Data Structures for Moving Objects

Pankaj K. Agarwal

Center for Geometric Computing
Department of Computer Science
Duke University

Geometric Data Structures

S: Set of geometric objects
Points, segments, polygons
☆ Ask several queries on S
 • Range searching
 • Nearest-neighbor searching

Quad Tree
kd–Tree
BSP
Moving Objects: Applications

- Traffic management
 - Location based services
 - Emergency services
 - Air traffic control
- Digital battlefields
- Molecular biology
- Deformable objects
- Adhoc networks

Need data structures for storing, analyzing, querying moving objects.

Modeling Motion

\[p(t) = (x(t), y(t)) : \text{Position of } p \text{ at time } t. \]
\[x(\cdot), y(\cdot) : \text{Polynomials} \]
\[\text{Degree of motion: max degree of } x(\cdot), y(\cdot). \]
\[\text{Linear motion: Degree of motion is 1} \]
\[p(t) = at + b, \quad a, b \in \mathbb{R}^2 \]
- Mostly assume motion to be linear
- Trajectory of points can change
- Trajectory can be piecewise linear

Issues:
- Sampled motion
- Hierarchical motion
- Uncertainty
Range Searching

S: Set of points

Preprocess S into a data structure

Report all points of S lying inside a query rectangle

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Space</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range tree</td>
<td>$\frac{\log n}{\log \log n}$</td>
<td>$\log n + k$</td>
</tr>
<tr>
<td>kd-tree</td>
<td>n</td>
<td>$\sqrt{n} + k$</td>
</tr>
</tbody>
</table>

External memory data structures also available

Example: R-tree

Kinetic Range Searching

S: Set of points, each moving with fixed velocity in the plane

Preprocess S into a data structure:

Q1 Given a rectangle R and a time value t, report all points of $S(t) \cap R$

Q2 Given a rectangle R and time values t_1, t_2, report all points that pass through R during the time interval $[t_1, t_2]$.
Early Approaches

☆ One-dimensional data structures

☆ Two-dimensional data structures
 • Map trajectories to higher dimensional points [Kollios et al.]
 • Build index on trajectories [Pfoser et al.]
 • Parametric R-trees [Saltenis et al.]
 Assumes frequent updates on trajectories

Kinetic Range Searching

(A., Arge, Erickson, 2001)

☆ Partition-tree based approach
 • $O(n)$ space, $\sim \sqrt{n} + k$ query time
 • $\log^2 n$ insertion/deletion/trajectory-change
 • Time oblivious scheme

☆ Kinetic range trees
 • $n \log n/ \log \log n$ space, $\log n + k$ query
 • Events: x- or y-coordinates of two points become equal
 • $\Theta(n^2)$ events, each requiring $\log^2 n$ time
 • Tradeoff between # events and query time
 • Queries have to arrive in a chronological order
Partition Tree Based Approach

- Trajectory of a point \(p_i \) is a line \(\ell_i \) in \(\mathbb{R}^3 \)
- \(p_i(t) \in R \iff \ell_i \text{ intersects } (R, t) \)
- \(\ell_x, \ell_y \): Projection of \(\ell \) onto the \(xt \)- & \(yt \)-planes
- \(\ell \text{ intersects } (R, t) \Leftrightarrow \ell_x \text{ intersects } (R_x, t) \text{ & } \ell_y \text{ intersects } (R_y, t) \)
- Use duality and partition trees

R-Trees

- Bounding box hierarchy, B-tree
- Each node \(v \) is associated with a subset \(S_v \) of points and the smallest rectangle \(R_v \) containing \(S_v \)
- Partition \(S_v \) into \(B \) clusters, each associated with a child of \(v \)
- Several heuristics are proposed for partitioning \(S_v \) into \(B \) clusters
Kinetic R-tree

- Maintain the smallest box enclosing the set of moving points
 - Box is defined by four points
 - The combinatorial structure can change $\Omega(n)$ times
 - Maintain an approximation of the smallest enclosing box

Maintaining the clustering kinetically

- Extend the known heuristics
- No theoretical nontrivial results known on kinetic clustering

Smallest Enclosing Box

- $R(P(t))$: Smallest box enclosing P at time t
- ε-core-set: $C \subseteq S$ ε-coreset if $\forall t \ (1 - \varepsilon)R(S(t)) \subseteq R(C(t))$

Theorem: $\exists \varepsilon$-core-set of size $1/\sqrt{\varepsilon}$; Computation time: $n + 1/\varepsilon$

A more general result on core sets in [A., Har-Peled, Varadarajan]
Leads to approximation algorithms for several problems
STAR-tree: Maintain a box enclosing S_v at each node v

- Compute $C_v \subset S_v$ for each node in a bottom-up manner
 - Merge the core sets computed at the children of v
 - Prune the merged set

- Maintain the smallest enclosing box $R(C_v)$
Re-Clustering

☆ Reorganize the children of a node if the rectangles of their children overlap a lot.

☆ Collect all the grandchildren of the node

☆ Reconstruct a 2-level R-tree on them

Experimental Results

Synthetic Data

☆ 100,000–500,000 points inside 1000 × 1000 km² area with different distributions

☆ Points are inserted/deleted dynamically, at any time at least 80% points present

☆ Three range of speed: 45 km/h, 75km/h, 180 km/h
Realistic Data

- Extracted the roads map around Durham, NC, within 120 miles centered at Durham ($\approx 250,000$ polygonal chains)
- Computed a planar map of the road network
- Chose source and destinations randomly with some distribution
- Computed a good path using Dijkstra’s algorithm — minimize the length + number of turns
- Used Douglas Peucker algorithm to simplify the paths
Tradeoffs in Performance

- **Accuracy vs efficiency**
 - Maintain approximate structures

- **Query vs events**
 - Combine KDS and time-oblivious approaches

- **Time Responsive Approach:**
 - Near-future queries are more critical than far-future queries
 - Fast query time for near-future queries
 - Measure *future* by the number of events occurred
 - # events: Δ, query: $\sqrt{\Delta/n + k}$

Concluding Remarks

- Incorporating more realistic motions
 - Use dynamic systems, e.g., Kalman, particle filters, to model trajectories
 - How does one perform geometric computation in this model?
 - Geometric computation under uncertainty

- Hierarchical representation of motion

- Kinetic data structure for clustering, similarity searching