes. Call this
pruned solution T .

4. If the GW solution T1 is non trivial, return the
solution T .

5. If T1 is trivial, rescale all the node utilities to
u0i = 2ui and rerun GW. If the algorithm again
returns the trivial solution, output \Fail, no
positive solution exists".

2This subroutine is similar to the pruning subroutines of
Feigenbaum, et al [3] and Johnson, et al [11].

7

Lemma 7 The pruning subroutine does not de-
crease pro�t; that is, �(T) � �(T1).

Proof: The pruning step only deletes subtrees with
negative surplus. 2

Lemma 8 Mechanism M1 is strategy-proof.

Proof: An edge which is in T has no incentive to
change its bid, because its payment is independent
of its bid. Moreover, raising its bid may cause it to
be dropped from the solution (Lemma 3).

Now consider an edge that is not in the �nal so-
lution. If the edge decreases its bid, it might get
selected in the GW solution. If the Vickrey pay-
ment is less than the original price, then it makes a
loss. Now consider the case that the Vickrey pay-
ment is more than its price. Since the edge was not
in the GW solution with its original cost, this sug-
gests that the nodes that it is connecting are not
able to pay for its cost. In that case, the pruning
step with Vickrey payments will remove this edge.
On the other hand, if the edge increases its bid, it
will still not be selected (Lemma 3), and will con-
tinue to receive zero payment. Finally, Lemma 1
shows that the pruning step does not induce dis-
honesty in edges, since we are only pruning edges
of the MST T1. 2

Lemma 9 If f(T �) = (1 � 1
)U , where > 2(1 +

�)�, then the mechanism �nds a budget balanced

multicast tree with eÆciency at least (1� �
)U and

pro�t at least (1� 2(1+�)�
)U .

Proof: Suppose T � is a tree such that f(T �) =
(1 � 1

)U . Then the value of the PCST objective

for this tree is PC(T �) = 1
U . Hence GW �nds

a tree T1 such that PC(T1) �
�
U . So we have

f(T1) � (1 � �
)U . Using Lemma 7, the eÆciency

of the solution is f(T) � f(T1) = u(T1) � c(T1) �
(1� �

)U .
Next, using the fact that a spanning tree is a 2-

approximation for a Steiner tree and the Vickrey
price of each edge is no more than (1 + �) times
the edge cost, we �nd that we pay p(TE) � 2(1 +
�)c(T). Moreover, we are extracting u(T) payments
from the edges, so p(TV) = u(T). Hence we have

�(T) � (1 � 2(1+�)�
)U . This is non-negative, since

 > 2(1 + �)�. 2

Lemma 10 If M1 outputs \Fail", then there us no
non-trivial tree T with c(T) < u(T).

Proof: Say T is a tree with c(T) < u(T). Then,
2c(T) < u0(T). Consider the behavior of GW on
the rescaled utilities on the graph G[TV]. Now,
the solution containing the entire tree on this new
problem has (PC) cost c(T). Since GW is a 2-
approximation, it will produce a solution of (PC)
cost at most 2c(T) (using Lemma 2). Thus it can-
not output the trivial solution that has (PC) cost
at least 2c(T). 2

Lemma 11 If for every tree T in the graph we

have c(T) > 4u(T), then M1 outputs \Fail".

Proof: Assume that GW on original utilities re-
turns a non-trivial tree T . Then, if GW is run on
the graph restricted to TV , it still returns the entire
tree (Lemma 2). However, this contradicts the 2-
approximation of GW, since c(T) > 2u(T). Now on
the rescaled utilities, we still have c(T) > 4u(T) >
2u0(T). Thus by the same argument as before, GW
returns the trivial solution. 2

Lemma 12 If M1 returns a non-trivial solution,

the solution is budget balanced and has non-negative

eÆciency.

Proof: Step 3 of Mechanism M1 guarantees
that the tree returned is budget balanced, that is,
�(T) � 0. Since f(T) � �(T), we �nd that the tree
returned has non-negative eÆciency f(T). 2

It is easy to check from the de�nition of M1 that
NPT, IR, CS and PC are satis�ed. We therefore
have the following theorem.

Theorem 13 Mechanism M1 is a (1
2(1+�)� ; 4)-

pro�t guaranteeing mechanism.

4.3 Unknown Node Utilities with Com-

petition at Nodes

To adapt M1 to the case where there are sel�sh
users at nodes with unknown utilities, we need the
input graph to be �-competitive. Moreover, we no
longer have ri = ui.
Mechanism M2 for this case adds a new step,

(say 1(a)), where we run a cancellable auction at

8

each node. If ri is the maximum achievable revenue
at each node, we know that the SCS auction of
Fiat, et al [6] recovers at least r0i = ri=4 at each
node. We now treat r0i as known node utilities,
and continue with Step 2 onwards of M1. If the
mechanism reaches Step 5, it uses ri instead of r0i.

There are two di�erences between this mecha-
nism and M1. Firstly, in this case we compare
the pro�t achieved with the maximum achievable
pro�t, which in turn is de�ned in terms of maxi-
mum achievable revenue at each node. Secondly,
M2 satis�es only a weaker notion of CS. That is,
each node is guaranteed that some of its clients will
get service if the maximum achievable revenue at
that node is suÆciently high. There is no guarantee
of CS in terms of single clients, due to the results
in [6].

Lemma 14 If r(T �) � c(T �) = (1 � 1
)R, where

 > 8(1+ �)�, M2 �nds a budget balanced multicast

tree with eÆciency at least 1
4(1�

�
)R and pro�t at

least 1
4(1�

2(1+�)�
)R.

The proof of the above lemma is similar to the
proof of Lemma 9, and uses the fact that r0i � ri=4
for all i. Lemmas 7, 8, 10, 11 and 12 continue to
hold. We therefore have the following theorem.

Theorem 15 M2 is a (
1

8(1+�)� ; 4)-pro�t guarantee-
ing mechanism when both edges and nodes are play-

ers and the input graph is �-competitive.

4.4 Unknown Node Utilities Without

Competition

Finally, we consider the case where node utilities
are not known, and there is no competition at
nodes, i.e. some nodes have only one user. For
nodes with multiple users, we use the simple trick
of creating a new node for each client and attaching
this to its original node using a zero length edge.
Thus the mechanism assumes that there is a single
user at every node.

We cannot use a strategy-proof mechanism and
still maximize pro�t, since in the absence of com-
petition, nodes have no incentive to add to our
pro�t. However, it is possible to give a strategy-
proof mechanism which always has non-negative

pro�t (and thus non-negative eÆciency), although
it is no longer pro�t-guaranteeing. Mechanism

M3 is de�ned as follows.

1. Obtain bids ce from the edges, and ui from the
clients.

2. Eliminate all nodes which have utility zero.

3. Build an MST on the remaining nodes, and let
the price of each edge be its Vickrey price.

4. Use the Shapley Value mechanism (SV)3 of
[13] to divide cost of edges among nodes.
(Prune the tree if required by the SV mech-
anism).

Lemma 16 Mechanism M3 is strategy-proof for

nodes and edges.

Proof: M3 is strategy-proof for nodes because SV
is strategy-proof. For the edges, strategy-proofness
follows from Lemma 1. 2

Theorem 17 Mechanism M3 has non-negative

pro�t and eÆciency.

Proof: This is by de�nition, since the SV cost
allocation function guarantees that we prune the
tree until we have non-negative pro�t. 2

Even though the above mechanism is not a pro�t
guaranteeing mechanism for any � > 0, it satis�es
Conditions 1 and 4 of De�nition 1, using the above
lemmas. Furthermore, if the mechanism outputs
the trivial solution, we can run GW on the entire
graph and then again with rescaled node utilities
(as in M1) and if both the runs return the trivial
solution, we output \No positive solution". (Notice
that we are again using ri = ui.) It follows from
Lemmas 10 and 11 that this satis�es Condition 3
with � = 4. As for Condition 2, an example in
the appendix shows that even if there is a highly
pro�table input,M3 could end up with a zero pro�t
solution; though the condition is trivially satis�ed
with � = 0.

Theorem 18 Mechanism M3 is a (0; 4)-pro�t
guaranteeing mechanism.

3Any cost division mechanism can be used here; two are
described in the appendix.

9

4.5 Running Time and Network Com-

plexity

GW runs in O(n2 log n) time, where n = jV j. The
pruning procedures require O(n2) time, so the run-
ning time of the mechanisms are O(n2 log n). As-
suming that all mechanisms are run at the root,
we need O(jEj + jV j) messages to obtain the bids.
Moreover, our mechanisms have been de�ned such
that the only other communication is when the root
tells the agents the �nal outcome.

5 Conclusions

The hardness results make it clear that in the ab-
sence of any distributional assumptions, it is impos-
sible to obtain any approximation to pro�t in arbi-
trary graphs for the problem of designing multicast
networks when both edges and nodes are agents. In
this paper, we give mechanisms that approximate
pro�t and eÆciency when there exists a highly eÆ-
cient solution. We de�ne the concept of pro�t guar-
anteeing mechanisms, which is one reasonable way
of measuring the performance of such mechanisms,
where even deciding whether there exists a non-
trivial eÆcient solution is NP-hard. Improving the
parameters of our pro�t guaranteeing mechanisms
remain open. It would also be interesting to see if
such mechanisms exist for other hard problems.

Acknowledgements

We thank Avrim Blum, Christine Parlour and R.
Ravi for several useful discussions.

References

[1] A. Archer and E. Tardos. Frugal path mechanisms.
In Proc. 13th ACM-SIAM Symposium on Discrete Al-

gorithms, 991-999, 2002.

[2] S. Bikhchandani, S. de Vries, J. Schummer and R.
Vohra. Linear programming and Vickrey auctions.
Manuscript, 2001.

[3] J. Feigenbaum, A. Krishnamurthy, R. Sami and S.
Shenker. Approximation and collusion in multicast
cost sharing. In Proc. 3rd ACM Conference on Elec-

tronic Commerce, 2001.

[4] J. Feigenbaum, A. Krishnamurthy, R. Sami and S.
Shenker. Hardness results for multicast cost sharing.
Manuscript, 2002.

[5] J. Feigenbaum, C. Papadimitriou and S. Shenker.
Sharing the cost of multicast transmissions. Journal
of Computer and System Sciences, 63:21-41, 2001.

[6] A. Fiat, A. Goldberg, J. Hartline and A. Karlin.
Competitive generalized auctions. In Proc. 34th ACM
Symposium on Theory of Computing, 72-81, 2002.

[7] A. Goldberg, J. Hartline and A. Wright. Competi-
tive Auctions and Digital Goods. In Proc. 12th Sym-

posium on Discrete Algorithms, 735-744, 2001.

[8] M. Goemans and D. Williamson. A general approx-
imation technique for constrained forest problems.
SIAM Journal of Computing, 24(2):296-317, 1995.

[9] S. Herzog, S. Shenker and D. Estrin. Sharing the
cost of multicast trees: An axiomatic analysis. Trans-
actions on Networking, 5(6):847-860, 1997.

[10] K. Jain and V. Vazirani. Applications of approx-
imation algorithms to cooperative games. In Proc.

33rd ACM Symposium on Theory of Computing, 364-
372, 2001.

[11] D.S. Johnson, M. Minko� and S. Phillips. The prize
collecting Steiner tree problem: Theory and practice.
In Proc. 11th Symposium on Discrete Algorithms,
760-769, 2000.

[12] R. P. McAfee. A dominant strategy double auction.
Journal of Economic Theory, 56:434-450, 1992.

[13] H. Moulin and S. Shenker. Strategyproof sharing of
submodular costs: budget balance vs eÆciency. Eco-
nomic Theory, 18:511-533, 2001.

[14] N. Nisan and A. Ronen. Algorithmic mechanism
design. In Proc. 31st ACM Symposium on Theory of

Computing, 129-140, 1999.

[15] T. Tatur. Asymptotically optimal market mech-
anisms. Working Paper, Northwestern University,
2001.

[16] W. Vickrey. Counterspeculation, auctions and com-
petitive sealed tenders. Journal of Finance, 16:8-37,
1961.

10

A Appendix

A.1 The GW Algorithm for PCST and

Proofs

Consider the following integer programming formu-
lation of PCST. For a subset of nodes R, let zR be
1 if that subset is not spanned by the selected tree.
Then the following IP (PCIP) describes PCST:

min
X

e2E

cexe +
X

R�V :r=2R

zRu(R)

x(Æ(S)) +
X

R�S

zR � 1 8S � V : r =2 S

X

R�V :r=2R

zR � 1

The dual of the linear relaxation of PCIP is
PCD:

max
X

S:r=2S

yS

X

S:e2Æ(S)

yS � ce 8e 2 E

X

S�R

yS � u(R) 8R � V : r =2 R

GW is a primal-dual algorithm, which begins
by setting all dual variables yS to zero. Sets S
which are inclusion wise minimal and such that
their corresponding primal constraints are violated
are called valid sets. GW raises the dual values
of valid sets simultaneously while maintaining dual
feasibility. If an edge constraint in the dual be-
comes tight, the corresponding edge has its primal
value set to 1, and is selected in the solution. Duals
are raised only until the total utility inside the sets
can pay for them. Sets that exhaust all the util-
ity inside them (and are thus unable to grow their
duals) are called dead. When no dual variable can
be raised any further, the algorithm stops and goes
into a second stage. At the end of the �rst stage,
there are some nodes connected to the root by a
tree. Other nodes belong to sets that died before
reaching the root.

In the second stage (the pruning stage), all nodes
that are not connected to the root are discarded.

Nodes belonging to sets that did not die before
reaching the root are retained and connected to the
root. Other nodes that belong to dead sets, but
were still connected to the root at the end of the
�rst step are retained if they are on the path from
the root to some other alive set. The retained nodes
and tree on them form the �nal solution. Goemans
et al [8] prove that the total utility of all nodes in
the �nal solution is at least 1

2 the cost of the tree
connecting them. This gives a 2-approximation to
the problem of minimizing c(T) + u(T).

For a detailed description of the algorithm and
its analysis, the reader is referred to [8].

Proof of Lemma 2: The statement simply fol-
lows from the observation that the behavior of GW
in terms of the dual variables which are a�ected by
T is una�ected by the rest of the graph. Hence if
we restrict our attention to G0, the behavior of GW
is unchanged, and it returns T . 2

Proof of Lemma 3: Suppose edge e has its cost
increased by a small amount, from ce to c0e. If the
edge was not tight in G, then clearly it will not
be tight in G0 either. If it was tight in G, then
it may or may not be tight in G0. However, from
the description of the algorithm, it follows that the
set of nodes selected in G0 cannot include a node
which wasn't selected in G. These two observations
complete the proof. 2

A.2 Mechanism M3 is not pro�t guaran-

teeing

The following example shows that even in the pres-
ence of a solution with extremely high surplus,
MechanismM3 may return the trivial solution. The
graph consists of n+2 nodes (one being the root),
arranged in a cycle. One of the neighbors of the
root is a special node with utility k. This is con-
nected to the root with an edge of cost 2. All other
nodes have utility Æ, and all other edges have cost
1. Let Æ be small enough so that nÆ << k. Hence
U � k. Moreover, k is such that k + nÆ < n.

The mechanism will �rst pick the MST, which is
all the edges of cost 1. The MST costs n. Any kind
of cost allocation will prune out all the nodes, and
return the trivial solution. However, the solution
consisting of just the special node and the edge of
cost 2 has eÆciency k � 2 � U .

11

It can also be shown that \�ltering" nodes with
very low utility does not help, by a simple modi�-
cation of the above example.

A.3 Pruning Rules and Cost Division

Methods

Suppose we are given a rooted tree T , with edge
costs ce and node utilities ui. We want to select a
subtree T 0 of T and allocate costs p(i) to the nodes,
such that p(i) � ui for all nodes i and

P
i2T 0 p(i) =

c(T 0), that is, the cost of the subtree is recovered
from the nodes. Such a cost allocation function is
called budget-balanced. Given any cost allocation
function p, the following is a pruning subroutine
which computes T 0:

1. Set T 0 = T .

2. Mark all nodes \alive".

3. For all alive nodes i, compute p(i).

4. While there exists a node with p(i) > ui:

(a) Mark all nodes with p(i) > ui to be
\dead".

(b) For every edge, if all nodes downstream
of it are dead, delete the edge from T 0.

(c) Recompute p(i) for all alive nodes i to
distribute the costs of the edges in T 0 to
the alive nodes.

5. Return T 0, and the set of alive nodes.

The Shapley Value cost allocation function [5, 13]
is as follows. For any edge e, let ae denote the
number of alive nodes downstream of it. For any
node i, let E(i) be the set of edges in the path
from the node to the root. Then we de�ne p(i) =P

e2E(i) ce=ae. In other words, the cost of every
edge is distributed equally among the alive nodes
downstream of it.

Another budget-balanced cost allocation func-
tion is the Jain-Vazirani function (JV), derived
from the Primal-Dual algorithm for computing a
minimum spanning tree. Essentially, each alive
node maintains a counter, and all counters are ini-
tially at zero. All counters go up at the same rate,

and initially, each counter \loads" the edge imme-
diately upstream of the node. When the sum of
counter values loading an edge equals the cost of the
edge, we say the edge is \tight", and all counters
loading the edge are moved up to load the edge im-
mediately upstream of it, with their values reset to
zero. For each node, this goes on until the counter
�nishes loading the edge adjacent to the root. At
this point, the node i is charged p(i) which is de-
�ned to be the sum of the values reached by all
its counters on the path between the node and the
root. For a detailed discussion of the JV function,
the reader is referred to their paper [10].

12

