Training Conditional Random Fields via Gradient Boosting

Thomas Dietterich and Adam Ashenfelter
Department of Computer Science
Oregon State University
Corvallis, Oregon 97330
{tgd|ashenfad}@cs.orst.edu

Sequential Supervised Learning

- Given: A set of training examples $\{\langle X_i, Y_i \rangle\}_{i=1}^N$ where Each X_i is a sequence $(\mathbf{x}_{i,1}, \dots, \mathbf{x}_{i,T_i})$ of feature vectors Each Y_i is a sequence $(y_{i,1}, \dots, y_{i,T_i})$ of corresponding class labels
- Find: A classifier F that given a new sequence X can predict the sequence of class labels \hat{Y}
- Many machine learning applications: Part-of-speech tagging, information extraction from web pages, computer intrusion detection, text-to-speech mapping, fraud detection in transaction streams, etc.
- No good off-the-shelf methods exist

Example: Text-to-Speech Mapping (NETTalk)

- Developed and first studied by Sejnowski and Rosenberg (1987)
- Standard data set: Train on 1000 words; Test on 1000 words, 126 classes
- Best known method: 15-letter recurrent sliding window classifier based on decision trees and error-correcting output coding (Dietterich & Bakiri, 2001).

This method only captures sequential relationships in one direction.

Promising New Method: Conditional Random Fields (Lafferty, McCallum, Pereira, 2001)

- The Y sequence is modeled as a Markov Random Field whose potentials $\Psi(y_{t-1}, y_t, X)$ are a function of X as well as the nodes y_{t-1} and y_t . Hence, they are *conditioned* on X.
- Formally:

$$\Psi(y_{t-1}, y_t, X) = \sum_{\alpha} \lambda_{\alpha} f_{\alpha}(y_{t-1}, y_t, X) + \sum_{\beta} \mu_{\beta} g_{\beta}(y_t, X)$$

$$P(Y|X) = \frac{\exp \sum_{t} \Psi(y_{t-1}, y_t, X)}{\sum_{Y'} \exp \sum_{t} \Psi(y'_{t-1}, y'_t, X)}$$

Advantages of Conditional Random Fields

- Captures relationships among the y_t 's

 Unlike sliding windows and recurrent sliding windows
- Does not impose a generative model on the x_t 's. This permits greater freedom in designing features to describe X Unlike Hidden Markov Models
- Avoids "Label Bias" problem
 Unlike Maximum Entropy Markov Models (MEMMs) and some
 HMM/Neural Network hybrids

Training Conditional Random Fields

- Initial paper: Improved Iterative Scaling

 Very slow; required careful initialization of the weights: λ_{α} and μ_{β}
- Recent unpublished work: Conjugate Gradient With careful preconditioning (Pereira's group)
 With scaled conjugate gradient (Wallach, 2002)
- Our proposal: Apply Friedman's Gradient Boosting

Gradient Boosting

- Goal: Fit a function F to a set of data points (\mathbf{x}_i, y_i) to minimize a differentiable loss function $L(y_i, F(\mathbf{x}_i))$.
- Method: Construct a sequence of regression trees: $h(\mathbf{x}, \mathbf{a}_1), \ldots, h(\mathbf{x}, \mathbf{a}_M)$ and construct F as

$$F(\mathbf{x}) = F_0 + \phi_1 h(\mathbf{x}, \mathbf{a}_1) + \ldots + \phi_M h(\mathbf{x}, \mathbf{a}_M),$$

where F_0 is an initial constant.

• Functional Gradient: Each tree $h(\mathbf{x}, \mathbf{a})$ is a least squares fit to a set of pseudo targets, \tilde{y}_i computed as the "functional gradient" of the loss function:

$$\tilde{y}_i = -\left. \frac{\partial L(y_i, F(\mathbf{x}_i))}{\partial F(\mathbf{x}_i)} \right|_{F=F_{m-1}}$$

In other words, \tilde{y}_i captures how $F(\mathbf{x}_i)$ should change in order to reduce the loss. F_{m-1} is the fitted function after m-1 steps.

Gradient Boosting Algorithm

$$F_0 = \underset{\phi}{\operatorname{argmin}} \sum_{i=1}^{N} L(y_i, \phi)$$

compute constant

for m = 1 to M do:

$$\tilde{y}_i = -\left. \frac{\partial L(y_i, F(\mathbf{x}_i))}{\partial F(\mathbf{x}_i)} \right|_{F=F_{m-1}}, \quad i = 1, N$$
 compute pseudo-targets

$$\mathbf{a}_m = \underset{\mathbf{a}}{\operatorname{argmin}} \sum_{i=1}^{N} [\tilde{y}_i - h(\mathbf{x}_i; \mathbf{a})]^2$$

fit regression tree

$$\phi_m = \underset{\phi}{\operatorname{argmin}} \sum_{i=1}^{N} L(y_i, F_{m-1}(\mathbf{x}_i) + \phi h(\mathbf{x}_i; \mathbf{a}_m)) \text{ compute "step size"}$$

$$F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \phi_m h(\mathbf{x}; \mathbf{a}_m)$$

update F

endfor

Applying Gradient Boosting to Train CRFs

Loss function: Log Conditional Pseudo Likelihood:

- Error is $\log \hat{P}(y_t|y_1, \dots, y_{t-1}, y_{t+1}, \dots, y_T, X) = \log \hat{P}(y_t|y_{t-1}, y_{t+1}, X)$
- Besag (1986) shows that pseudo-likelihood is a consistent estimator that avoids the need to compute $\hat{P}(y_t|X)$.
- A separate F is defined for each class label k:

$$F^{k}(y_{t-1}, X) = \Psi(y_{t-1}, y_t = k, X)$$

• The pseudo-target for example i, class k, time t is

$$\tilde{y}_{ikt} = y_{ikt} - \hat{P}(k|y_{t-1}, y_{t+1}, X)$$

where \hat{P} is computed as

$$\hat{P}(k|y_{t-1}, y_{t+1}, X) = \frac{\exp[\Psi(y_{t-1}, k, X) + \Psi(k, y_{t+1}, X)]}{\sum_{l} \exp[\Psi(y_{t-1}, l, X) + \Psi(l, y_{t+1}, X)]}$$

Gradient Boosting for CRFs (2)

$$F_0^k = 0 \qquad \text{for } k = 1, \dots, K$$

for m = 1 to M do

for k = 1 to K do

$$\tilde{y}_{ikt} = y_{ikt} - \hat{P}(y_{it} = k | y_{t-1}, y_{t+1}, X)$$

$$\mathbf{a}_{m}^{k} = \underset{\mathbf{a}}{\operatorname{argmin}} \sum_{i=1}^{N} \sum_{t} [\tilde{y}_{ikt} - h(y_{i,t-1}, \mathbf{x}_{i}; \mathbf{a})]^{2}$$

$$F_m^k(\mathbf{x}) = F_{m-1}^k(\mathbf{x}) + h(\mathbf{x}; \mathbf{a}_m^k)$$

endfor

endfor

Note: No step size is computed

Sum of Regression Trees is Equivalent to CRF

The circled path is equivalent to an expression of the form $\lambda_{\alpha} f_{\alpha}$, where

- $\lambda_{\alpha} = 0.324$
- $f_{\alpha} = s_1 \cdot s_4 \cdot s_{18}$, which is a product (conjunction) of the primitive features

Hence, the regression tree CRFs implement a form of feature selection and feature combination.

Training Times

• Conjugate Gradient Search

Parallelized with 16 processors required 40 hours (i.e., 640 CPU hours) per line search

• Gradient Boosting

Single processor. 100 iterations requires 6 CPU hours.

Results: Whole Words Correct 5-letter window, Viterbi beam width 20

Window sizes of 3 and 7

Accuracy of Predicting Individual Letters

Why Gradient Boosting is More Effective

- Each "step" is large. Each functional gradient step adds another regression tree to the potential function (for each class k).
- Parameters are introduced only as necessary. Previous training methods introduced all of the features from the start, which introduces a vast number of parameters to be tuned. These parameters interact, which makes optimization slow.
- Combinations of features are constructed. Previous methods could not consider feature combinations, because this would increase the number of parameters even further.

Conclusions

- CRF's show promise of providing a versatile off-the-shelf method for sequential supervised learning

 CRFs out-perform a comparable recurrent sliding window classifier.

 We plan to test CRF ensembles (or ECOC) to see if we can beat our previous best method.
- Gradient boosting provides an efficient and effective algorithm for fitting CRFs to data
- Gradient boosting can be extended to fit general Markov random fields and relational probabilistic models