
June 12, 2003
(joint work with Umut Acar, and Guy Blelloch)

Convex Hull for Dynamic Data
Convex Hull and Parallel Tree Contraction

Jorge L. Vittes

07/15/03 Convex Hull for Dynamic Data 2

Motivation

! Application data is dynamic
! word processors: slowly changing text
! graphics: render similar images
! mobile phone networks: continuously moving hosts

! Important to handle dynamic data efficiently

07/15/03 Convex Hull for Dynamic Data 3

Dynamic Algorithms: Changing Data

a b

d

c

a b

d

c

e

a b

d

c
e

07/15/03 Convex Hull for Dynamic Data 4

Kinetic Algorithms: Moving Data

a b

d

c

a b

c

d

a
b

c

d

Time = 0
Time = 1

Time = 1+ε ... ∞

07/15/03 Convex Hull for Dynamic Data 5

How to invent Dynamic/Kinetic Algorithms
! Just like any other algorithm. Think, ponder, divide, conquer...
! Or, use adaptivity...

07/15/03 Convex Hull for Dynamic Data 6

Adaptivity
! Makes a standard algorithm dynamic or kinetic
! Requires little change to the standard algorithm
! Can be done semi-automatically
! Not all algorithms yield efficient adaptive algorithms

! Will talk about this more

07/15/03 Convex Hull for Dynamic Data 7

How does Adaptivity Work?
! Represent a computation with a dynamic dependency graph
! nodes = data, edges = dependencies
! Sources = input, sinks = output,
! The user can

! change the input,
! update the output

! Update:
! Take a changed node,
! Update all its children (the children are now changed)
! Repeat until no more changed nodes

07/15/03 Convex Hull for Dynamic Data 8

Adaptivity Example

 fun f (a,b,c) =
 let
 u = a+b
 in
 if (u > 0) then
 g(u)
 else
 g(b+c)
 end

u 3

a b c

 a+b 1+b

 g(u)

r

 if u>0 then
 g(u)
 else
 g(b+c)

0.33

1 32

07/15/03 Convex Hull for Dynamic Data 9

Adaptivity Example: Change

u 3

a b c

 a+b 1+b

 g(u)

r0.33

32-2
 fun f (a,b,c) =
 let
 u = a+b
 in
 if (u > 0) then
 g(u)
 else
 g(b+c)
 end

 if u>0 then
 g(u)
 else
 g(b+c)

07/15/03 Convex Hull for Dynamic Data 10

Update

u 0

a b c

 a+b -2+b

 g(u)

r0.5

v 5

 g(v)

-2 32
 fun f (a,b,c) =
 let
 u = a+b
 in
 if (u > 0) then
 g(u)
 else
 g(b+c)
 end

 if u>0 then
 g(u)
 else
 g(b+c)

07/15/03 Convex Hull for Dynamic Data 11

Update

u 0 5

-2

a
32

 a+b -2+b b+c 2+c

 g(v)

r0.5

 g'(v)

b c

v

 fun f (a,b,c) =
 let
 u = a+b
 in
 if (u > 0) then
 g(u)
 else
 g(b+c)
 end

 if u>0 then
 g(u)
 else
 g(b+c)

07/15/03 Convex Hull for Dynamic Data 12

Adaptivity and Stability
! Adaptivity updates the result by rerunning the parts of the

computation affected by the input change
! It is efficient when the computation is “stable”,I.e.,

computations on “similar” inputs are “similar”

! We apply the adaptivity technique to convex hulls
! Result: Efficient Dynamic and Kinetic convex hulls

07/15/03 Convex Hull for Dynamic Data 13

1-D Convex Hull: Max and Min

! Just consider upper hull: Finding the maximum

! Consider two algorithms:
! The March: March through the list
! The Tournament: pair up the elements and take the max of each pair

07/15/03 Convex Hull for Dynamic Data 14

Kinetic Maximum

! Numbers increase/decrease continuously in time ni(t) = ni + ci t

time

ni

tgreen = 1 tblue = 3tred = 0

n3(t) = 6-t

n2(t) = 5

n1(t) = 2+t

07/15/03 Convex Hull for Dynamic Data 15

Sampling

time

ni

tgreen = 1 tblue = 3tred = 0

n1(t) = 2+t

n2(t) = 5

n3(t) = 6-t

07/15/03 Convex Hull for Dynamic Data 16

Internal and External Events

External event: Final result changes

Internal event: Final result does not change
 but a test fails

07/15/03 Convex Hull for Dynamic Data 17

Proof Simulation via Certificates
! A set of comparisons that prove the current maximum
! Associate a certificate with each comparison

! certificate = comparison result + failure time
! Consider the times that a certificate fails

! We need an algorithm that updates the result as well as
the certificates

! Use adaptivity to obtain to do the update efficiently

07/15/03 Convex Hull for Dynamic Data 18

Kinetic March

4+t 5-t 1 7+1.5t 6 3 8 4

0.5

Time=0

4+t 5-t 1 7+1.5t 6 3 8 4

4 0.66

0.66

Time=0.5+ε

4+t 5-t 1 7+1.5t 6 3 8 4Time=0.66+ε

07/15/03 Convex Hull for Dynamic Data 19

Kinetic March Performance

! O(n): Because an item in the beginning of the list could become
the maximum and it will be compared to the rest of the list

! Not acceptable because computing from scratch takes O(n)

07/15/03 Convex Hull for Dynamic Data 20

The Kinetic Tournament

7 4 1+t 5-t 6 3 8 4

7 5-t 6 8

7 8

8Time = 0

f = 2

07/15/03 Convex Hull for Dynamic Data 21

1+t

The Kinetic Tournament

7 4 1+t 5-t 6 3 8 4

7 6 8

7 8

8Time=2+ε

f=6

07/15/03 Convex Hull for Dynamic Data 22

1+t

The Kinetic Tournament

7 4 1+t 5-t 6 3 8 4

7 6 8

1+t 8

8Time=6+ε f=7

07/15/03 Convex Hull for Dynamic Data 23

1+t

The Kinetic Tournament

7 4 1+t 5-t 6 3 8 4

7 6 8

1+t 8

1+tTime=7+ε f=7

07/15/03 Convex Hull for Dynamic Data 24

Performance of Kinetic Tournament
! Worst case log n time per event

! This kinetic algorithm is an adaptive version of the standard
tournament algorithm for finding maximum

07/15/03 Convex Hull for Dynamic Data 25

2-D Convex Hull

! Many algorithms: Quick Hull, Graham Scan, Incremental, Merge
Hull, Ultimate, Improved Ultimate...

! We will focus on the Quick Hull algorithm
! Input: A list of points P
! Output: The boundary points on the hull of P
! Example: Input = [a,b,c,d] Output = [a,b,d]

a b

d

c

07/15/03 Convex Hull for Dynamic Data 26

Quick Hull Example

A

C

B

D

F

G

H

I

E

J

M

K

L

N

O

P

[A B C D E F G H I J K L M N O P]

07/15/03 Convex Hull for Dynamic Data 27

Quick Hull Example - Filter

A

C

B

D

F

G

H

I

E

J

M

K

L

N

O

P

[A B D F G H J K M O P]

07/15/03 Convex Hull for Dynamic Data 28

Quick Hull Example - Maximum

A

C

B

D

F

G

H

I

E

J

M

K

L

N

O

P

[A B D F G H J K M O P]

07/15/03 Convex Hull for Dynamic Data 29

Quick Hull Example - Filter

A

C

B

D

F

G

H

I

E

J

M

K

L

N

O

P

[[A B F J] [J O P]]

07/15/03 Convex Hull for Dynamic Data 30

Quick Hull Example - Maximum

A

C

B

D

F

G

H

I

E

J

M

K

L

N

O

P

[[A B F J] [J O P]]

07/15/03 Convex Hull for Dynamic Data 31

Quick Hull Example - Base Case

A

C

B

D

F

G

H

I

E

J

M

K

L

N

O

P

[[A B] [B J] [J O P]]

07/15/03 Convex Hull for Dynamic Data 32

Quick Hull Example - Done

A

C

B

D

F

G

H

I

E

J

M

K

L

N

O

P

[[A B] [B J] [J O] [O P]]

07/15/03 Convex Hull for Dynamic Data 33

Kinetic Quick Hull

! Two kinds of tests: Line-side and distance
comparisons

! Filtering => Line Side
! Finding the furthest point => Distance comparisons

! Have certificates for these two events that is all

07/15/03 Convex Hull for Dynamic Data 34

Line Side Test Fails

A

C

B

D

F

G

H

IE

J

M

K

L

N

O

P

[A B D F G H J K M O P]

07/15/03 Convex Hull for Dynamic Data 35

“I” is inserted in the middle of the list

A

C

B

D

F

G

H

I

E

J

M

K

L

N

O

P

[A B D F G I H J K M O P]

07/15/03 Convex Hull for Dynamic Data 36

Recompute Maximum

A

C

B

D

F

G

H

I

E

J

M

K

L

N

O

P

[A B D F G I H J K M O P]

07/15/03 Convex Hull for Dynamic Data 37

Dynamic Tournament - Random Trees

7 4

1

5

6 3 8 47

6 87

8

8

7

07/15/03 Convex Hull for Dynamic Data 38

Dynamic Tournament - Random Trees

6 97 4

1

5

6 3 8 47

6 87

8

8

7

07/15/03 Convex Hull for Dynamic Data 39

Dynamic Tournament - Random Trees

6 97 4

1

5

3 8 47

87

7

9

9

9

9

07/15/03 Convex Hull for Dynamic Data 40

Distance Comparison Fails - Case 1

A

C

B

D

F

G

H

E

J

M

K

L

N

O

P

[A B D F G H J K M O P]

I

07/15/03 Convex Hull for Dynamic Data 41

Distance Comparison Fails - Case 2

A

C

B

D

F

G

H

E

J

M

K

L

N

O

P

[A B D F G H J K M O P]

I

07/15/03 Convex Hull for Dynamic Data 42

“B” is the new maximum

A

C

D

F

G

H

E

J

M

K

L

N

O

P

[A B D F G H J K M O P]

I

B

07/15/03 Convex Hull for Dynamic Data 43

New recursive calls

A

C

D

F

G

H

E

J

M

K

L

N

O

P

[[A B] [J M O]]

I

B

07/15/03 Convex Hull for Dynamic Data 44

Experiments

07/15/03 Convex Hull for Dynamic Data 45

Summary of ConvexHull Work
! Kinetic Algorithms for convex hulls using adaptivity

! Timothy Chan’s O(h log n) algorithm: Improved “Ultimate
Convex Hull”: Have a working version

! QuickHull
! Bounce events: Can maintain convex hull of points in a box -

the points bounce off of the walls of the box
! Streamlined library for kinetic convex hulls in the SML language

! A standard algorithm can be made kinetic in a few hours of work

07/15/03 Convex Hull for Dynamic Data 46

Parallel Tree Contraction

 Fundamental technique [Miller & Reif ‘85]
 Contraction proceeeds in rounds

 Each round shrinks the tree by a constant factor
 Expected O(logn) rounds

 Innovative Idea: Shrink the tree by local operations

07/15/03 Convex Hull for Dynamic Data 47

Parallel Tree Contraction

! Start with a tree
! In each round:

! Each node flips a coin
! If leaf node then rake
! If degree=2 and flip = H, and neighbors = T then

contract
! Expected O(logn) rounds.

07/15/03 Convex Hull for Dynamic Data 48

Example

HH T

H

T

T

H T H

07/15/03 Convex Hull for Dynamic Data 49

Contracting and Raking

HH T

H

T

T

H T H

07/15/03 Convex Hull for Dynamic Data 50

H T T

Contracting and Raking

07/15/03 Convex Hull for Dynamic Data 51

H T T

Contracting and Raking (cont.)

07/15/03 Convex Hull for Dynamic Data 52

Done

H

07/15/03 Convex Hull for Dynamic Data 53

Dynamic Trees Problem

"Given a forest of weighted trees
"Operations
1.Link: edge insertion

2.cut: edge deletion
3.Queries
" Heaviest edge in a subtree?
" Heaviest edge on a path?

07/15/03 Convex Hull for Dynamic Data 54

" Sleator Tarjan ‘85
" Amortized O(logn) and worst-case O(logn)

" Topology Trees [Frederickson ‘93]
" Ternary (degree-tree) trees
" Worst case O(logn)

" Top Trees [AlstrupHoLiTh ‘97]
" Generalize Topology Trees for arbitrary degree

" Idea: Trees as paths

Data Structures for Dynamic Trees

07/15/03 Convex Hull for Dynamic Data 55

Dynamic Parallel Tree Contraction

! Keep a copy of each round of the initial run.
! Each round affects next round.
! The nodes that “live” to the next round copy their

neighbors scars, and pointers to them.
! Dependencies are based on what the node reads to do

its work.

07/15/03 Convex Hull for Dynamic Data 56

Dynamic Parallel Tree Contraction

HH T
H

TT H T HHH T
H

TT H T H

T

H

T
TT H T T

x
x x

x x
H

x xT T

07/15/03 Convex Hull for Dynamic Data 57

Propagation
! If any data changes nodes whose action depend on

that data are woken up.
! Wake-up only those nodes that get affected by a

change.
! Run same code as in original run.
! Expected constant amount of nodes woken up per

round.

07/15/03 Convex Hull for Dynamic Data 58

Change an edge

HH T
H

TT H T HHH T
H

TT H T H

T

H

T
TT H T T

x
x x

x x
H

x xT T

07/15/03 Convex Hull for Dynamic Data 59

Three nodes woken up

HH T
H

TT H T HHH T
H

TT H T H

T

H

T
TT H T T

x
x x

x x
H

x xT T

07/15/03 Convex Hull for Dynamic Data 60

Nodes rerun code, more nodes woken up

HH T
H

TT H T HHH T
H

TT H T H

T

H

T
TT H T T

x
x x

x x
H

x xT T

07/15/03 Convex Hull for Dynamic Data 61

Propagation continued

HH T
H

TT H T HHH T
H

TT H T H

T

H

T
TT H T T

x
x x

x x
H

x xT T

07/15/03 Convex Hull for Dynamic Data 62

Experimental Results
Number Queued when remarking Nodes

y = 17.566Ln(x) - 25.282
R2 = 0.9987

0.00

50.00

100.00

150.00

200.00

250.00

0 50000 100000 150000 200000 250000 300000 350000

Total number of Nodes

N
um

be
r Q

ue
ue

d

Number in Queue
Log. (Number in Queue)

07/15/03 Convex Hull for Dynamic Data 63

Work In Progress
! Analyzing Power of the data structure (what it can and cannot

do)
! Different Applications
! Analyzing Running times for:

! Different changes.
! Unbalanced Trees.

07/15/03 Convex Hull for Dynamic Data 64

Conclusion and Future Work
! ConvexHull

! Used adaptivity to solve the kinetic convex hull problem.
! Encouraging results.
! Adaptivity makes writing dynamic/kinetic algorithms a simple

edition on the standard algorithm
! The quickhull algorithm updates based on events efficiently

in the expected case.
! Parrallel Tree Contraction

! Efficient times O(log(n)) expected time for an update.
! Future Work:

! More Applications

