

Data Structures for Moving Objects

Data Structures for Moving Objects

Data Structures for Moving Objects

Experimental Results – **Synthetic Data** \star 100,000–500,000 points inside 1000 \times 1000 km^2 area with different distributions \star Points are inserted/deleted dynamically, at any time at least 80% points present ★ Three range of speed: 45 km/h, 75km/h, 180 km/h - S1 (approx.) S1 (exact) - S2 (approx.) S2 (exact) - S3 (approx.) S3 (exact) -4-40 3! Q 30 25 20 20 100 150 200 250 300 Time

Data Structures for Moving Objects

– Experimental Results –

Realistic Data

- ★ Extracted the roads map around Durham, NC, within 120 miles centered at Durham ($\approx 250,000$ polygonal chains)
- \star Computed a planar map of the road network
- \star Chose source and destinations randomly with some distribution
- ☆ Computed a good path using Dijkstra's algorithm minimize the length + number of turns
- ★ Used Douglas Peucker algorithm to simplify the paths

Data Structures for Moving Objects

