
Solving Partial Differential 
Equations Numerically

Miklós Bergou
with: Gary Miller, David Cardoze, Todd 
Phillips, Mark Olah



Overview

What are partial differential equations?
How do we solve them? (Example)
Numerical integration
Doing this quickly



Partial Differential Equations

Equation involving functions and their partial 
derivatives
Example: Wave Equation

We wish to know ψ, which is function of many variables
Typically, no analytical solution possible
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Problem Domain

Want to solve problem for specific domain
Ω: bounded open domain in space Rn

Γ: boundary of Ω
If domain 2-D, we have following:

Ω

Γ



Navier-Stokes Equation

Model of incompressible fluid flow
Governed by equation:

u: fluid velocity
P: pressure

ρ: mass density
ν: dynamic viscosity

a: acceleration due to external force
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Simplifying Navier-Stokes: Just Stokes

Assume steady flow:

Neglect convection: 

( )

Γ=
Ω=⋅∇

Ω+
∇

−=∇−∇⋅

on                                           0
in                                      0

in         2

u
u

auuu
ρ

ν P

Γ=
Ω=⋅∇

Ω+
∇

−=∇−

on                              0
in                         0

in         2

u
u

au
ρ

ν P



Solving Stokes Equation

Space of possible functions V that could be solutions to 
velocity u
Choose any        , multiply both sides of Stokes Equation 
and integrate, resulting in:
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Solving Stokes Equation 2

Apply Green’s Theorem and boundary conditions to 
obtain:

For notational convenience, this is written as:
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Discretize the domain
Create mesh by partitioning domain into finite 
elements (curved Bezier triangles)
Create subspace Vh of V of piecewise polynomial 
functions with basis function defined at each node
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Linear Equations

Since          ,            so we can say that in order for 
uh to be a solution to Stokes equation, we need

In particular, must be true for basis functions, so 
writing uh in terms of basis functions, we have:

VVh ⊂ Vh ∈u
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Solution to Problem

Knowing coefficients ηi means we know solution 
uh

This is a system of M linear equations with M 
unknowns, can be solved with various numerical 
methods
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Integration

Computing stiffness matrix and load vector 
requires lots of integrals –

, 
These are done numerically via quadratures:

Choose Gauss points and weights to give high 
order accuracy
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Full Navier-Stokes Equation

Requires four types of integrals

f and g are basis functions on curved triangles
Map from K2 simplex to curved triangles:

F : K2 Bezier
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Mapping K2 to Bezier

Mapping requires 6 control points, defined by

bi’s are Bezier basis function (polynomials)
Jacobian is defined in standard way
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Integrals on K2
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Need for speed

Each type of integral is done on each triangle, for 
each combination of basis functions
After each time step, mesh moves (Lagrangian), 
so integrals need to be done for each timestep
Speed and accuracy are required



Speedup: Cacheing

Cache K2 basis functions, so only Jacobian needs 
to be evaluated for each element
Basis functions cached at Gauss points, so 
functions are essentially just arrays of values
Cache Jacobian for each element as well, since it 
is reused in every integral
Large speedup versus recomputation each time



Idea: Expand integrals

Jacobian determinant can be written in terms of 
Bezier basis functions with coefficients given by 
control points

Integrals in this sum no longer depend on control 
points
Precompute integrals, compute coefficients only
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Reusing old values

After each time step, large portions of mesh 
unchanged
If Jacobian of element is “close enough” to old 
value, reuse old integrals
Speedup depends on measure of “close enough” 
and how much mesh changes



Example movie



Questions?


