Solving Partial Differential Equations Numerically

Miklós Bergou with: Gary Miller, David Cardoze, Todd Phillips, Mark Olah

Overview

- What are partial differential equations?
- How do we solve them? (Example)
- Numerical integration
- Doing this quickly

Partial Differential Equations

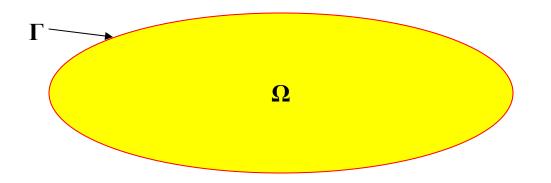
- Equation involving functions and their partial derivatives
- Example: Wave Equation

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$$

- We wish to know ψ , which is function of many variables
- Typically, no analytical solution possible

Problem Domain

- Want to solve problem for specific domain
- Ω: bounded open domain in space Rⁿ
- Γ : boundary of Ω
- If domain 2-D, we have following:



Navier-Stokes Equation

- Model of incompressible fluid flow
- Governed by equation:

$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} - \nu \nabla^2 \mathbf{u} = -\frac{\nabla P}{\rho} + \mathbf{a}$	in $\Omega \times (0,T]$	
$\nabla \cdot \mathbf{u} = 0$	in $\Omega \times (0,T]$	
$\mathbf{u} = 0$	on $\Gamma \times (0,T]$	
$\mathbf{u}(\mathbf{x}) = \mathbf{u}^0$	at $t = 0$	
u : fluid velocity		
P: pressure		
ρ: mass density		
v: dynamic viscosity		
a : acceleration due to external force		

Simplifying Navier-Stokes: Just Stokes

• Assume steady flow:

$(\mathbf{u}\cdot\nabla)\mathbf{u}-\nu\nabla^{2}\mathbf{u}=-\frac{\nabla P}{\rho}+\mathbf{a}$	in Ω
$\nabla \cdot \mathbf{u} = 0$	in Ω
$\mathbf{u} = 0$	on Γ

Neglect convection:

$\left -\nu\nabla^2\mathbf{u} = -\frac{\nabla P}{\rho} + \mathbf{a}\right $	in Ω
$\nabla \cdot \mathbf{u} = 0$	in Ω
$\mathbf{u} = 0$	on Γ

Solving Stokes Equation

$-\nu \nabla^2 \mathbf{u} = \mathbf{f}$	in Ω
$\nabla \cdot \mathbf{u} = 0$	in Ω
$\mathbf{u} = 0$	on Γ

- Space of possible functions V that could be solutions to velocity u
- Choose any v ∈ V, multiply both sides of Stokes Equation and integrate, resulting in:

$$-\nu \int_{\Omega} \mathbf{v} \cdot \nabla^2 \mathbf{u} d\mathbf{x} = \int_{\Omega} \mathbf{v} \cdot \mathbf{f} d\mathbf{x}$$

Solving Stokes Equation 2

Apply Green's Theorem and boundary conditions to obtain:

$$\nu \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v} d\mathbf{x} = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} d\mathbf{x}$$

• For notational convenience, this is written as:

$$\langle \mathbf{u}, \mathbf{v} \rangle = (\mathbf{f}, \mathbf{v})$$

Discretize the domain

- Create mesh by partitioning domain into finite elements (curved Bezier triangles)
- Create subspace V_h of V of piecewise polynomial functions with basis function defined at each node

$$\varphi(\mathbf{x}) =$$
 set of basis functions

$$\mathbf{v}_h(\mathbf{x}) \in V_h \Longrightarrow \mathbf{v}_h(\mathbf{x}) = \sum_{i=1}^M \eta_i \varphi_i(\mathbf{x})$$

Linear Equations

- Since $V_h \subset V$, $\mathbf{u}_h \in V$ so we can say that in order for \mathbf{u}_h to be a solution to Stokes equation, we need $\langle \mathbf{u}_h, \mathbf{v} \rangle = (\mathbf{f}, \mathbf{v}) \quad \forall \mathbf{v} \in V_h$
- In particular, must be true for basis functions, so writing u_h in terms of basis functions, we have:

$$\sum_{i=1}^{M} \eta_i \left\langle \varphi_i, \varphi_j \right\rangle = \left(\mathbf{f}, \varphi_j \right) \qquad j = 1, \dots, M$$

Solution to Problem

$$\mathbf{A} \mathbf{\eta} = \mathbf{b}$$
$$\mathbf{A}_{ij} = \left\langle \varphi_i, \varphi_j \right\rangle$$
$$\mathbf{\eta} = [\eta_1, \dots, \eta_M]^T$$
$$\mathbf{b} = [(\mathbf{f}, \varphi_1), \dots, (\mathbf{f}, \varphi_M)]^T$$

- Knowing coefficients η_i means we know solution
 u_h
- This is a system of M linear equations with M unknowns, can be solved with various numerical methods

Integration

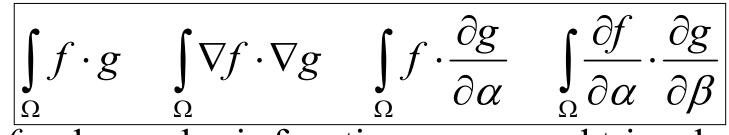
- Computing stiffness matrix and load vector requires lots of integrals $\langle \varphi_i, \varphi_j \rangle$, (\mathbf{f}, φ_i)
- These are done numerically via quadratures:

$$\int_{0}^{1} f(x)dx = \sum_{i=1}^{n} w_{i}f(x_{i})$$
$$\int_{0}^{1} \int_{0}^{1-y} f(x, y)dxdy = \sum_{i=1}^{n} w_{i}f(x_{i}, y_{i})$$

Choose Gauss points and weights to give high order accuracy

Full Navier-Stokes Equation

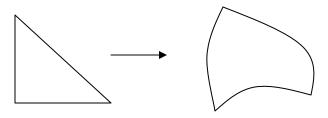
Requires four types of integrals



■ *f* and *g* are basis functions on curved triangles

• Map from K_2 simplex to curved triangles:

 $F: K_2 \rightarrow Bezier$



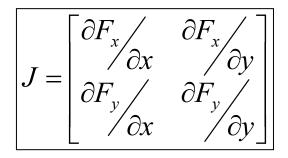
Mapping K_2 to Bezier

Mapping requires 6 control points, defined by

$$F = \sum_{i=1}^{6} c_i b_i$$

• b_i 's are Bezier basis function (polynomials)

Jacobian is defined in standard way



Integrals on K_2

$$\int_{\Omega} f \cdot g \quad \int_{\Omega} \nabla f \cdot \nabla g \quad \int_{\Omega} f \cdot \frac{\partial g}{\partial \alpha} \quad \int_{\Omega} \frac{\partial f}{\partial \alpha} \cdot \frac{\partial g}{\partial \beta}$$

$$\int_{K_2} \phi \cdot \psi \cdot |\det J| = \int_{K_2} J^{-T} \nabla \phi \cdot J^{-T} \nabla \psi \cdot |\det J| = \int_{K_2} \phi \cdot \frac{\partial \psi}{\partial \alpha} \cdot J_{\alpha}^{-1} \cdot |\det J| = \int_{K_2} \left(\frac{\partial \psi}{\partial \alpha} \cdot J_{\alpha}^{-1} \right) \cdot \left(\frac{\partial \psi}{\partial \beta} \cdot J_{\beta}^{-1} \right) \cdot |\det J|$$

Need for speed

- Each type of integral is done on each triangle, for each combination of basis functions
- After each time step, mesh moves (Lagrangian), so integrals need to be done for each timestep
- Speed and accuracy are required

Speedup: Cacheing

- Cache K₂ basis functions, so only Jacobian needs to be evaluated for each element
- Basis functions cached at Gauss points, so functions are essentially just arrays of values
- Cache Jacobian for each element as well, since it is reused in every integral
- Large speedup versus recomputation each time

Idea: Expand integrals

 Jacobian determinant can be written in terms of Bezier basis functions with coefficients given by control points

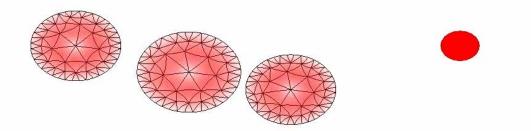
$$\int_{\Omega} f \cdot g = \int_{K_2} \phi \cdot \psi |\det J| = \sum_{i=1}^{6} n_i \int_{K_2} \phi \cdot \psi \cdot b_i$$

- Integrals in this sum no longer depend on control points
- Precompute integrals, compute coefficients only

Reusing old values

- After each time step, large portions of mesh unchanged
- If Jacobian of element is "close enough" to old value, reuse old integrals
- Speedup depends on measure of "close enough" and how much mesh changes

Example movie



Quadratic Moving Mesh 200-500 Triangles

