ALADDIN
CENTER Carnegie Mellon UniversityCarnegie Mellon Computer Science DepartmentSchool of Computer Science
Abstracts
The Joint ALADDIN/Theory/Operations Research Seminar
Aladdin
About
Calendar
People
PROBEs
Workshops
Papers
Education
Related Activities
Corporate
Contact
 
Captcha
Outreach Roadshow

What can we do in sublinear time
Ronitt Rubinfeld , NEC Research Institute

Abstract:
We have long considered showing the existence of a linear time algorithm for a problem to be the gold standard of achievement. Indeed, it is hard to imagine doing any better than that, since for any nontrivial problem, any algorithm must consider all of the input in order to make a decision. However, as extremeley large data sets grow more prevalent in a wide variety of settings, it is natural to wonder what one can do in *sublinear* time. In fact, there has been a lot of recent interest in this direction.

This talk will contain a brief, nonexhaustive survey of the types of problems that can be solved in sublinear time. Since any sublinear time algorithm can only view a small portion of the input, for most natural problems the answer must necessarily be approximate in some sense. We concentrate on such algorithms. We will see that there are classical optimization problems whose values can be approximated in sublinear time. In addition, property testing, an alternative notion of approximation for decision problems, has been applied to give sublinear algorithms for a wide variety of problems.

I will spend the rest of the talk describing joint work with Bernard Chazelle and Luca Trevisan, in which we consider sublinear time algorithms for approximating the weight of a minimum spanning tree. We give a probabilistic algorithm for estimating the weight of a minimum spanning tree in time O(dw log(w)), where d is the average degree of the graph and w is a bound on the ratio of the maximum weight edge to the minimum weight edge. In particular, for constant degree graphs in which the ratio w is constant, our running time will also be constant. We also show that our running time is nearly tight.

This material is based upon work supported by National Science Foundation under Grant No. 0122581.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation