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The Problem
Given: m points in R" (n ~ 10°)

Find: “good” Projection into R% (d ~ 2)



The Problem
Given: m points in R" (n ~ 10°)
Find: “good” Projection into R% (d ~ 2)

Note: ill defined



The old way: PCA
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The Fabled Outline

1. Applications

2. Algorithms & Analysis

3. Open Problems



Applications

1. pictures from multiple viewpoints

2. pictures of a scene with moving objects

3. Spectra of stars

4. Sensor data”?



Manifold = the set of viewpoints embedded in image space
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Manifold = the set of hand configurations embedded in image
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Manifold = the set of hand-written ‘2"
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Bottom loop articulation
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Algorithms:

1. Techniques with local minima

2. Isomap (Josh Tenenbaum, Vin de Silva, Myself)
(a) Conformal Isomap (T & dS)
(b) Sparse forms (T & dS)

(c) Local Isomap (Carrie Grimes and David Donoho)

3. LLE (Larry Saul, Sam Roweis)

(a) Hessian LLE (G & D)



Isomap Algorithm

1. Construct neighborhood graph G
(a) e-Nearest Neighbor

(b) K-Nearest Neighbor

2. Compute all-points shortest path in GG

3. Use multidimensional scaling (eigenvalue method) to embed
graph in R4



Analysis:

Assume Isometric (distance-preserving) embedding:

1. Isomap rate of convergence given dense samples, not too

much curvature, branch seperation (Josh, Vin, myself, Mira
Bernstein)

2. Isomap converges asymptotically given convexity & isometry.
(G & D)



Locally Linear Embedding

1. Find neighbors of each point

2. For every point, p;, find equation in terms of linear superpo-
sition of neighborpoints

p; = w;1p1 + wiop2 + w;3p3 + wiaps + ...
S 2
Minimize errors: e(w;;) = 3; (pz' — Y wiij)

3. Find a set of points in RY (approximately) satisfying these

equations:

: L 2
Find x; to minimize e(xz;) = Y, <$7, — 2ij wij$j>



LLE vs Isomap
Isomap derives global structure from local structure

LLE uses local structure only

e LLE is more flexible than Isomap (‘“stretching” is allowed)

e LLE does not recover isometric embeddings (G & D)

e LLE faster (sparse problem)

e Hessian LLE does converge (G & D)



Conformal (=distance preserving up to scale) Isomap

. Construct neighborhood graph G

K-Nearest Neighbor

. Normalize all neighborhoods to have the same size.

. Compute all-points shortest path in G

. Use MDS to embed graph in R4



Conformal Isomap Analysis

e Allows some stretching, like LLE

e Reverses conformal mappings, assuming uniform sampling



Conformal Isomap Example
Input =

1

Output =

e

C-Isomap LLE



Landmark Isomap (= attempt to make Isomap faster)

. Choose [ > d “landmark’” points

. Construct neighborhood graph G

. Compute shortest path in G to landmarks

. Use MDS to embed landmarks in R¢

. Embed other points based upon distance to landmarks



Landmark Analysis

e Dominating computation is nearest-neighbor calculations

e Number of landmarks needs to be only slightly larger than .



Open Problems:

1. Which set of points should be in the “neighborhood”?
(a) epsilon nearest neighbor?
(b) K-nearest neighbor?

(c) The problem of holes.

2. Can the Finite Sample analysis be improved to use a local
feature size?

3. What can NOT be done?



4. Incrementalization: Many data sources are continuous



