
HumanAUT
Secure Human Identification Protocols

Adam Bender
Manuel Blum
Nick Hopper

The ALADDIN Center

Carnegie Mellon University

What is HumanAUT?

! HumanAUT stands for Human
AUThentication
" Authentication: proving your identity

(logging in) to a third party
! Protocols for a human to authenticate

to a computer/ATM/etc.
! With a few twists…

A hypothetical environment

! Assume you are a:
" Naked person
" In a glass house
" With an insecure terminal

! Or you have lost your luggage, or had
your wallet stolen, etc.

! How do you authenticate yourself?
! HumanAUT attempts to solve this

A hypothetical environment

1
0
1
1

You

Adversaries

MP3 server

Motivation: conventional
authentication methods
! Many authentication methods are

currently in use
! Passwords, PIN numbers, smart

cards, tokens, biometrics

! Each one of these has problems!

Conventional authentication –
problems (1)
! Passwords can be snooped / key-

logged / sniffed / surveilled / cracked /
intercepted / guessed / dumpster
dived / etc.

! PIN numbers are short and often easy
to guess (birthdays), susceptible to
“shoulder surfing”

Conventional authentication –
problems (2)
! Hardware is expensive and relies on

physical mechanisms, which can be
stolen

! Biometrics are also expensive, and
not as secure as we thought
" Gelatin fingers (Matsumoto ‘02)
" Able to reconstruct sample images

from face recognition template (Adler
’03)

Conventional authentication –
problems (3)
! Once someone steals your smart card

or lifts fingerprints, it is very expensive
or impossible to change your secret –
single use access methods are better

! One-time passwords are very
inefficient though – ideally, want
reusable challenge-response system

Challenge-response

! Computer asks a series of questions
! If answered correctly, user is

authenticated, otherwise they are
locked out

! Think of “Password: ” prompt as
challenge, password as response

! But with different questions and
answers each time

HumanAUT

! HumanAUT is a challenge-response
scheme with a shared secret between
the human, who answers challenges
using the secret, and the computer,
which generates a unique random
challenge on demand, where the
correct response depends on the
shared secret

Goals

! Secure
" No one else can authenticate

themselves, even after observing
successful authentications

! Human executable
" People have to do it in their heads –

no hardware or other aids

Definitions (1)

! Authentication protocol
" Two sets of instructions, H (human) and C

(computer), with a shared secret s
" C generates random challenges for H to

respond to, and decides to accept or reject
based on H’s response

" If H and C are using the same s, C accepts
with high probability, otherwise rejects with
high probability.

" Assume presence of adversary A

Definitions (2)

! Passive adversaries
" Observes authentications, then tries to

authenticate
! Active adversaries

" May construct messages and present them
to H

! Note that if A can intercept a challenge,
have H respond, and then present that to C
(man-in-the-middle attack), no protocol can
be secure!

Definitions (3)

! A protocol is:
" (p, k) secure if, for polynomial-time

adversary A observing k
authentications, P(C accepts A) < p

" (p, q, k) detecting if it is (p, k) secure
and if H can detect invalid challenges
with probability > 1-q

Previous work - Matsumoto

! Matsumoto has come up with many
schemes

! First was based on hiding a secret
string among random characters, in
positions dependent on the challenge

! Later broken, proposed new schemes

Previous work - Matsumoto

! Including map-based scheme

Previous work - Déjà Vu

! Perrig created Déjà Vu, a graphical
recognition based system

! Based on recognition of images, not
recall of secret key

! Requires large amount of graphical
overhead – creation, storage,
presentation

! Only good as memory aid – no real
security guarantees as implemented

Previous work - Blum

! Mapping from letters → digits
! Challenge is an English string,

response is a string of digits, each
letter in the challenge corresponds to
one digit in the response

! Letters transformed into digits and
arithmetic manipulation performed
with them

! s = mapping, arithmetic function

Previous work – Hopper (1)

! Created many of the useful definitions
! Scheme of filling a large grid with

blank spaces and numbers, s =
location of numbers to add together, H
responds with that sum mod 10

! However, grid has to have 1000 digits,
H searches for 19 of them

Previous work – Hopper (2)

! Learning parity with noise: s = n-bit
vector, challenge is c = n-bit vector,
response is c•s

! Authenticate of correct exactly k out of
m times – introduces noise factor
(errors), essentially makes it hard to
find a good data set to work with

! LPN is NP-Hard

Previous work – Hopper (3)

! Came up with methods for ensuring
randomness in incorrect answers

! Also came up with ways to detect
invalid challenges – all challenges
must satisfy certain properties, or else
H responds randomly, this prevents
active A from creating arbitrary
challenges

Previous work – Li (1)

! Presents two components of a secure
authentication scheme
" “Twins” – essentially LPN with

superfluous noise
" “Foxtail” – feed the unique response

into a many-to-one function, so that
the attacker doesn’t know what the
actual response is. No evidence this
is any more secure

Previous work – Li (2)

! Very elaborate demo scheme on the
web, combines several schemes
(mostly modified Déjà Vu and
foxtailing)

! Takes a very long time to
authenticate, especially with the
recommended security parameters

Linear congruency

! Based on Manuel’s scheme, uses mapping
from letters → digits

! Challenge is English word (or string) =
a1a2…an

! x = sum of all letters in challenge
! b1= n, bi = ri-1

! ri = ai*x + bi

! Response = r1||r2||…||rn

! Averages 40 seconds per response

Grid / matrix

! Large grid of letters, each one maps
to a digit via previously mentioned
letter mapping

! s = location of digits to add together,
or rules to find locations that depend
on content of grid

! H responds with sum mod 10,
response time a lot faster (20 x 20
grid ~ 4 seconds)

Visual map

! Similar to Matsumoto’s map scheme
! Numbers (letters) at certain locations in

mock city layout are added together mod 10
! Can (like most visual schemes) be made to

detect if C or A generated the challenge
! Easy to memorize and execute, but can

these locations be the same each time?

Two subsets (Avrim)

! Challenge is n-bit vector, s = two subsets of
size log(n) (based on position in vector)

! r1 = mode of first subset
! r2 = sum of second subset
! Response = r1 ⊕ r2

! Can be given over the phone – no terminal
required

! Problem: generalize to mod 10 or 100

Possible attacks

! Replaying same attack to H multiple
times to defeat LPN

! Using differential cryptanalysis
techniques – must have detection of
invalid challenges

! Man-in-the-middle attack – very hard
to solve

Questions (1)

! How many bits per response?
" Security vs. response time
" How sure do we want to be?

Probability of A succeeding on
random guesses is generally
exponentially small

" Number of responses required
depends on range of responses:
ASCII char ~ 6.5 bits, digit ~ 3.3 bits

Questions (2)

! How long can it take?
" HCI issue – what are people willing to

do to increase security?
! How much can people remember?

" What if they choose the secret? Can
they be trained to remember more?

! How quickly and accurately can
people do math?
" Psychological limits of ~90% of people

Questions (3)

! What are people good at doing?
" Visual recognition is easy
" AESK seems to be hard…

! How big should s be?
" How much is needed to guarantee H

is who he says he is?
" How often should s change?

Current considerations

! Focusing on problems that machine
learning people find to be difficult
(Avrim)

! LPN is NP-Hard, should that be a
requirement?

! Combining different schemes

Current directions

! Design of new protocols and
combining existing ones to increase
security and human executability
" Visual map + two subsets with LPN

! Proving security bounds on response
functions

! Ways to make it easy for people to
make letter mappings

Any questions?

