Semi-Supervised Learning with Label Propagation

Xiaojin Zhu
Zoubin Ghahramani *
John Lafferty

School of Computer Science Carnegie Mellon University

* Gatsby Computational Neuroscience Unit University College London {zhuxj, zoubin, lafferty}@cs.cmu.edu

January 13, 2003

Poverty of the Stimulus

Classification using Unlabeled Data

Assume: there is information in the data manifold.

The Problem Statement

Let there be l labeled data $(x_1, y_1) \dots (x_l, y_l)$, $y \in \{0, 1\}$.

Let there be u unlabeled data $x_{l+1} \dots x_{l+u}$; usually $u \gg l$.

We create an **undirected weighted graph**, where the nodes are data points, both labeled and unlabeled.

Assume we are given the **weight matrix** W, e.g. $w_{ij} = \exp\left(-\frac{d_{ij}^2}{\sigma^2}\right)$

Problem: infer y for unlabeled data (transduction).

We first work out a **real function** f on the graph.

Label Propagation Algorithm

We want nearby points to have similar labels.

Let D be the diagonal matrix, $D_{ii} = \sum_{j} w_{ij}$. (the **volume** of node i)

Let $P = D^{-1}W$ be the **transition matrix**. (W row normalized)

Algorithm Repeat until converge:

- 1. Propagate labels on all nodes for one step f = Pf.
- 2. Clamp $f(i) = y_i$, for i = 1 ... l.

Convergence of f

Notation:
$$W = \begin{bmatrix} W_{ll} & W_{lu} \\ W_{ul} & W_{uu} \end{bmatrix}$$
, same for D, P etc.

The algorithm computes the stationary point

$$\left[\begin{array}{c} f_l \\ f_u \end{array}\right] = \left[\begin{array}{cc} I & \mathsf{0} \\ P_{ul} & P_{uu} \end{array}\right] \left[\begin{array}{c} f_l \\ f_u \end{array}\right]$$

The unique closed form solution is

$$f_u = (I - P_{uu})^{-1} P_{ul} f_l$$

= $(D_{uu} - W_{uu})^{-1} W_{ul} f_l$

Random Walks and Electric Networks

(Doyle and Snell, 1984)

Random walks: What is the probability that starting from vertex i the random walk will reach "Home" before "Bar"?

Electric networks: What is the voltage at vertex *i*?

Spectral Graph Theory

The Laplacian is L = D - W. The heat kernel is $K_t = e^{-tL}$.

The **Green's function** G is the inverse operator of the restricted Laplacian L_{uu} , which is also the integration of heat kernels over time t on unlabeled points:

$$G = \int_0^\infty e^{-tL_{uu}} dt = L_{uu}^{-1} = (D_{uu} - W_{uu})^{-1}$$

f is the solution to Lf = 0 satisfying the boundary condition f_l .

$$f_u = GW_{ul}f_l$$

Spectral Clustering: Normalized Cut

Both optimize the same energy function

$$\sum_{i,j} \frac{1}{2} (f(i) - f(j))^2 w_{ij} = f' L f$$

- Our f is **constrained** on f_l ;
- Normalized cut is not constrained; uses the eigenvector of the second smallest eigenvalue λ_1 ($\lambda_0 = 0$ has constant eigenvector, useless for segmentation).

"Cluster then label" might be less desirable when classes not well separated.

From f to Classification

Binary: threshold f at 0.5

Multi-way: one against all

Handwritten Digits

Cedar Buffalo Digits Dataset 16×16 grayscale Digits 1,2,3

1100 images per class.

Results on Handwritten Digits: Un-rebalanced

ML: no rebalancing. Class 1 if $f_i > 1 - f_i$.

Results on Handwritten Digits: Rebalanced

CNe: Rebalancing. Class 1 if $\frac{q}{\sum f}f_i > \frac{1-q}{\sum (1-f)}(1-f_i)$.

q is the estimated proportion of class 1 from labeled data.

Tricky Balance: Maintain Class Proportions

•
$$\frac{q}{\sum f} f_i > \frac{1-q}{\sum (1-f)} (1-f_i)$$
, or

• Constrain f s.t. $\sum f = nq$, or

• Add 2 virtual nodes to graph?

Learning the weight matrix W

Parameterize W with σ_d , length scale in each dimension.

$$w_{ij} = \exp\left(-\sum_{d} \frac{(x_i^d - x_j^d)^2}{\sigma_d^2}\right)$$

Intuition: we want the most decisive classification of the unlabeled data. Since there are very few hyperparameters, this should not lead to overfitting.

Minimize Entropy:

$$H = \sum_{i=l+1}^{l+u} -f_i \log f_i - (1 - f_i) \log(1 - f_i)$$

Problem: $\sigma \to 0$ has H = 0 but results in "propagate 1NN" (p1NN) algorithm.

Learning the weight matrix W: Minimum Entropy

Solution: smooth P with a uniform transition matrix (like Google's PageRank algorithm...)

$$\tilde{P} = (1 - \epsilon)P + \epsilon U$$

Learning the weight matrix W

 $\sigma_1 = 0.18, \sigma_2 = 0.19, \sigma_3 = 14.8, \sigma_4 = 13.3$. With **4 labeled points**, the algorithm learns that dim 1,2 are relevant but dim 3,4 are irrelevant to classification, even though the data are **clustered in dim 3,4** too.

Summary

- f has many nice properties.
- What is happening in rebalancing?
- ullet Other ways to learn W?

Ref. Learning from Labeled and Unlabeled Data with Label Propagation. Xiaojin Zhu, Zoubin Ghahramani. CMU CALD tech report CMU-CALD-02-107, 2002.