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Sequential Supervised Learning

Given: A set of training examples {(X;, Y;)}Y |, where

Each X; is a sequence (x;1,...,%; 1,) of feature vectors

Each Yj is a sequence (y; 1, ..., ;1) of corresponding class labels

Find: A classifier F' that given a new sequence X can predict the sequence
of class labels Y

Many machine learning applications: Part-of-speech tagging,
information extraction from web pages, computer intrusion detection,

text-to-speech mapping, fraud detection in transaction streams, etc.

No good off-the-shelf methods exist




Example: Text-to-Speech Mapping (NETTalk)
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e Developed and first studied by Sejnowski and Rosenberg (1987)

e Standard data set: Train on 1000 words; Test on 1000 words, 126 classes

e Best known method: 15-letter recurrent sliding window classifier based

on decision trees and error-correcting output coding (Dietterich & Bakiri,
2001).

This method only captures sequential relationships in one direction.




Promising New Method: Conditional Random Fields
(Lafferty, McCallum, Pereira, 2001)

e The Y sequence is modeled as a Markov Random Field whose potentials
U(ys—1,y:, X) are a function of X as well as the nodes y;_; and y;. Hence,

they are conditioned on X.

e Formally:

\Ij(yt—la Yt, X) — Z )\ozfoz(yt—la yth) =+ Zuﬁgﬁ(ytv X)
o B

P(Y‘X) _ eXpZt\Ij(yt—lvyt7X)
2oy exp ) (Y 1555 X)




Advantages of Conditional Random Fields

e Captures relationships among the y;’s

Unlike sliding windows and recurrent sliding windows

e Does not impose a generative model on the z;’s. This permits

greater freedom in designing features to describe X
Unlike Hidden Markov Models

e Avoids ‘“Label Bias” problem
Unlike Maximum Entropy Markov Models (MEMMs) and some
HMM /Neural Network hybrids




Training Conditional Random Fields

e Initial paper: Improved Iterative Scaling
Very slow; required careful initialization of the weights: A\, and pg

e Recent unpublished work: Conjugate Gradient

With careful preconditioning (Pereira’s group)
With scaled conjugate gradient (Wallach, 2002)

e Our proposal: Apply Friedman’s Gradient Boosting




Gradient Boosting
e Goal: Fit a function F' to a set of data points (x;,y;) to minimize a
differentiable loss function L(y;, F'(x;)).

Method: Construct a sequence of regression trees: h(x,ai), ..., h(x,ans)

and construct F' as
F(x) = Fy+ ¢1h(x,a1) + ...+ darh(x,ay),
where Fj 1s an initial constant.

Functional Gradient: Each tree h(x,a) is a least squares fit to a set of
pseudo targets, y; computed as the “functional gradient” of the loss

function:

ALy, F(x))
OF (x;) F=F,,_1

In other words, y; captures how F'(x;) should change in order to reduce the

loss. F,,_1 is the fitted function after m — 1 steps.




Gradient Boosting Algorithm

compute constant

for m =1 to M do:

o 0L F(x)
’ 8F(Xz) F=F, _. ’

1=1,N compute pseudo-targets
fit regression tree

¢m = argmin Z L(y;, Frn1(X;) + ¢h(x;;a,,)) compute “step size”
¢ =1

F(x) = Fine1(X) + ¢mh(x; an) update I

endfor




Applying Gradient Boosting to Train CRF's

Loss function: Log Conditional Pseudo Likelihood:

e Krror is logp(ytkgl,.. S Yt—1,Yt+1, - '7yT7X) — logp(yt‘yt—hyt—l-l?X)

e Besag (1986) shows that pseudo-likelihood is a consistent estimator that
avoids the need to compute P(y:]X).

e A separate F'is defined for each class label k:
Fk(yt—bX) — \Ij(yt—la Yt = k7X)
e The pseudo-target for example 7, class k£, time ¢ is

Yikt = Yikt — p(k‘yt—layt—i—laX)
where P is computed as

exp[V(yi—1,k, X) + Y(k, yry1, X)]

P(kly,— X) =
( ‘yt 1, Yt+1, ) ZleXp[q’(yt—lal7X)+q’(l’yt+1’X)]




Gradient Boosting for CRF's (2)

Ff=o0 fork=1,....K
for m =1 to M do

for k =1to K do

A

Yikt = Yikt — P(yz’t = k|yt—1, Yt+1, X)

N
o, = argmin S5 ke — Ao 1%
& =1t

FY(x) = Fr_;(x) + h(x;a;,)
endfor

endfor

Note: No step size is computed



Sum of Regression Trees is Equivalent to CRF

St

The circled path is equivalent to an expression of the form A, f., where
e )\, =0.324
o f, =514 S18, which is a product (conjunction) of the primitive features

Hence, the regression tree CRFs implement a form of feature selection and

feature combination.




Training Times

e Conjugate Gradient Search
Parallelized with 16 processors required 40 hours (i.e., 640 CPU hours) per

line search

e Gradient Boosting

Single processor. 100 iterations requires 6 CPU hours.




Results: Whole Words Correct
5-letter window, Viterbi beam width 20

Regression Tree CRF vs. Recurrent Decision Tree for word prediction

Viterbi CRF

Recurrent Decision Tree
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Window sizes of 3 and 7

Regression Tree CRF using 3 & 7 letter windows for word prediction

1 1
Boosted Regression Trees w/ 3 letter window ———

Recurrent Decision Tree w/ 3 letter window ——
Recurrent Decision Tree w/ 7 letter window ——

100
Iterations




Accuracy of Predicting Individual Letters

Regression Tree CRF using 3 & 7 letter windows for letter prediction

1 1 1
Boosted Regression Trees w/ 3 letter window ———

Recurrent Decision Tree w/ 3 letter window ——
Recurrent Decision Tree w/ 7 letter window ———
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Why Gradient Boosting is More Effective

e Each “step” is large. Each functional gradient step adds another
regression tree to the potential function (for each class k).

Parameters are introduced only as necessary. Previous training
methods introduced all of the features from the start, which introduces a
vast number of parameters to be tuned. These parameters interact, which

makes optimization slow.

Combinations of features are constructed. Previous methods could
not consider feature combinations, because this would increase the number

of parameters even further.




Conclusions

e CRF’s show promise of providing a versatile off-the-shelf method
for sequential supervised learning
CRF's out-perform a comparable recurrent sliding window classifier.
We plan to test CRF ensembles (or ECOC) to see if we can beat our

previous best method.

e Gradient boosting provides an efficient and effective algorithm
for fitting CRF's to data

e Gradient boosting can be extended to fit general Markov random

fields and relational probabilistic models




