
Point Location in 
Delaunay Triangulations



Inspiration:Inspiration:  

Graphics software wants to light a model and needs Graphics software wants to light a model and needs 
to know which face a light ray hitsto know which face a light ray hits

You moved the mouse and the windowing system You moved the mouse and the windowing system 
would like to know which window has focus now.would like to know which window has focus now.

Given latitude and longitude you need to determine Given latitude and longitude you need to determine 
which country/city/neighborhood contains your which country/city/neighborhood contains your 

destinationdestination



The problem at handThe problem at hand

Input:  Input:  
1) A set of n points in R1) A set of n points in R2  (beforehand)
2) Additional points called query points

The task:
Create a delaunay triangulation using the initial set 
of points as an offline preprocessing step. Then for 
each query point, return the triangle which contains 
it. 

And make the data fit in O(n) bits withAnd make the data fit in O(n) bits with
query times of O(log n).query times of O(log n).



Point location problemsPoint location problems

Before going into the specifics there are many Before going into the specifics there are many 
variants of this problem and I am only tackling a variants of this problem and I am only tackling a 
comparatively simple one. Some of the choices comparatively simple one. Some of the choices 
here:here:

Dimension:Dimension:
2d? 2d? The windowsThe windows  
2d surface in 3d? 2d surface in 3d? The graphics meshThe graphics mesh
K-d volumes in n-d space? K-d volumes in n-d space? Someone probably has a Someone probably has a 
use for this too. use for this too. 



Point location problemsPoint location problems
Faces:Faces:
Triangles? Trapezoids? Any polygon?Triangles? Trapezoids? Any polygon?

Input: Input: 
Are we initially given the set of polygons to use? Or only Are we initially given the set of polygons to use? Or only 
the edges? Or the points?the edges? Or the points?

Partial Input:Partial Input:
Sometimes we are allowed to add additional points to aid in Sometimes we are allowed to add additional points to aid in 
making the polygons. Such points are called steiner points making the polygons. Such points are called steiner points 
and they are generally added to try and create some and they are generally added to try and create some 
features which were not present in the original polygon set. features which were not present in the original polygon set. 
For example creating polygons bounded in size or minimum For example creating polygons bounded in size or minimum 
angle. angle. 



Back to our case though. 
What is a delaunay 

triangulation?

Input:  Input:  
1) A set of n points in R1) A set of n points in R2

2) Additional points called query points

The task:
Create a delaunay triangulation using the initial set
 of points. Then for each query point, return the

triangle which contains it.



Delaunay TriangulationsDelaunay Triangulations

A triangulation of a set of points is a planar A triangulation of a set of points is a planar 
graph which connects all the points and in graph which connects all the points and in 
which all faces are triangles.which all faces are triangles.

 Given the same set of points there are  Given the same set of points there are 
usually many different triangulations. The usually many different triangulations. The 
delaunay triangulation is (almost always)delaunay triangulation is (almost always)
uniquely defined as one with a number of uniquely defined as one with a number of 
special properties…special properties…



Delaunay Triangulation propertiesDelaunay Triangulation properties
The circumcircle of every triangle contains no other The circumcircle of every triangle contains no other 
points.points.

Every line is also contained within some circle which Every line is also contained within some circle which 
contains no other points.contains no other points.

This triangulation maximizes the minimum angle This triangulation maximizes the minimum angle 
found in any triangle over all other triangulations.found in any triangle over all other triangulations.

This triangulation is unique … except when 4 or more This triangulation is unique … except when 4 or more 
points are co-circular. This is often avoided by points are co-circular. This is often avoided by 
ordering the points and defining later points to be ordering the points and defining later points to be 
outside the circle defined by earlier points. Thus we outside the circle defined by earlier points. Thus we 
assume this case does not occur.assume this case does not occur.



A brief tour of (some of) the 
algorithms available to do this task.

2) An algorithm which ‘walks’ through the triangulation
       - Mucke, Saias, Zhu 96
2) An algorithm which looks through the history of 

operations which created the triangulation
        - Boissonat and Teillaud 86
3) An algorithm which searches through a DAG of 

triangles where larger triangles at the top contain 
smaller child triangles

        - Mulmuley 91
4) A hybrid algorithm that does both multi-level 

refinement like 3 and walking like 1.
        -  Devillers 98



1) A Walking algorithm1) A Walking algorithm
An algorithm using only the final triangulation:
   a) Choose n1/3 random points beforehand and 

store which triangles they are in.
   b) When given a query point find which of the 
     random points is closest.
   c) Use line-side tests to visit each triangle from 

the random point to the query point.



1) A Walking algorithm1) A Walking algorithm
A simple implementation uses O(n) pointers
though Guy’s recent paper on graph compression
can be directly applied in this case to get
O(n) bits

Query time is data-dependent. Usually close to
n1/3 but some pathological cases can be far worse.

This algorithm typically is competitive with the
best O(log n) algorithms on small problems 
(n < 1,000) because the constants are small.



2) Incremental history-based2) Incremental history-based

Randomly order the points, then insert
the points one by one, each time
updating the triangulation so that it is
delaunay. We can do this by:

• Locating the triangle containing the point 
to be added 

• Inserting the point and connecting it to 
nearby vertices

c) Making ‘edge flips’ to return the 
triangulation to being delaunay.



2) Incremental history-based2) Incremental history-based

a) Locating the triangle containing the point to be 
added … save this one for the moment

b) Inserting the point and connecting it to nearby 
vertices

Start with this:                          and end with this:



2) Incremental history-based2) Incremental history-based

c) Making ‘edge flips’ to return the 
triangulation to being delauney.

Not delauney:                          edge flip fixes this:

Must test adjacent triangles to any triangle 
which changes. Initially this is just the three incident
 on the new point, but edge flips can propagate into 

the neighboring triangles. Provably terminates.



2) Incremental history-based2) Incremental history-based

We can keep a history of all triangles added
 and all edge flips made in a DAG. Each node
will represent a triangle present at some phase
of construction. 

•When a new point is added the
node for its containing triangle will point at 3
child nodes representing the subdivided triangle.

•When an edge flip occurs the two adjacent 
triangles will each point to the two new triangles.



2) Incremental history-based2) Incremental history-based

a)Locating the triangle containing the point
to be added 

Location is performed by starting with the root
node (triangle) and then testing which child
triangle the point is contained in. Repeat all the
way down the tree, and whatever leaf you wind
up with is the containing triangle in the current
triangulation.



2) Incremental history-based2) Incremental history-based

   Space is expected O(n) pointers.
   Experimentally this needs about twice as much 
   memory as what would be needed to just store 
   the final triangulation, but can fluctuate
   depending on the exact insertion order used.

   Queries can be performed in expected O(log n)
   time.



3) A Hierarchical Algorithm3) A Hierarchical Algorithm

   This algorithm stores a set of delaunay
 triangulations, with varying levels of detail.
At the lowest level it simply takes all the points
and triangulates them. For each successive level
it takes only a random sample of points from the
current level. 



3) A Hierarchial Algorithm3) A Hierarchial Algorithm
Then it links triangles with every triangle
they overlap at the lower level. To locate a
point in the final triangulation, locate it at the
highest level, then search through all the children
to find the proper triangle at the next level.



3) A Hierarchial Algorithm3) A Hierarchial Algorithm

Space is again O(n) pointers
Here however the space is not dependent
upon the insertion order used.

Queries take O(log2 n) time 
    (and a variant of this algorithm can do it 

in O(log n) )

Its also much easier to add and delete
points from this data structure



4) The multi-level hybrid4) The multi-level hybrid
Here again we use random sub-sampling to select
progressively smaller subsets of the input points
and triangulate them. However rather than linking
triangles between levels, the points are linked. 
The algorithm then proceeds to find the nearest
input point to the query at every level. 



4) The multi-level hybrid4) The multi-level hybrid
To proceed between levels 
b) Take the nearest input point to the query in
     the coarse level and move to an adjacent 

triangle at the finer level



4) The multi-level hybrid4) The multi-level hybrid
To proceed between levels 
b) Walk to the triangle containing the query as in
    the first algorithm



4) The multi-level hybrid4) The multi-level hybrid
To proceed between levels 
c) Find the nearest neighbor to query point at 

this level. It is not necessarily in the current 
triangle, but very rarely is it many triangles 
away. At the final level, just use the triangle

     and skip this step.



4) The multi-level hybrid4) The multi-level hybrid
This algorithm also takes O(n) pointers.
It winds up being very little more than just
storing the full triangulation, because the typical
ratio of sizes between levels is 1:40.

The query time is O(log n) and by using the
random start point technique at the top level
makes this algorithm competitive for all problem
sizes. 



But how to get to O(n)  bits?But how to get to O(n)  bits?

The most promising avenue (at the moment)
appears to be compressing the data structure
used by a pre-existing algorithm in a manner
which does not affect the query time. The most
likely candidate  algorithm would be the last,
as it is fast, and not an overly complicated data
structure. Graph compression has been studied
considerably as well, thus many types of graphs
are already known to be compressible to O(n)
bits.



But how to get to O(n)  bits?But how to get to O(n)  bits?

Triangulations have known representations as
small as 3.67 bits/triangle worst case. 

Unfortunately these representations don’t
support finding neighbors in constant time, so
they would ruin the query times. 

Another issue is that the multi-level schemes
must maintain links between the different levels
of triangulation (either triangle to triangle, or
point to point) which also must be compressed.



But how to get to O(n)  bits?But how to get to O(n)  bits?

Dan Blandford, Guy Blelloch, and Ian Kash
published a paper last summer that shows how to
compress any ‘separable’ graph in O(n) bits while
maintaining support for common operations in O(1)
time.

Here separable means roughly that you can make
a vertex cut of O(nc) vertices for c < 1 such that
the graph is divided into two parts, each having at
least 1/3 of the vertices. Furthermore you must
be able to recursively do this on any sub-graph.



But how to get to O(n)  bits?But how to get to O(n)  bits?

All planar graphs are separable with only O(n1/2)
vertices, thus compressing each level separately
would be no trouble. The compression algorithm
would label vertices at each level in such a way
that neighboring vertices are close in number.

However if the label assignments are not
correlated somehow between levels then it
becomes impossible to link them in a compressed
form (there are ncn functions from cn points to
n points, optimal compression wouldn’t be good
enough)



But how to get to O(n)  bits?But how to get to O(n)  bits?
Thus some of the main questions I am working on
right now…

If all the triangulation levels and the links
between are combined into one large graph, is it
(provably) separable?

Or is there a way of finding good vertex cuts
which work at every level simultaneously? This
would allow the same vertex numbering to be used at
each level.

Is there a way to number the vertices such that it doesn’t
break the graph compression algorithm, and leaves enough
similarity between levels that only O(n) bits can encode all
the links?


