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Overview

What are partial differential equations?
How do we solve them? (Example)
Numerical integration
Movie



Partial Differential Equations

Equation involving functions and their partial 
derivatives
Example: Wave Equation

We wish to know ψ, which is function of many variables
Typically, no analytical solution possible
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Problem Domain

Want to solve problem for specific domain
Ω: bounded open domain in space Rn

Γ: boundary of Ω
If domain 2-D, we have following:

Ω

Γ



Navier-Stokes Equation

Model of incompressible fluid flow
Governed by equation:

u: fluid velocity
P: pressure

ρ: mass density
ν: dynamic viscosity

a: acceleration due to external force
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Simplifying Navier-Stokes: Just Stokes

Assume steady flow:

Neglect convection: 
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Solving Stokes Equation

Space of possible functions V that could be solutions to 
velocity u
Choose any        , multiply both sides of Stokes Equation 
and integrate, resulting in:
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Solving Stokes Equation 2

Apply Green’s Theorem and boundary conditions to 
obtain:

For notational convenience, this is written as:
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),(, vfvu =



Discretize the domain
Create mesh by partitioning domain into finite 
elements
Create subspace Vh of V of piecewise polynomial 
functions with basis function defined at each node
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Linear Equations

Since          ,            so we can say that in order for 
uh to be a solution to Stokes equation, we need

In particular, must be true for basis functions, so 
writing uh in terms of basis functions, we have:
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Solution to Problem

Knowing coefficients ηi means we know solution 
uh
This is a system of M linear equations with M 
unknowns, can be solved with various numerical 
methods
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Integration

Computing stiffness matrix and load vector 
requires lots of integrals –

, 
These are done numerically via quadratures:

Choose Gauss points and weights to give high 
order accuracy
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What I’m working on

Making this integration fast

Any Questions?


