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Motivation

! Application data is dynamic
! word processors: slowly changing text
! graphics: render similar images
! mobile phone networks: continuously moving hosts

! Important to handle dynamic data efficiently
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Dynamic Algorithms: Changing Data
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Kinetic Algorithms: Moving Data
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How to invent Dynamic/Kinetic Algorithms
! Just like any other algorithm.  Think, ponder, divide, conquer...
! Or, use adaptivity...
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Adaptivity
! Makes a standard algorithm dynamic or kinetic
! Requires little change to the standard algorithm
! Can be done semi-automatically
! Not all algorithms yield efficient adaptive algorithms

! Will talk about this more 
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How does Adaptivity Work?
! Represent a computation with a dynamic dependency graph
! nodes = data, edges = dependencies
! Sources = input, sinks = output, 
! The user can 

! change the input,
! update the output 

! Update: 
! Take a changed node, 
! Update all its children  (the children are now changed)
! Repeat until no more changed nodes
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Adaptivity Example

 fun f (a,b,c) = 
 let 
   u = a+b
 in
   if (u > 0) then
     g(u)
   else 
     g(b+c)
 end 

 

u 3 

 

a b c

 a+b  1+b

 g(u)

r

 if u>0 then
   g(u)
 else 
   g(b+c)  

0.33

1 32
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Adaptivity Example: Change

 

u 3 

 

a b c

 a+b  1+b

 g(u)

r0.33

32-2
 fun f (a,b,c) = 
 let 
   u = a+b
 in
   if (u > 0) then
     g(u)
   else 
     g(b+c)
 end 

 if u>0 then
   g(u)
 else 
   g(b+c)  
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Update

 

u 0 

 

a b c

 a+b  -2+b

 g(u)

r0.5

v  5 

 g(v)

-2 32
 fun f (a,b,c) = 
 let 
   u = a+b
 in
   if (u > 0) then
     g(u)
   else 
     g(b+c)
 end 

 if u>0 then
   g(u)
 else 
   g(b+c)  
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Update

 

u 0  5 

 

-2

a
32

 a+b  -2+b  b+c  2+c

 g(v)

r0.5

  g'(v)

b c

v

 fun f (a,b,c) = 
 let 
   u = a+b
 in
   if (u > 0) then
     g(u)
   else 
     g(b+c)
 end 

 if u>0 then
   g(u)
 else 
   g(b+c)  
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Adaptivity and Stability
! Adaptivity updates the result by rerunning the parts of the 

computation affected by the input change
! It is efficient when the computation is “stable”,I.e., 

computations on “similar” inputs are “similar”

! We apply the adaptivity technique to convex hulls
! Result:  Efficient Dynamic and Kinetic convex hulls
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1-D Convex Hull:  Max and Min

! Just consider upper hull: Finding the maximum

! Consider two algorithms:
! The March:  March through the list 
! The Tournament: pair up the elements and take the max of each pair
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Kinetic Maximum

! Numbers increase/decrease continuously in time ni(t) = ni + ci t

time

ni

tgreen = 1 tblue = 3tred = 0

n3(t) = 6-t

n2(t) = 5

n1(t) = 2+t
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Sampling

time

ni

tgreen = 1 tblue = 3tred = 0

n1(t) = 2+t

n2(t) = 5

n3(t) = 6-t
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Internal and External Events

External event: Final result changes

Internal event: Final result does not change
   but a test fails
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Proof Simulation via Certificates
! A set of comparisons that prove the current maximum
! Associate a certificate with each comparison

! certificate = comparison result +  failure time 
! Consider the times that a certificate fails

! We need an algorithm that updates the result as well as 
the certificates

! Use adaptivity to obtain to do the update efficiently
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Kinetic March

4+t 5-t 1 7+1.5t 6 3 8 4

0.5

Time=0

4+t 5-t 1 7+1.5t 6 3 8 4

4 0.66

0.66

Time=0.5+ε

4+t 5-t 1 7+1.5t 6 3 8 4Time=0.66+ε
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Kinetic March Performance

! O(n): Because an item in the beginning of the list could become 
the maximum and it will be compared to the rest of the list

! Not acceptable because computing from scratch takes O(n)
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The Kinetic Tournament

7 4 1+t 5-t 6 3 8 4

7 5-t 6 8

7 8

8Time = 0

f = 2
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1+t

The Kinetic Tournament

7 4 1+t 5-t 6 3 8 4

7 6 8

7 8

8Time=2+ε

f=6
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1+t

The Kinetic Tournament

7 4 1+t 5-t 6 3 8 4

7 6 8

1+t 8

8Time=6+ε f=7
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1+t

The Kinetic Tournament

7 4 1+t 5-t 6 3 8 4

7 6 8

1+t 8

1+tTime=7+ε f=7
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Performance of Kinetic Tournament
! Worst case log n time per event

! This kinetic algorithm is an adaptive version of the standard 
tournament algorithm for finding maximum
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2-D Convex Hull

! Many algorithms: Quick Hull, Graham Scan, Incremental, Merge 
Hull, Ultimate, Improved Ultimate...

! We will focus on the Quick Hull algorithm
! Input: A list of points P
! Output: The boundary points on the hull of P
! Example: Input = [a,b,c,d]           Output = [a,b,d]

a b

d

c
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Quick Hull Example
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Quick Hull Example - Filter
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Quick Hull Example - Maximum
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Quick Hull Example - Filter
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Quick Hull Example - Maximum
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Quick Hull Example - Base Case
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Quick Hull Example - Done
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Kinetic Quick Hull

! Two kinds of tests: Line-side and distance 
comparisons

! Filtering => Line Side 
! Finding the furthest point => Distance comparisons

! Have certificates for these two events that is all
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Line Side Test Fails
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“I” is inserted in the middle of the list
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Recompute Maximum 
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Dynamic Tournament - Random Trees
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Dynamic Tournament - Random Trees
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Dynamic Tournament - Random Trees
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Distance Comparison Fails - Case 1

A

C

B

D

F

G

H

E

J

M

K

L

N

O

P

[A B D F G H J K M O P]

I



07/15/03 Convex Hull for Dynamic Data 41

Distance Comparison Fails - Case 2
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“B” is the new maximum

A

C

D

F

G

H

E

J

M

K

L

N

O

P

[A B D F G H J K M O P]

I

B



07/15/03 Convex Hull for Dynamic Data 43

New recursive calls 
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Experiments
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Summary of ConvexHull Work
! Kinetic Algorithms for convex hulls using adaptivity

! Timothy Chan’s O(h log n) algorithm: Improved “Ultimate 
Convex Hull”: Have a working version

! QuickHull
! Bounce events:  Can maintain convex hull of points in a box - 

the points bounce off of the walls of the box
! Streamlined library for kinetic convex hulls in the SML language

! A standard algorithm can be made kinetic in a few hours of work
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Parallel Tree Contraction

 Fundamental technique [Miller & Reif  ‘85]
 Contraction proceeeds in rounds

 Each round shrinks the tree by a constant factor
 Expected O(logn) rounds

 Innovative Idea: Shrink the tree by local operations
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Parallel Tree Contraction

! Start with a tree
! In each round:

! Each node flips a coin
! If leaf node then rake
! If degree=2 and flip = H, and neighbors = T then 

contract
! Expected O(logn) rounds.
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Example
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Contracting and Raking
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H T T

Contracting and Raking
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H T T

Contracting and Raking (cont.)
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Done

H
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Dynamic Trees Problem

"Given a forest of weighted trees
"Operations
1.Link: edge insertion

2.cut: edge deletion
3.Queries
" Heaviest edge in a subtree?
" Heaviest edge on a path?
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" Sleator Tarjan ‘85
" Amortized O(logn) and worst-case O(logn) 

" Topology Trees [Frederickson ‘93]
" Ternary (degree-tree) trees
" Worst case O(logn)

" Top Trees [AlstrupHoLiTh ‘97]
" Generalize Topology Trees for arbitrary degree

" Idea:  Trees as paths

Data Structures for Dynamic Trees
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Dynamic Parallel Tree Contraction

! Keep a copy of each round of the initial run.
! Each round affects next round.
! The nodes that “live” to the next round copy their 

neighbors scars, and pointers to them.
! Dependencies are based on what the node reads to do 

its work.
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Dynamic Parallel Tree Contraction
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Propagation
! If any data changes nodes whose action depend on 

that data are woken up.
! Wake-up only those nodes that get affected by a 

change.
! Run same code as in original run.
! Expected constant amount of nodes woken up per 

round.
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Change an edge
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Three nodes woken up
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Nodes rerun code, more nodes woken up
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Propagation continued
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Experimental Results
Number Queued when remarking Nodes

y = 17.566Ln(x) - 25.282
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Work In Progress
! Analyzing Power of the data structure (what it can and cannot 

do)
! Different Applications
! Analyzing Running times for:

! Different changes.
! Unbalanced Trees.
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Conclusion and Future Work
! ConvexHull

! Used adaptivity to solve the kinetic convex hull problem. 
! Encouraging results.
! Adaptivity makes writing dynamic/kinetic algorithms a simple 

edition on the standard algorithm
! The quickhull algorithm updates based on events efficiently 

in the expected case. 
! Parrallel Tree Contraction

! Efficient times O(log(n)) expected time for an update.
! Future Work:

! More Applications


