Finite Differencing of Logical Formulasfor Static Analysis*

Thomas Reps!, Mooly SagivZ, and Alexey Loginov!

1 Comp. Sci. Dept., University of Wisconsin; {reps,alexey }@cs.wisc.edu
2 School of Comp. Sci., Tel-Aviv University; msagiv@post.tau.ac.il

Abstract. This paper concerns mechanisms for maintaining the value of an instrumentation
predicate (a.k.a. derived predicate or view), defined via a logical formula over core predi-
cates, in response to changes in the values of the core predicates. It presents an algorithm for
transforming the instrumentation predicate’s defining formula into a predicate-maintenance
formula that captures what the instrumentation predicate’s new value should be.

This technique applies to program-analysis problems in which the semantics of state-
ments is expressed using logical formulas that describe changes to core-predicate values,
and provides a way to reflect those changes in the values of the instrumentation predicates.

1 Introduction

This paper addresses a fundamental challenge in applying abstract interpretation, namely,

Given the concrete semantics for a language and a desired abstraction, how
does one create the associated abstract transformers?

The problem that we address arises in program-analysis problems in which the seman-
tics of statements is expressed using logical formulas that describe changes to core-
predicate values. When instrumentation predicates (defined via logical formulas over
the core predicates) have been introduced to refine an abstraction, the challenge is to
reflect the changes in core-predicate values in the values of the instrumentation pred-
icates [8,5, 14,18, 3]. The algorithm presented in this paper provides a way to create
formulas that maintain correct values for the instrumentation predicates, and thereby
provides a way to generate, completely automatically, the part of the transfer functions
of an abstract semantics that deals with instrumentation predicates. The algorithm runs
in time linear in the size of the instrumentation predicate’s defining formula.

This research was motivated by our work on static analysis based on 3-valued logic
[18]; however, any analysis method that relies on logic—2-valued or 3-valued—to ex-
press a program’s semantics may be able to benefit from these techniques.

In our setting, we consider two related logics: an ordinary 2-valued logic, as well as
arelated 3-valued logic. A memory configuration, or store, is modeled by what logicians
call a logical structure; an individual of the structure’s universe either models a single
memory element or, in the case of a summary individual, it models a collection of
memory elements. A run of the analyzer carries out an abstract interpretation to collect
a set of structures at each program point. This involves finding the least fixed point of a
certain set of equations. When the fixed point is reached, the structures that have been
collected at program point P describe a superset of all the execution states that can occur
at P. To determine whether a property always holds at P, one checks whether it holds
in all of the structures that were collected there. Instantiations of this framework are
capable of establishing nontrivial properties of programs that perform complex pointer-
based manipulations of a priori unbounded-size heap-allocated data structures. The
TVLA system (Three-Valued-Logic Analyzer) implements this approach [11, 1].

Summary individuals play a crucial role. They are used to ensure that abstract de-
scriptors have an a priori bounded size, which guarantees that a fixed-point is always
reached. However, the constraint of working with limited-size descriptors implies a loss

* Supported by ONR contract N00014-01-1-0796 and by the A. von Humboldt Foundation.

of information about the store. Intuitively, some concrete individuals “lose their iden-
tity” when they are grouped together with other individuals in one summary individual.
Moreover, a property can be true for some concrete individuals of the group but false
for other individuals. It is for this reason that 3-valued logic is used; uncertainty about
a property’s value is captured by means of the third truth value, 1/2.

An advantage of using 2- and 3-valued logic as the basis for static analysis is that
the language used for extracting information from the concrete world and the abstract
world is identical: every syntactic expression—i.e., every logical formula—can be in-
terpreted either in the 2-valued world or the 3-valued world. The consistency of the
2-valued and 3-valued viewpoints is ensured by a basic theorem that relates the two
logics. This provides a partial answer to the fundamental challenge posed above: for-
mulas that define the concrete semantics when interpreted in 2-valued logic define a
sound abstract semantics when interpreted in 3-valued logic [18].

Unfortunately, unless some care is taken in the design of an analysis, there is a dan-
ger that as abstract interpretation proceeds, the indefinite value 1/2 will become perva-
sive. This can destroy the ability to recover interesting information from the 3-valued
structures collected (although soundness is maintained). A key role in combating indef-
initeness is played by instrumentation predicates, which record auxiliary information
in a logical structure. They provide a mechanism for the user to fine-tune an abstrac-
tion: an instrumentation predicate, which is defined by a logical formula over the core
predicate symbols, captures a property that an individual memory cell may or may not
possess. In general, adding additional instrumentation predicates refines the abstraction,
defining a more precise analysis that is prepared to track finer distinctions among stores.
This allows more properties of the program’s stores to be identified.

From the standpoint of the concrete semantics, instrumentation predicates represent
cached information that could always be recomputed by reevaluating the instrumenta-
tion predicate’s defining formula in the local state. From the standpoint of the abstract
semantics, however, reevaluating a formula in the local (3-valued) state can lead to a
drastic loss of precision. To gain maximum benefit from instrumentation predicates, an
abstract-interpretation algorithm must obtain their values in some other way.

This problem, the instrumentation-predicate-maintenance problem, will be solved
by incremental computation. The new value that instrumentation predicate p should
have after a transition via abstract state transformer 7 from state o to ¢’ will be com-
puted incrementally from the known value of p in o.

The contributions of the work reported in this paper include the following:

— We give an algorithm for the predicate-maintenance problem; it creates a predicate-
maintenance formula by applying a finite-differencing transformation to p’s defin-
ing formula. The algorithm runs in time linear in the size of the defining formula.

— We present experimental evidence that our technique is an effective one, at least for
the analysis of programs that manipulate acyclic singly-linked lists, doubly-linked
lists, and binary trees, and for certain sorting programs. In particular, the predicate-
maintenance formulas produced automatically using our approach are as effective
for maintaining precision as the best available hand-crafted ones.

— This work is related to the view-maintenance problem in databases. Compared with
that work, the novelty is the ability to create predicate-maintenance formulas that
are suitable for use when abstraction has been performed.

The remainder of the paper is organized as follows: Sect. 2 introduces terminology
and notation. Sect. 3 defines the predicate-maintenance problem. Sect. 4 presents a
method for generating maintenance formulas for instrumentation predicates. Sect. 5
discusses extensions to handle instrumentation predicates that use transitive closure.
Sect. 6 presents experimental results. Sect. 7 discusses related work.

2 Background

2-Valued First-Order Logic with Transitive Closure The syntax of first-order for-
mulas with equality and reflexive transitive closure is defined as follows:

Definition 1. A formula over the vocabulary P = {eq, p1, ..., pn} is defined by

peP pu=0]1]p(vi,...,v)
¢ € Formulas | (1) [(1 Apa) | (01 Vp2) | (Fv:pn) | (Yor 1)
v € Variables | (RTC v}, vh: p1)(v1,v2)

The set of free variables of a formula is defined as usual. “RTC” stands for reflexive
transitive closure. In ¢ = (RTC v, v}: ¢1)(v1,v2), if 1’s free-variable set is V', we
require vy, v2 ¢ V. The free variables of ¢ are (V' — {v],v5}) U {v1,v2}.

We use several shorthand notations: (v; = v5) £ eq(vy, v2); (V1 Fv2) = —eq(vy, v2);
def

and for a binary predicate p, p*(v1, v2) = (RTC vi, vh: p(vi, vh))(v1,v2). We also use
a C-like syntax for conditional expressions: @1 ? ¢y : 3.2 The order of precedence
among the connectives, from highest to lowest, is as follows: =, A, Vv, V, and 3. We
drop parentheses wherever possible, except for emphasis.

Definition 2. A 2-valued interpretation over P is a 2-valued logical structure S =
(US,5), where U is a set of individuals and +* maps each predicate symbol p of
arity k to a truth-valued function: .%(p): (U®)* — {0,1}. In addition, (i) for all u €
US, 5(eq)(u,u) = 1, and (ii) for all uy,us € U such that u; and u, are distinct
individuals, ¢ (eq) (u1,us) = 0.

An assignment Z is a function that maps variables to individuals (i.e., it has the
functionality Z: {vi,vs,...} — US). When Z is defined on all free variables of a
formula ¢, we say that Z is complete for ¢. (We generally assume that every assignment
that arises in connection with the discussion of some formula ¢ is complete for ¢.)

The (2-valued) meaning of a formula ¢, denoted by []35 (Z), yields a truth value
in {0, 1}; it is defined inductively as follows:

[0]5(Z) = 0 [1 A 2]5(2) = min([1]5(2), [¢2]5(2))

[5(2) =1 L1V ¢2]5(2) = max([¢1]5(2), [¢2]5 (2))
[p(v1, ..., v)]5(2) = SBNZ(v1),-.., Z(vs)) [Fo: 1]5(2) = Eggl[%]]zs(z[vl = u)
[~e115(2) = 1= [1]5(2) [Vo: 1]5(2) = unel}]flsl[svl]]zs(z[vl = u)

v1,02)]5(2)

—~

[(RTC vy, vy: 1) .
1 IfZ(Ul) = Z(’Ug)

n .
max mi{l[[npl]]S(Z[vi > g, vy > uipg]) otherwise
= n y 1=
Uty .-y 1;1,-{—/1 ev,

Z(vy1) = ua,

Z(v2) = Un41
S and Z satisfy ¢ if [¢]5(Z) = 1. The set of 2-valued structures is denoted by
2-STRUCTI[P].

3-Valued Logic and Embedding In 3-valued logic, the formulas that we work with
are identical to the ones used in 2-valued logic. At the semantic level, a third truth
value—1/2—is introduced to denote uncertainty.

% In 2-valued logic, one can think of 1 ? @2 : 3 as a shorthand for (1 A @2) V (21 A @3).
In 3-valued logic, it becomes a shorthand for (o1 A p2) V (m¢1 A @3) V (p2 A ¢3).

Definition 3. The truth values 0 and 1 are definite values; 1/2 is an indefinite value.
Forly,ls € {0,1/2,1}, the information order is defined as follows: § C Iy iffl; =I5
orly =1/2.Weuse !y C Iy whenl; C Iy and Iy # l. The symbol LI denotes the
least-upper-bound operation with respect to C.

Definition 4. A 3-valued interpretation over P is a 3-valued logical structure S =
(U3, 1), where U is a set of individuals and +* maps each predicate symbol p of
arity k to a truth-valued function: .5 (p): (US)* — {0,1/2,1}. In addition, (i) for all
u € U, 1% (eq)(u,u) 3 1, and (ii) for all u;,us € US such that u; and u, are distinct
individuals, ¢ (eq) (u1,us) = 0.

For an assignment Z, the (3-valued) meaning of a formula ¢, denoted by [¢]5(Z),
yields a truth value in {0,1/2,1}. The meaning of ¢ is defined exactly as in Defn. 2,
but interpreted over {0,1/2,1}. S and Z potentially satisfy ¢ if [¢]5(Z) 3 1. The set
of 3-valued structures is denoted by 3-STRUCT[P].

Defn. 4 requires that for each individual u, the value of +5(eq)(u,u) is 1 or 1/2.
An individual for which +%(eq)(u,u) = 1/2 is called a summary individual. In the
abstract-interpretation context, a summary individual is an abstract individual, and can
represent more than one concrete individual.

Because 1 72 : 3 is treated as a shorthand for (o1 Ap2) V (=1 Aps) V(02 Aps)
in 3-valued logic, the value of 1/2? V; : V; equals V4 U V5.

Definition 5. Let S = (US,/5) and 8’ = (US',.5) be two structures, and let
f:US — US' be a surjective function. We say that f embeds S in S’ (denoted b
S Cf 8') if for every predicate symbol p € P of arity k and for all uy,...,u; € U,
S (u,...,ug) T o5 (0)(f(wr),..., f(ux)). We say that S can be embedded in S’
(denoted by S C S’ if there exists a function f such that S C/ S’.

The Embedding Theorem says that if S T/ S’, then every piece of information
extracted from S’ via a formula ¢ is a conservative approximation of the information
extracted from S via . To formalize this, we extend mappings on individuals to operate
on assignments: if f: US — US is a function and Z: Var — US is an assignment,
f o Z denotes the assignment f o Z: Var — U5 such that (f o Z)(v) = f(Z(v)).

Theorem 1. (Embedding Theorem [18, Theorem 4.9]). Let S = (U®, /%) and S" =
(US",45") be two structures, and let f: US — U5’ be a function such that S CF §".
Then, for every formula ¢ and complete assignment Z for o, [¢]5(Z) C [¢]5 (f o Z).

Program Analysis Via 3-Valued Logic The remainder of this section summarizes the
program-analysis framework described in [18]. Stores are encoded as logical structures
in terms of a fixed collection of core predicates, C. Core predicates are part of the
underlying semantics of the language to be analyzed; they record atomic properties of
stores. For instance, Tab. 1 gives the definition of a C linked-list datatype, and lists the
predicates that would be used to represent the stores manipulated by programs that use
type Li st . (The core predicates are fixed for a given language; in general, different
languages require different collections of core predicates.)

Often only a restricted class of structures is used to encode stores; to exclude struc-
tures that cannot represent admissible stores, integrity constraints can be imposed. For
instance, in program-analysis applications, a predicate like g(v) of Tab. 1 captures
whether pointer variable g points to memory cell v; ¢ would be given the attribute

typedef struct node { [Bredicate [Intended Meaning

* e
struct node *n; eq(v1,v2) | Do w1 and va denote the same memory cell?

i Et std'at a q(v) Does pointer variable g point to memory cell v?
}orList; n(v1,v2) | Does the n field of vy point to va?
(@) (b)

Table 1. (a) Declaration of a linked-list datatype in C. (b) Core predicates used for
representing the stores manipulated by programs that use type Li st .

“unique”, which imposes the integrity constraint that ¢ can hold for at most one indi-
vidual in any structure.

A concrete operational semantics is defined by specifying, for each kind of state-
ment st in the programming language, a structure transformer for each outgoing control-
flow graph (CFG) edge e = (st, st'). A structure transformer is specified by providing
a collection of predicate-transfer formulas, 7. s, one for each core predicate c. These
define how the core predicates of a logical structure S that arises at st is transformed
by e to create a logical structure S’ at st'.

Abstract stores are 3-valued logical structures. Concrete stores are abstracted to
abstract stores by means of embedding functions—onto functions that map individuals
of a 2-valued structure S to those of a 3-valued structure S. The Embedding Theorem
ensures that every piece of information extracted from S by evaluating a formula ¢ is a
conservative approximation (3) of the information extracted from S% by evaluating ¢.

The finiteness of the abstract domain is assured by canonical abstraction, under
which each individual of a 2-valued logical structure (representing a concrete memory
cell) is mapped to an individual of a 3-valued logical structure according to the vector of
values that the concrete individual has for a user-chosen collection of unary abstraction
predicates. This mechanism ensures that each 3-valued structure is no larger than some
fixed size, known a priori.

The abstraction function on which an analysis is based, and hence the precision of
the analysis defined, can be tuned by (i) choosing to equip structures with additional
instrumentation predicates to record derived properties, and (ii) varying which of the
unary core and unary instrumentation predicates are used as the set of abstraction predi-
cates. The set of instrumentation predicates is denoted by Z. Each arity-. predicate sym-
bol p € T is defined by an instrumentation-predicate definition formula ¢, (vy, . . ., vg).
Instrumentation predicates may appear in the defining formulas of other instrumentation
predicates as long as there are no circular dependences. Instrumentation predicates that
involve reachability properties, which can be defined using RTC, often play a crucial
role in the definitions of abstractions. For instance, in program-analysis applications,
reachability properties from specific pointer variables have the effect of keeping dis-
joint sublists summarized separately. This is particularly important when analyzing a
program in which two pointers are advanced along disjoint sublists.

For each kind of statement in the programming language, the abstract semantics
is again defined by a collection of formulas: the same predicate-transfer formula that
defines the concrete semantics, in the case of a core predicate, and, in the case of an
instrumentation predicate p, by a predicate-maintenance formula p,, 5.4

4In [18], predicate-transfer formulas and predicate-maintenance formulas are both called
“predicate-update formulas”. Here we use separate terms so that we can refer easily to
predicate-maintenance formulas, which are the main subject of the paper.

Abstract interpretation collects a set of 3-valued structures at each program point. It
can be implemented as an iterative procedure that finds the least fixed point of a certain
set of equations [18]. (It is important to understand that although the analysis framework
is based on logic, it is model theoretic, not proof theoretic: the abstract interpretation
collects sets of 3-valued logical structures—i.e., abstracted models; its actions do not
rely on deduction or theorem proving.)

Fig. 1 illustrates the abstract execution of the statement y = x on a 3-valued logical
structure that represents concrete lists of length 2 or more.

unary preds. binary preds. n.
indiv.|z|y|is[n] nlu| w | |equi| w N
Structure before w; 110[0 wl011/2] fa[1]0 x»@ n>
u |00 0 w|0|1/2] |u|0|1/2
Statement y =X
Toy=x(v) = z(v)
Predicate-transfer formulas Tyy=x(v) = z(v)
Tny=x(V1,v2) = n(v1,02)
Predicate-maintenance formula is[n]y—x(v) = Fv1,v9: n(v1,v) An(ve,v) AviFvy
unary preds. binary preds. "
indiv.|z|y|is[n] nlu| w | |equi| w N
Structure after w111 0 w012 [1] 0 x,ye@ n)
w [000/1/2] |u|0]1/2| |u|0]|1/2 !
is[n]

Fig. 1. The predicate-transfer formulas for z, ¢, and n express a transformation on log-
ical structures that corresponds to the semantics of y = x. (The predicate is[n] is dis-
cussed in Ex. 1.)

The following graphical notation is used for depicting 3-valued logical structures:

— Individuals are represented by circles with names inside.

— A summary individual « has eq(u,u) = 1/2, and is represented by a double circle.

— A unary predicate p is represented by a solid arrow from p to each individual «
for which +(p)(u) = 1, and by the absence of a p-arrow to each node u’ for which
t(p)(u") = 0. (If «(p) = 0 for all individuals, the predicate name p is not shown.)

— A binary predicate q is represented by a solid arrow labeled ¢ between each pair of
individuals w; and w; for which ¢(g)(u;, w;) = 1, and by the absence of a g-arrow
between pairs u; and u; for which «(g)(u;,u}) = 0.

— Unary and binary predicates with value 1/2 are represented by dotted arrows.

3 TheProblem: Maintaining I nstrumentation Predicates

The execution of a statement st transforms a logical structure S, which represents a
store that arises just before st, into a new structure S’, which represents the correspond-
ing store just after st executes. The structure that consists of just the core predicates of
S'is called a proto-structure, denoted by S, The creationof S}, ., from S, denoted

by S0 1= [5t]3(S), can be expressed as

roto* Toto

foreachc e Cand uy, ..., u € US,
1Serote (¢)(ug, . up) = [Test (V1. -, vp)]5 (U1 — w1,y 0 = ug]). (1)

In general, if we compare the various predicates of S’ with those of S, some tuples

;) proto
will have been added and others will have been deleted.
We now come to the crux of the matter: Suppose that «,, defines instrumentation

predicate p; how should the static-analysis engine obtain the value of p in S'?

An instrumentation predicate whose defining formula is expressed solely in terms
of core predicates is said to be in core normal form. Because there are no circular
dependences, an instrumentation predicate’s defining formula can always be put in core
normal form by repeated substitution until only core predicates remain. When ,, is in
core normal form, or has been converted to core normal form, it is possible to determine
the value of each instrumentation predicate p by evaluating ¢, in structure S, ;-
for each w1, ..., up € US,

! S’ Toto

(D) (ug, ... up) = [p(vr,. . 0R)]3" " (v P wa, .0 = ug)). (2)

Thus, in principle it is possible to maintain the values of instrumentation predicates
via Egn. (2). In practice, however, this approach does not work very well. As ob-
served elsewhere [18], when working in 3-valued logic, it is usually possible to retain
more precision by defining a special instrumentation-predicate maintenance formula,

Wp,st(v1,-..,0r), and evaluating g, s (v1, ..., vx) in structure S:
foreachuy,...,u, € U,
S (p) (s - uk) = [pp,se(vr, -, 015 (1 = wr, .. e = k). (3)

The advantage of the predicate-maintenance approach is that the results of program
analysis can be more accurate. In 3-valued logic, when y,, 5 is defined appropriately,
the predicate-maintenance strategy can generate a definite value (0 or 1) when the eval-
uation of ¢, on S, generates the indefinite value 1/2.

To ensure that an analysis is conservative, however, one must also show that the
following property holds:

Definition 6. Suppose that p is an instrumentation predicate defined by formula .
Predicate-maintenance formula u,, ,; maintains p correctly for statement st if, for all

S € 2-STRUCT[P] and all Z, [, :]5(Z) = [,] 12 (2).

For an instrumentation predicate in core normal form, it is al-
ways possible to provide a predicate-maintenance formula that satis- @

fies Defn. 6 by defining 4, . as o
def
Mp,st = ¢p[c & Te,st | cE C]a (4) @
where ¢[g + '] denotes the formula obtained from ¢ by replac- .
ing each predicate occurrence q(wr, . . . , wy,) by @' {wy, ..., wy},and F19-2. Store
¢ {wr,. .., wy} denotes the formula obtained from o' (v . .., v;) by N Which u is

replacing each free occurrence of variable v; by w;. shared; i.e.,
The formula p,, 5+ defined in Egn. (4) maintains p correctly for is[n](u) = 1.

statement s¢ because, by the 2-valued version of Eqn. (1), [, st]5(Z) = [c]]51’“’“’(Z);
consequently, when g, 5+ Of Eqn. (4) is evaluated in structure .S, the use of 7, st |n
place of ¢ is equivalent to using the value of ¢ when 4, is evaluated in S/

proto'

for all Z, [¢plc ¢ 1,5t | c € CII5(2) = [[¢,,]]2’”"”°(). However—and this is pre-
cisely the drawback of using Eqn. (4) to obtain the u, ;+—the steps of evaluating

[¥plc < Test | € € C]]5(Z) mimic exactly those of evaluating [¢,], ””‘”“(). Conse-
quently, when we pass to 3- vaIued logic, for all Z, [1,[c += Test | ¢ € C]]5(Z) yields

exactly the same value as [¢p] 5 “““’() (i.e., as evaluating Eqgn. (2)). Thus, although

Lp,st that satisfy Defn. 6 can be obtained automatically via Eqn. (4), this approach does
not provide a satisfactory solution to the predicate-maintenance problem.

Example 1. Eqgn. (5) shows the defining formula for the instrumentation predicate is[n]
(“is-shared using n fields”),

is[n](v) el vy, v2: n(vr,v) An(ve,v) AviFvs, (5)

which captures whether a memory cell is pointed to by two or more pointer fields of
memory cells, e.g., see Fig. 2.

Fig. 1 illustrates how execution of the statement y = x causes the value of is[n] to
lose precision when its predicate-maintenance formula is created according to Eqn. (4).
The initial 3-valued structure represents all singly linked lists of length 2 or more in
which all memory cells are unshared. Because execution of y = x does not change
the value of core predicate n, 7, y—x(vi,v2) is n(vi,v2), and hence the formula
Mis[n],y=x(v) created according to Eqn. (4) is vy, va: n(vi,v) An(ve,v) AviFvs.
As shown in Fig. 1, the structure created using this maintenance formula is not as pre-
cise as we would like. In particular, is(u) = 1/2, which means that » can represent a
shared cell. Thus, the final 3-valued structure also represents certain cyclic linked lists,

such as

This sort of imprecision can usually be avoided by devising better predicate-
maintenance formulas. For instance, When p;s(n) y—x(v) is defined to be the formula
is[n](v)—meaning that y = x does not change the value of ¢s[n](v)—the imprecision
illustrated in Fig. 1 is avoided (see Fig. 3). Hand-crafted predicate-maintenance formu-
las for a variety of instrumentation predicates are given in [18, 11, 1]; however, those
formulas were created by ad hoc methods.

unary preds. binary preds.
indiv.|z|y|is[n] nlui| w | {eqlui| w NI
Structure before o 11000 w0172 [un[1] 0 X_>@...”%>
u |0j0] 0 uw|0(1/2] |u|0]1/2
Statement y =X
T y=x(v) = z(v)
Predicate-transfer formulas Tyy=x(v) = z(v)
Tny=x(V1,12) = n(v1,v3)
Predicate-maintenance formula sl y=x (V) = is[n](v)
unary preds. binary preds.
indiv.|z|y|is[n] nlui| w | |eqlui| u N
Structure after w111 0 wil 011/2) [ua[1] 0 X7Y—>@ n>
u |0jo] 0 w|0(1/2] |u|0]1/2

Fig. 3. Example showing how the imprecision that was illustrated in Fig. 1 is avoided
with the predicate-maintenance formula p;,(,) y=x(v) = is[n](v). (Ex. 2 shows how
this is generated automatically.)

To sum up, in past incarnations of our work, the user must supply a formula p,, s
for each instrumentation predicate p and each statement st. In effect, the user must
write down two separate characterizations of each instrumentation predicate p: (i) v,
which defines p directly; and (ii) ¢, Which specifies how execution of each kind of
statement in the language affects p. Moreover, it is the user’s responsibility to ensure
that the two characterizations are mutually consistent. In contrast, with the new method

for automatically creating predicate-maintenance formulas presented in Sects. 4 and 5,
the user’s only responsibility is to define the j,.

4 A Finite-Differencing Scheme for 3-Valued L ogic

This section presents a finite-differencing scheme for creating predicate-maintenance
formulas. A predicate-maintenance formula i, s+ for p € 7 is defined in terms of two

finite-differencing ope

rators, denoted by A;[-] and A%, [-], which capture the negative

and positive changes, respectively, that execution of statement st induces in an instru-
mentation predicate’s value. The formula u,, 5; is created by combining p with AZ; [1),]

and A [v,] as follows: iy, ¢ = p ? = AL [0,] + AL [,]-

Fig. 4 depicts how
the static-analysis en-
gine evaluates A, [1)p]
and Af;[p,] in S and
combines these values
with the old value p
to obtain the desired
new value p”. The
operators A [] and
AL[] are defined re-
cursively, as shown in
Fig. 5. The definitions

execute statement st

S sproto
\ evaluate i
retrieve | (evaluate o[v] A '
sglred A WA i evaluate
vaue ~ '
8w, Y
1
p p?_‘A;[V/P] : A;[W pu — E)r

Fig.4. How to maintain the value of ¢, in 3-valued logic in
response to changes in the values of core predicates caused by
the execution of statement st.

in Fig. 5 make use of the following operator:

Fatle] £ @ 7 =AL[0] : ALl (6)

Thus, maintenance formula p,, 5; can also be expressed as pp, 51 = Fst[p].

@ ALyl Ayl

1 0 0

0 0 0

p(wli tee 7wk)7

P € LA oot (5t Amp) (..., wg) (Bt A1, i}

p? post 6;—,st

p(wl7 s 7wk)7

‘insioct,ot;itiwgpfgtrm (ot Ap){wr, - wi} (P AT s){ws, ..., wi}

p? 6, 0

p(wi, ... wr), |[(Fv: AL) A=p){wr, .-, we} i = Fv: o [(Fv: Ay len]) Ap){ws, ..., wi} iTh, =Vu: g
pel AL [{ws, - .., wi} otherwise A {wr, ..., w} otherwise
P Asle] Aol

P1V P2 (A% 1] A=) V(o1 A A [s]) (Al A=Fafpa]) V(mFa 1] A Ay fwa])
PLA P2 (A% o] A Fail2]) V(Falpi] A A [2]) (Alei] A p2) Ve A Ag[p2])

Jv: (Fv: ALlpi) A=(Fv: 1) (Fv: AL lp1]) A=(Tv: Fafen])

Vu: g (Fv: ALpi]) AV v: Faen]) (Fv: Agle]) A(Vv: 1)

Fig. 5. Finite-difference formulas for first-order formulas.
Egn. (6) and Fig. 5 define a syntax-directed translation scheme that can be imple-
mented via a recursive walk over a formula . The operators A}, [-] and Af,[-] are mutu-
ally recursive. For instance, At [—p1] = AL [e1] and AL [—¢1] = Af[1]. Moreover,
each occurrence of F[y;] contains additional occurrences of A, [p;] and A [¢;].

Note how A_,[-] and AL [-] for 1 V 2 and 1 A o exhibit the “convolution” pat-
tern characteristic of differentiation, finite-differencing, and divided-differencing.

Continuing the analogy with differentiation, it helps to bear in mind that the “in-
dependent variables” are the core predicates—which are being changed by the 7.
formulas; the dependent variable is the value of . A formal justification of Fig. 5 is
stated later (Thm. 2); here we merely explain informally a few of the cases from Fig. 5:

A% [1] =0, AZ[1] = 0. The value of atomic formula 1 does not depend on any core
predicates; hence its value is unaffected by changes in them.

A1 Apa] = (Aglp1] A w2) V(g1 A Ag[p2]). Tuples of individuals removed from
1 A 2 are either tuples of individuals removed from ¢; for which ¢4 also holds
(i.e., (Ag[p1] A p2)), or they are tuples of individuals removed from - for which
1 also holds, (i.e., (p1 A Ag[p2]).

Af[Fv: 1] = (Fv: Aflpi]) A=(Jv: 1). For Ju: ¢ to change value from 0 to
1, there must be at least one individual for which ¢4 changes value fromQto 1 (i.e.,
Ju: Ak [p1] holds), and Fv: @1 must not already hold (i.e., =(Jv: 1) holds).

AL p(wi, ..., w)] = Fv: AL[p1]) A—p, ifp € Tand 1y, = Jv: ¢;. This is sim-
ilar to the previous case, except that the term to ensure that Jv: ¢; does not
already hold (i.e.,, =(3wv: 1)) is replaced by the formula —p. Thus, when
(Fv: Af[p1]) A —p is evaluated, the stored value of Jv: ¢4, i.e., p, will be used
instead of the value obtained by reevaluating Jv: ¢;.

Al [p(wy, ..., wi)] = AL [Wp{w1,...,wi}], ifp € Tand v, # Jv: ¢;. Tocharacter-
ize the positive changes to p, apply A}, to p’s defining formula 4.

One special case is also worth noting: Af,[v1 =wvs] = 0 and AL;[vr = vs] = 0 because

the value of the atomic formula (v; =wv2) (shorthand for eq(v1, v2)) does not depend
on any core predicates; hence, its value is unaffected by changes in them.

Example 2. Consider the instrumentation predicate is[n] (“is-shared using n fields”),
defined in Eqn. (5). Fig. 6 shows the formulas obtained for A%, [is[n](v)] and A, [is[n](v)].

, _ . (A:' n(v1,v)] A Fst[n(vs, v)]) i
Af[is[n](v)] = (EI V1,2t (\/ (tht['[n(vll, u)]]/\ A;%H(UQ, v)%)) Avy #Ug) A =is[n](v)

[(Auln(or,v)] An(vs, v))
(3 (v (n(on,v) AA;[nwz,w])) A”l?é“?)

AN
o (n(v1,v) An(vs,v) AviFvs)
Aglisln)(v)] = -
(Agi[n(v1,v)] An(ve, v))
= | vy, vs: o ((V (n(;l, v) A Agn(ve, U)D) /\v17év2>
(G AR)

V (Fat[n(v1, v)] A A [n(va, v)])
Fig. 6. Finite-difference formulas for the instrumentation predicate is[n](v).
For a particular statement, the formulas in Fig. 6 can usually be simplified. For
instance, for y = x, the predicate-transfer formula 7, y—x(vi,v2) is n(vi,v2); see
Fig. 1. Thus, by Fig. 5, the formulas for A _ [n(vi,v)] and Af_ [n(vi,v)] are
both n(vy,v) A =n (v, v), which simplifies to 0. (In our implementation, simplifica-
tions are performed greedily at formula-construction time; e.g., the constructor for
A rewrites 0 Ap to 0, 1Ap to p, pA—p to 0, etc.) The formulas in Fig. 6 sim-
plify to A, [is[n](v)] = 0 and A,_,[is[n](v)] = 0. Consequently, pis[n),y—x(v) =
Fy=[is[n](v)] = is[n](v) ? =0 : 0 = is[n](v). As shown in Fig. 3, this definition of
Mis[n],y=x(v) avoids the imprecision that was illustrated in Ex. 1.

For 2-STRUCTS, the correctness of the finite-differencing transformation given in
Fig. 5 is ensured by the following theorem.

Theorem 2. Let S be a structure in 2-STRUCT, and let S,,,.,;, be the proto-structure
for statement st obtained from S. Let S be the structure obtained by using Sj,.;, as the
first approximation to S’ and then filling in instrumentation predicates in a topological
ordering of the dependences among them: for each arity-k predicate p € Z, .5 (p)
is obtained by evaluating [¢, (vi, - .., v)]5 ([v1 = ul,..., vk — ul]) for all tuples
(uy,...,u}) € (US")*. Then for every formula ¢(v, . . ., vy,) and complete assignment

Z for p(v1, ..., vg), [Fst[e(vi,. .. ,vk)]]]QS(Z) = [p(v1, ... ,vk)]]:j' (2).

For 3-STRUCTS, the soundness of the finite-differencing transformation given in
Fig. 5 follows from Thm. 2 by the Embedding Theorem (Thm. 1).

Malloc and Free In [18], the modeling of storage-allocation/deallocation operations
is carried out with a two-stage statement transformer, the first stage of which changes
the number of individuals in the structure. This creates some problems for the finite-
differencing approach in establishing appropriate, mutually consistent values for pred-
icate tuples that involve the newly allocated individual. Such predicate values are
needed for the second stage, in which predicate-transfer formulas for core predicates
and predicate-maintenance formulas for instrumentation predicates are applied in the
usual fashion, using Eqgns. (1) and (3).

However, there is a simple way to sidestep this problem, which is to model the
free-storage list explicitly, making the following substructure part of every 3-valued

structure:
N
freelist —>@--@> (7

A mal | oc is modeled by advancing the pointer f r eel i st into the list, and returning
the memory cell that it formerly pointed to. A f r ee is modeled by inserting, at the
head of f r eel i st s list, the cell being deallocated.

It is true that the use of structure (7) to model storage-allocation/deallocation op-
erations also causes the number of individuals in a 3-valued structure to change; how-
ever, because the new individual is materialized using the usual mechanisms from [18]
(namely, the focus and coerce operations), values for predicate tuples that involve the
newly materialized individual will always have safe, mutually consistent values.

5 Reachability and Transitive Closure
Several instrumentation predicates that depend on RTC are shown in Tab. 2.

p IntendedMeaning Up

t[n](v1, v2)|ls v2 reachable from v, along n fields? n* (vi,v2)

r[z,n](v) |lIsv reachable from pointer variable z along n fields?|3 vy : z(v1) A t[n](v1,v)
c[n](v) Is v on a directed cycle of n fields? Ju1: n(vi,v) At[n](v,v1)

Table 2. Defining formulas of some instrumentation predicates that depend on RTC.
(Recall that n* (v, v2) is a shorthand for (RTC v}, vh: n(vf,v}))(v1,v2).)

Unfortunately, finding a good way to maintain instrumentation predicates defined
using RTC is challenging because it is not known, in general, whether it is possible to
write a first-order formula (i.e., without using a transitive-closure operator) that speci-
fies how to maintain the closure of a directed graph in response to edge insertions and

deletions. Thus, our strategy has been to investigate special cases for classes of instru-
mentation predicates for which first-order maintenance formulas do exist. Whenever
these do not apply, the system falls back on safe maintenance formulas (which them-
selves use RTC).

In this paper, we confine ourselves to an important special case, namely, techniques
to maintain instrumentation predicates specified via the RTC of a binary formula that
defines an acyclic graph. (Some special cases for RTC of binary formulas that define
possibly-cyclic graphs will be the subject of a future paper.)

Consider a binary instrumentation predicate p, defined by ,(vi,v2) =
(RTC vi,vh: ¢1)(v1,v2). If the graph defined by ¢ is acyclic, it is possible to give a
first-order formula that maintains p after the addition or deletion of a single ¢ -edge.
The method we use is a minor modification of a method for maintaining non-reflexive
transitive closure in an acyclic graph, due to Dong and Su [7].

In the case of an insertion of a single ¢ -edge, the maintenance formula is

FSt[p](Ula UZ) = p('Ul,U2) V(H Uia Ué: p(vlavi) A A;’;[SDI]('ULUIQ) /\p(véa UZ))' (8)

The new value of p contains the old tuples of p, as well as those that represent two old
paths connected with the new ¢ -edge.

The maintenance formula to handle the deletion of a single ¢;-edge is a bit more
complicated. We first identify the tuples of p that represent paths that might rely on the
edge to be deleted, and thus may need to be removed from p (S stands for suspicious):

S[p, 1] (v1,v2) = vy, vy plur, vy) A Aglpr](vy, v3) Ap(vy, v2).
We next collect a set of p-tuples that definitely remain in p (7" stands for trusted):

T[p, p1](v1, v2) = (p(v1,v2) A =S[p, ¢1](v1,v2)) V Fae[pr] (v, v2). (9)
Finally, the maintenance formula for p for a single (;-edge deletion is

Fat[p](v1,v2) = 301, v5: Tlp, @1](vi,v1) AT[p, p1](vy,v5) ATp, 901](11'2;112)(-10)

Maintenance formulas (8) and (10) u Uy
maintain p when two conditions hold: the /'I—>N
graph defined by ¢ is acyclic, and the vy T
change to the graph is a single edge addi- U1<. > U,
tion or deletion (but not both). To see that = ™. |
under these assumptions the maintenance ™ \A_»/v
formula for a ; -edge deletion is correct, a b
suppose thgt there is a suspicious tuple Fig. 7. Edge (a, b) is being deleted; u; is the
p(u1,ug), 1.8, S[p,¢1](ur, ux) =1, BUt |3t node along path uy, ..., us, tits, - -
there is a y-path uq, ..., u that does uy, from which a is reachable.

not use the deleted ¢1-edge. We need to

show that Fg[p](u1,ur) has the value 1. Suppose that (a,b) is the o;-edge being
deleted; because the graph defined by ¢ is acyclic, there is a u; # wuy that is the
last node along path ug, ..., u;, 4it1,. .., ur from which a is reachable (see Fig. 7).
Because p(ui,u;) and p(uiy1,ur) both hold, and because u; cannot be reachable
from b (by acyclicity), neither tuple is suspicious; consequently, T'[p, 1](u1,u;) = 1
and T'[p, p1](uit+1,ur) = 1. Because (u;,u;41) iS an edge in the new (as well as
the old) graph defined by ¢, we have Fgfp1](ui,uiy1) = 1, which means that
Tp, o1](us, uir1) = 1 as well, yielding Fs:[p](u1,ur) = 1 by Egn. (10).

Fig. 8 extends the method for generating predicate-maintenance formulas to handle
instrumentation predicates specified via the RTC of a binary formula that defines an
acyclic graph. Fig. 8 makes use of the operator T'[p, ¢1](v,v") (Eqn. (9)), but recasts
Egns. (8) and (10) as finite-difference expressions Af; [1h,] and A, [b,], respectively.

v A5i[e]
(3v: AL) A—p){wr,.. ., wi} if, =3v: 1
3,y Aglen](v], v3))

p(wy, ..., wg), p(v1,v}) if e, =
peL A Joi,vh: A AL[p1] (0], v5) | A=p(vr,v2) | {wi,wa} (RTC v, vs: 1) (v1,v2)

/\p(Ué,U2)
Afbpl{ws, - wi} otherwise
' Aglel
(Fu: Aglen]) Ap{ws,-. -, we } ifPp =Vv: g

(For,v3: Aglen] (v, 02))

p(w, . . W), Tlp, ¢1](v1, 1) if i =
peZl A | 3t v AT[p,1](v1,03) | Ap(ui,) | {wi, w2} (RTC vy, v5: 1) (v1,02)

A T[p, 1] (vy, v2)
Ag[pl{ws, - - -, we} otherwise

Fig. 8. Extension of the finite-differencing method from Fig. 5 to cover RTC formulas,
for unit-sized changes to an acyclic graph defined by ¢ .

To know whether this special-case maintenance strategy can be applied, for each
statement st we need to know at analysis-generation time whether the change per-
formed at st, to the graph defined by ¢, always results in a single edge addition or
deletion. If in any admissible 2-STRUCT[P] there is a unique satisfying assignment
to the two free variables of A, [;] and no assignment satisfies A, [¢;], then the pair
Al [p1], Ale1] defines a change that adds exactly one edge to the graph. Similarly, if
in any admissible 2-STRUCT][P] there is a unique satisfying assignment to the two free
variables of A_;[¢1] and no assignment satisfies Af;[¢1], then the change is a deletion
of exactly one edge from the graph.

Because answering these questions is in general undecidable, we employ a conser-
vative approximation based on a syntactic analysis of logical formulas. The analysis
uses a heuristic to determine a set of variables V' such that for each admissible struc-
ture, the variables in V' have a single possible binding in the formula’s satisfying as-
signments. We refer to such variables as anchored variables. For instance, if predicate ¢
has the attribute “unique”, for each admissible structure there is a single possible bind-
ing for variable v in any assignment that satisfies ¢(v); in a formula that contains an
occurrence of g(v), v is an anchored variable.

If both free variables of Af,[¢1] are anchored and A, [¢1] = 0, then the change
adds one edge to the graph defined by ¢ . Similarly, if both free variables of A_;[¢1] are
anchored and A}, [p1] = 0, then the change removes one edge from the graph. In these
cases, the reflexive transitive closure of ¢, can be updated using the method discussed
above.

6 Experimental Evaluation

To evaluate the techniques presented in the paper, we extended TVLA to generate
predicate-maintenance formulas, and applied it to a test suite of 5 existing analysis
specifications, involving 26 programs (see Fig. 9).

of non-id Performance
Category Test Program maintenance-formula
schemas instances||Analysis Time (sec.)

total| TC|non-TC reference FD|% increase
Search 2| 0 2 2 0.93 0.92 -0.11
NullDeref 2| 0 2 3 0.96 0.96 0.31
GetLast 31 0 3 4 1.14 1.14 -0.44
SLL DeleteAll 11 2 9 15 0.79 0.81 3.30
Shape |Reverse 12| 2 10 16 1.33 1.39 4.49
Analysis |Create 11| 2 9 21 0.73 0.76 3.68
Swap 11| 2 9 27 0.77 0.81 5.47
Delete 12| 2 10 39 3.78 4.81 27.15
Merge 11| 2 9 64 7.69 9.34 21.50
Insert 12| 2 10 72 3.67 4.47 21.69
DLL |Append 15| 2 13 50 7.66 8.81 14.96
Shape |Delete 16| 2 14 74 27.97 26.87 -3.93
Analysis |Splice 15| 2 13 96 3.25 3.78 16.20
Binary [Non-tree 8| 2 6 9 0.82 0.90 9.63
Tree InsertSorted 13] 2 11 43 10.08 11.19 10.98
Shape [Deutsch-Schorr-Waite|| 10| 2 8 52|| 357.88 419.07 17.10
Analysis |DeleteSorted 13] 2 11 554|| 284.50 406.30 4281
ReverseSorted 18| 2 16 23 1.62 1.69 4.13
Bubble 18| 2 16 80 36.08 41.88 16.07
SLL BubbleBug 18| 2 16 80 34.68 39.85 14.90
Sorting |InsertSortBug2 18| 2 16 87 29.95 43.52 45.29
InsertSort 18| 2 16 88 38.20 51.38 34.51
InsertSortBugl 18| 2 16 88|| 109.91 134.15 22.05
MergeSorted 18| 2 16 91 12.09 14.24 17.79
Information|Good Flow 12| 2 10 66 58.49 67.65 15.66
Flow |Bad Flow 12| 2 10 86| 375.83| 461.77 22.87

Fig. 9. Results from using hand-crafted vs. automatically generated maintenance for-
mulas for instrumentation predicates.

The test programs consisted of various operations on acyclic singly-linked lists,
doubly-linked lists, binary trees, and binary-search trees, plus several sorting programs
[10]. The system was used to verify some partial-correctness properties of the test
programs. For instance, Reverse, an in-situ list-reversal program, must preserve list
properties and lose no elements; InsertSorted and DeleteSorted must preserve binary-
search-tree properties; InsertSort must return a sorted list; Good Flow must not allow
high-security input data to flow to a low-security output channel.

A few of the programs contained bugs: for instance, InsertSortBug2 is an insert-sort
program that ignores the first element of the list; BubbleBug is a bubble-sort program
with an incorrect condition for swapping elements, which causes an infinite loop if the
input list contains duplicate data values; Non-tree creates a node whose left-child and
right-child pointers point to the same subtree.

In TVLA, the operational semantics of a programming language is defined by spec-
ifying, for each kind of statement, an action schema to be used on outgoing CFG
edges. Action schemas are instantiated according to a program’s statement instances
to create the CFG. For each combination of action schema and instrumentation pred-
icate, a maintenance-formula schema must be provided. The number of non-identity
maintenance-formula schemas is reported in columns 3-5 of Fig. 9, broken down in
columns 4-5 into those whose defining formula contains an occurrence of RTC, and
those that do not. Predicate-maintenance formulas produced by finite differencing are

generally larger than the hand-crafted ones. Because this affects analysis time, the num-
ber of instances of non-identity maintenance-formula schemas is a meaningful size
measure for our experiments. These numbers appear in column 6.

For each program in the test suite, we first ran the analysis using hand-crafted main-
tenance formulas, to obtain a reference answer in which CFG nodes were annotated
with their final sets of logical structures. We then ran the analysis using automatically
generated maintenance formulas and compared the result against the reference answer.
For all 26 test programs, the analysis using automatically generated formulas yielded
answers identical to the reference answers.

Columns 7-9 show performance data, which were collected on a 1Ghz AMD
Athlon™ workstation running Red Hat Linux version 7.1. In each case, five runs were
made; the longest and shortest times were discarded from each set, and the remaining
three averaged. (Figures do not report time spent on loading and initialization, which is
not affected by our technique. We also exclude the overhead of formula differencing,
because this is not an analysis-time cost.) The geometric mean of the slowdowns when
using the automatically generated formulas was approximately 14%, with a median of
15%, mainly due to the fact that the automatically generated formulas are larger than the
hand-crafted ones. The maximum slowdown was 45%.° A few analyses were actually
faster with the automatically generated formulas; these speedups are either due to ran-
dom variation or are accidental benefits of subformula orderings that are advantageous
for short-circuit evaluation.

These results are encouraging. At least for abstractions of several common data
structures, they suggest that the algorithm for generating predicate-maintenance formu-
las from Sect. 4 is capable of automatically generating formulas that (i) are as precise
as the hand-crafted ones, and (ii) have a tolerable effect on runtime performance.

The extended version of TVLA also uncovered several bugs in the hand-crafted for-
mulas. A maintenance formula of the form g, o (v1,...,v%) = p(v1,. .., vs) is called
an identity predicate-maintenance formula. For each identity predicate-maintenance
formula in the hand-crafted specification, we checked that (after simplification) the
corresponding generated predicate-maintenance formula was also an identity formula.
Each inconsistency turned out to be an error in the hand-crafted specification. We also
found one instance of an incorrect non-identity hand-crafted maintenance formula. (The
measurements reported in Fig. 9 are based on corrected hand-crafted specifications.)

7 Redated Work

A weakness of past incarnations of TVLA has been the need for the user to define
predicate-maintenance formulas that specify how each statement affects each instru-
mentation predicate. Recent criticisms of TVLA based on this deficiency are no longer
valid [3, 15], at least for analyses that can be defined using formulas that define acyclic
relations (and also for some classes of formulas that define cyclic relations, using tech-
niques not discussed in this paper). With the algorithm presented in Sects. 4 and 5,
the user’s responsibility is merely to write the ¢, formulas; appropriate predicate-
maintenance formulas are created automatically.

Graf and Saidi [8] showed that theorem provers can be used to generate best ab-
stract transformers [4] for abstract domains that are fixed, finite, Cartesian products of
Boolean values. (The use of such domains is known as predicate abstraction; predi-
cate abstraction is also used in SLAM [3] and other systems [5].) In contrast, the ab-
stract transformers created using the algorithm described in Sects. 4 and 5 are not best

5 We expect that some simple optimizations, such as caching the results from evaluating subfor-
mulas, could significantly reduce the slowdown.

transformers; however, this algorithm uses only very simple, linear-time, recursive tree-
traversal procedures, whereas the theorem provers used in predicate abstraction are not
even guaranteed to terminate. Moreover, our setting makes available much richer ab-
stract domains than the ones offered by predicate abstraction, and experience to date
has been that very little precision is lost (using only good abstract transformers) once
the right instrumentation predicates have been identified.

Paige studied how finite-differencing transformations of applicative set-former ex-
pressions could be exploited to optimize loops in very-high-level languages, such as
SETL [16]. Liu et al. used related program-transformation methods in the setting of
a functional programming language to derive incremental algorithms for various prob-
lems from the specifications of exhaustive algorithms [13, 12]. In their work, the goal is
to maintain the value of a function F'(x) as the input 2 undergoes small changes. The
methods described in Sects. 4 and 5 address a similar kind of incremental-computation
problem, except that the language in which the exhaustive and incremental versions of
the problem are expressed is first-order logic with reflexive transitive closure.

The finite-differencing operators defined in Sects. 4 and 5 are most closely related
to a number of previous papers on logic and databases: finite-difference operators for
the propositional case were studied by Akers [2] and Sharir [19]. Previous work on
incrementally maintaining materialized views in databases [9], “first-order incremental
evaluation schemes (FOIES)” [6], and “dynamic descriptive complexity” [17] has also
addressed the problem of maintaining one or more auxiliary predicates after new tuples
are inserted into or deleted from the base predicates. In databases, view maintenance
is solely an optimization; the correct information can always be obtained by reeval-
uating the formula. In the abstract-interpretation context, where abstraction has been
performed, this is no longer true: reevaluating a formula in the local (3-valued) state
can lead to a drastic loss of precision. Thus, one aspect that sets our work apart from
previous work is the goal of developing a finite-differencing transformation suitable for
use when abstraction has been performed.

Not all finite-differencing transformations that are correct in 2-valued logic (i.e.,
satisfy Thm. 2), are appropriate for use in 3-valued logic. For instance, Fig. 10 presents
an alternative finite-differencing scheme for first-order formulas. In this scheme, 4;[¢]
captures both the negative and positive changes to ¢’s value. With Fig. 10, the mainte-
nance formula for instrumentation predicate p is

Mp,st g p®d Agt ["/’p]: (11)

where @ denotes exclusive-or. However, in 3-valued logic, we have 1/2 @V = 1/2, re-
gardless of whether V'is 0, 1, or 1/2. Consequently, Eqn. (11) has the unfortunate prop-
erty that if p(u) = 1/2, then p,, -+ evaluates to 1/2 on u, and p(u) becomes “pinned” to
the indefinite value 1/2; it will have the value 1/2 in all successor structures S, in all
successors of S’, and so on. With Eqn. (11), p(u) can never reacquire a definite value.

¢ Asily]
1 0
0 0

p(wi, ..., wx),p € C||(Tp,st ®P){wr,. .., wi}
p(wi,...,wr),p € I||Ag[thp[{wn,. .., wi}

1D P2 Ast[p1] B Asi[pa]
P12 (Ast[p1] A p2) D1 A Ast[pa]) D(Ast[p1] A Asi[ip2])
Yo: 1 (Vv: 1) ? (Fv: Aglen]) : Yo: o1 @ Asifpr])

Fig. 10. An alternative finite-differencing scheme for first-order formulas.

In contrast, the maintenance formulas created using the finite-differencing scheme

of Fig. 5 do not have this trouble because they have the form p ? = A7, [,] : A [¥p]-
The use of if-then-else allows p(u) to reacquire a definite value after it has been set to

1/2:if p(u) is 1/2, p,, s evaluates to a definite value on u if [A; [t (v)]]5 ([v = u))
is 1 and [AF, [¢p (0)]]5 ([v = w]) is 0, or vice versa.

Acknowledgments

We thank W. Hesse, N. Immerman, T. Lev-Ami and R. Wilhelm for their comments and
suggestions concerning this work. R. Manevich provided invaluable help with TVLA.

References

1.
2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

TVLA system. Available at “http://www.math.tau.ac.il/~rumster/TVLA/".

S.B. Akers, Jr. On a theory of Boolean functions. J. Soc. Indust. Appl. Math., 7(4):487—-498,
December 1959.

T. Ball, R. Majumdar, T. Millstein, and S.K. Rajamani. Automatic predicate abstraction of
C programs. In Conf. on Prog. Lang. Design and Impl., New York, N, 2001. ACM Press.
P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Symp. on
Princ. of Prog. Lang., pages 269—282, New York, NY, 1979. ACM Press.

S. Das, D.L. Dill, and S. Park. Experience with predicate abstraction. In Proc. Computer-
Aided Verif., pages 160-171. Springer-Verlag, July 1999.

G. Dong and J. Su. Incremental and decremental evaluation of transitive closure by first-
order queries. Inf. and Comp., 120:101-106, 1995.

G. Dong and J. Su. Incremental maintenance of recursive views using relational calcu-
lus/SQL. SSIGMOD Record, 29(1):44-51, 2000.

S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Proc. Computer-
Aided Verif., pages 72—83, June 1997.

A. Gupta and I.S. Mumick, editors. Materialized Views: Techniques, Implementations, and
Applications. The M.L.T. Press, Cambridge, MA, 1999.

T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to work for verifica-
tion: A case study. In Int. Symp. on Software Testing and Analysis, pages 26—38, 2000.

T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In Satic
Analysis Symp., pages 280—301, 2000.

Y.A. Liu, S.D. Stoller, and T. Teitelbaum. Discovering auxiliary information for incremental
computation. In Symp. on Princ. of Prog. Lang., pages 157—170, January 1996.

Y.A. Liu and T. Teitelbaum. Systematic derivation of incremental programs. Sci. of Comp.
Program., 24:1-39, 1995.

K.L. McMillan. Verification of infinite state systems by compositional model checking. In
CHARME, pages 219-234, 1999.

A. Mgller and M.I. Schwartzbach. The pointer assertion logic engine. In Conf. on Prog.
Lang. Design and Impl., pages 221-231, 2001.

R. Paige and S. Koenig. Finite differencing of computable expressions. Trans. on Prog.
Lang. and Syst., 4(3):402—454, July 1982.

S. Patnaik and N. Immerman. Dyn-FO: A parallel, dynamic complexity class. J. Comput.
Yyst. i, 55(2):199-209, October 1997.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. Trans. on
Prog. Lang. and Syst., 24(3):217-298, 2002.

M. Sharir. Some observations concerning formal differentiation of set theoretic expressions.
Trans. on Prog. Lang. and Syst., 4(2):196—225, April 1982.

