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Poverty of the Stimulus




Classification using Unlabeled Data

Assume: there is informatiqn in the data manifold.
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The Problem Statement
Let there be [ labeled data (z1,v1)..-(z;, ), v € {0,1}.
Let there be u unlabeled data z;4q...x;4,,; usually u > 1.

We create an undirected weighted graph, where the nodes are
data points, both labeled and unlabeled.
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Assume we are given the weight matrix W, e.g. w;; = exp (-0—@3)

Problem: infer y for unlabeled data (transduction).

We first work out a real function f on the graph.



Label Propagation Algorithm

We want nearby points to have similar labels.

Let D be the diagonal matrix, D;; = > ;w;;. (the volume of
node 1)

Let P = D~ 1W be the transition matrix. (W row normalized)

Algorithm Repeat until converge:

1. Propagate labels on all nodes for one step f = Pf.

2. Clamp f(i) = y;, fori=1...1.



Convergence of f

Wi Wi,

Notation: W =
Wul Wy

, Same for D, P etc.

The algorithm computes the stationary point

fj_| 1 O fi
fu Pul Puu fu
The unique closed form solution is

Ju = (I — Puu)_lpulfl
(Duu — Wuu)_lwulfl



Random Walks and Electric Networks
(Doyle and Snell, 1984)

Random walks: What is the probability that starting from ver-
tex ¢ the random walk will reach "Home” before "Bar’ 7

Bar G '/_Y\‘i— E-Y 0 Home
0
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Electric networks: What is the voltage at vertex 7
1 volt
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Spectral Graph Theory
The Laplacian is L = D — W. The heat kernel is K; = ¢ L,

The Green’s function G is the inverse operator of the restricted
Laplacian Lqq, Which is also the integration of heat kernels over
time ¢t on unlabeled points:

0

f is the solution to Lf = 0 satisfying the boundary condition f;.

Ju = GWy i



Spectral Clustering: Normalized Cut

Both optimize the same energy function

> ()~ Gy = f L]

1]
e Our f is constrained on f;;

e Normalized cut is not constrained; uses the eigenvector of the
second smallest eigenvalue A1 (A\g = 0 has constant eigen-
vector, useless for segmentation).

" Cluster then label” might be less desirable when classes not
well separated.



From f to Classification

Binary: threshold f at 0.5
Multi-way: one against all
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Handwritten Digits

Cedar Buffalo Digits Dataset 16 x 16 grayscale

Digits 1,2,3
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1100 images
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Results on Handwritten Digits: Un-rebalanced
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ML: no rebalancing. Class 1 if f; > 1 — f;.



Results on Handwritten Digits: Rebalanced
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: i if 4 f.
CNe: Rebalancing. Class 1 if foz Z(l f)(l fi).

q IS the estimated proportion of class 1 from labeled data.
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Tricky Balance: Maintain Class Proportions
9 r .
® fo Z(l f)(l fz), or
e Constrain f s.t. > f =mngq, oOr

e Add 2 virtual nodes to graph?
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Learning the weight matrix W

Parameterize W with o4, length scale in each dimension.

(af — 2f)?

w;j = exp (—Z s
d Od

Intuition: we want the most decisive classification of the un-

labeled data. Since there are very few hyperparameters, this

should not lead to overfitting.

Minimize Entropy:

l+u
H= Y —filogf;—(1— f)log(l-f£)

i=l+1
Problem: o — 0 has H = 0 but results in "propagate 1NN"
(PINN) algorithm.

14



Learning the weight matrix W: Minimum Entropy

Solution: smooth P with a uniform transition matrix (like Google’'s

PageRank algorithm...)
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Smoothing
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Learning the weight matrix W

0.5} 0.5

4 o5 0o 05 1 M o5 o o5 1

dim 1,2 dim 3,4
o1 = 0.18,00 = 0.19,03 = 14.8,04 = 13.3. W.ith 4 labeled
points, the algorithm learns that dim 1,2 are relevant but dim
3,4 are irrelevant to classification, even though the data are

clustered in dim 3,4 too.
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Summary

e f has many nice properties.

e What is happening in rebalancing?

e Other ways to learn W7

Ref. Learning from Labeled and Unlabeled Data with Label
Propagation. Xiaojin Zhu, Zoubin Ghahramani. CMU CALD
tech report CMU-CALD-02-107, 2002.
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