
Solving Partial Differential
Equations Numerically

Miklós Bergou
with: Gary Miller, David Cardoze, Todd
Phillips, Mark Olah

Overview

What are partial differential equations?
How do we solve them? (Example)
Numerical integration
Doing this quickly

Partial Differential Equations

Equation involving functions and their partial
derivatives
Example: Wave Equation

We wish to know ψ, which is function of many variables
Typically, no analytical solution possible

2

2

22

2

2

2

2

2 1
tvzyx ∂

∂
=

∂
∂

+
∂
∂

+
∂
∂ ψψψψ

Problem Domain

Want to solve problem for specific domain
Ω: bounded open domain in space Rn

Γ: boundary of Ω
If domain 2-D, we have following:

Ω

Γ

Navier-Stokes Equation

Model of incompressible fluid flow
Governed by equation:

u: fluid velocity
P: pressure

ρ: mass density
ν: dynamic viscosity

a: acceleration due to external force

()

() 0at
T](0,on 0
T](0,in 0

T](0,in

0

2

==

×Γ=
×Ω=⋅∇

×Ω+
∇

−=∇−∇⋅+
∂
∂

t

P
t

uxu
u
u

auuuu
ρ

ν

Simplifying Navier-Stokes: Just Stokes

Assume steady flow:

Neglect convection:

()

Γ=
Ω=⋅∇

Ω+
∇

−=∇−∇⋅

on 0
in 0

in 2

u
u

auuu
ρ

ν P

Γ=
Ω=⋅∇

Ω+
∇

−=∇−

on 0
in 0

in 2

u
u

au
ρ

ν P

Solving Stokes Equation

Space of possible functions V that could be solutions to
velocity u
Choose any , multiply both sides of Stokes Equation
and integrate, resulting in:

Γ=
Ω=⋅∇
Ω=∇−

on 0
in 0
in 2

u
u

fuν

V∈v

xfvxuv ∫∫
ΩΩ

⋅=∇⋅− dd2ν

Solving Stokes Equation 2

Apply Green’s Theorem and boundary conditions to
obtain:

For notational convenience, this is written as:

xvfxvu ∫∫
ΩΩ

⋅=∇⋅∇ ddν

),(, vfvu =

Discretize the domain
Create mesh by partitioning domain into finite
elements (curved Bezier triangles)
Create subspace Vh of V of piecewise polynomial
functions with basis function defined at each node

() functions basis ofset =xϕ

() () ()∑
=

=⇒∈
M

i
iihhh V

1

xxvxv ϕη

Linear Equations

Since , so we can say that in order for
uh to be a solution to Stokes equation, we need

In particular, must be true for basis functions, so
writing uh in terms of basis functions, we have:

VVh ⊂ Vh ∈u

() hh V∈∀= vvfvu ,,

() Mjjji

M

i
i ,...,1 ,,

1
==∑

=

ϕϕϕη f

Solution to Problem

Knowing coefficients ηi means we know solution
uh

This is a system of M linear equations with M
unknowns, can be solved with various numerical
methods

[]
() ()[]TM

T
M

jiij

ϕϕ

ηη

ϕϕ

,,...,,

,...,

,

1

1

ffb

η

A

bAη

=

=

=

=

Integration

Computing stiffness matrix and load vector
requires lots of integrals –

,
These are done numerically via quadratures:

Choose Gauss points and weights to give high
order accuracy

ji ϕϕ , ()iϕ,f

()∑∫ ∫

∑∫

=

−

=

=

=

n

i
iii

y

n

i
ii

yxfwdxdyyxf

xfwdxxf

1

1

0

1

0

1

1

0

,),(

)()(

Full Navier-Stokes Equation

Requires four types of integrals

f and g are basis functions on curved triangles
Map from K2 simplex to curved triangles:

F : K2 Bezier

∫∫∫∫
ΩΩΩΩ ∂

∂
⋅

∂
∂

∂
∂
⋅∇⋅∇⋅

βαα
gfgfgfgf

Mapping K2 to Bezier

Mapping requires 6 control points, defined by

bi’s are Bezier basis function (polynomials)
Jacobian is defined in standard way

∑
=

=
6

1i
ii bcF

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=

y
F

x
F

y
F

x
F

J
yy

xx

Integrals on K2

∫∫∫∫
ΩΩΩΩ ∂

∂
⋅

∂
∂

∂
∂
⋅∇⋅∇⋅

βαα
gfgfgfgf

∫∫∫∫ ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

∂
∂

⋅⎟
⎠
⎞

⎜
⎝
⎛ ⋅
∂
∂

⋅⋅
∂
∂
⋅⋅∇⋅∇⋅⋅ −−−−−

2222

det det det det 111

KKK

TT

K

JJJJJJJJJ βαα β
ψ

α
ψ

α
ψφψφψφ

Need for speed

Each type of integral is done on each triangle, for
each combination of basis functions
After each time step, mesh moves (Lagrangian),
so integrals need to be done for each timestep
Speed and accuracy are required

Speedup: Cacheing

Cache K2 basis functions, so only Jacobian needs
to be evaluated for each element
Basis functions cached at Gauss points, so
functions are essentially just arrays of values
Cache Jacobian for each element as well, since it
is reused in every integral
Large speedup versus recomputation each time

Idea: Expand integrals

Jacobian determinant can be written in terms of
Bezier basis functions with coefficients given by
control points

Integrals in this sum no longer depend on control
points
Precompute integrals, compute coefficients only

i
i K

i
K

bnJgf ∑ ∫∫∫
=Ω

⋅⋅=⋅=⋅
6

1
22

det ψφψφ

Reusing old values

After each time step, large portions of mesh
unchanged
If Jacobian of element is “close enough” to old
value, reuse old integrals
Speedup depends on measure of “close enough”
and how much mesh changes

Example movie

Questions?

