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Compact sketches for
estimating similarity
Collection of objects, e.g. mathematical

representation of documents, images.

Implicit similarity/distance function.

Want to estimate similarity without
looking at entire objects.

Compute compact sketches of objects
so that similarity/distance can be
estimated from them.



Similarity Preserving Hashing

Similarity function sim(x y)
Family of hash functions £ with

probabi
Pr

heF

ity distribution such that

N(x) = h(y)] = sim(x, y)



Applications

Compact representation scheme for
estimating similarity

x = (h(x),hy(%),..., hy (x))

y = ), 1 (), 1 (1))

Approximate nearest neighbor search



Estimating Set Similarity

IBroder, Manasse,Glassman,Zweig]
[Broder C Frieze Mitzenmacher]
= Collection of subsets
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Minwise Independent
Permutations
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Related Work

Streaming algorithms
Compute f(data) in one pass using small space.
Implicitly construct sketch of data seen so far.

Synopsis data structures
Compact distance oracles, distance labels.
Hash functions with similar properties:



Results

Necessary conditions for existence of
similarity preserving hashing (SPH).

SPH schemes from rounding algorithms

Hash function for vectors based on random
hyperplane rounding.

Hash function for estimating Earth Mover
Distance based on rounding schemes for
classification with pairwise relationships.



Existence of SPH schemes

sim(x,y) admits an SPH scheme if
4 family of hash functions £ such that

Pty p[h(x) = h(y)] = sim(x, y)



Theorem: If sim(x,y) admits an SPH
scheme then 7-sim(x,y)satisfies
triangle inequality.

Proof:

1 —sim(x,y)=Pr,_.(h(x)= h(y))
A, (x,v): indicator variable for /(x) = h(p)
A6 ) +A,(1,2) = B, (x,2)

I—sim(x,y)=E,;[A,(x, )]
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Stronger Condition

. If sim(xy) admits an SPH
scheme then (Z+sim(x,y) )/Z2 has an SPH
scheme with hash functions mapping
objects to {0,1}.

. If sim(x,y) admits an SPH
scheme then Z-sim(x,y) is isometrically
embeddable in the Hamming cube.
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Random Hyperplane Rounding
based SPH

= Collection of vectors
£ (u,V)

T

sim(ii,v) =1—

= Pick random hyperplane
through origin (normal 7 )

1 if 7 u>0
0 if r-u<o0

hF (ﬁ) - 4 {

m [Goemans, Williamson]
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Earth Mover Distance (EMD)

EMD(P,Q)



Earth Mover Distance

Set of points L={/,/,,...].}
Distance function a(7,/j) (assume metric)

Distribution A(L): non-negative weights

(P1P2Pr) -
Earth Mover Distance (EMD): distance
between distributions A and @.

Proposed as metric in graphics and
vision for distance between images.
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Relaxation of SPH

Estimate distance measure, not
similarity measure in [0,1].

Allow hash functions to map objects to
points in metric space and measure

E[dAP)A(@).
(SPH: alxy) = 1 if x =y)

Estimator will approximate EMD.
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Classification with pairwise
PQ'GTiOHShipS [Kleinberg, Tardos]

separation
cosT

Assignment cost
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Classification with pairwise
relationships

Collection of objects I/

Labels L={/,/>,...].}

Assignment of labels 7/ I/—L

Cost of assigning label to v: c(u A(u))

Graph of related objects; for edge
e=(u,v), cost paid: w,.d(h(u)A(v))

Find assignment of labels to minimize
cost.
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LP Relaxation and Rounding

[Kleinberg, Tardoes]
[Chekuri,Khanna,Naor, Zosin|]

PE}; Q
O O
Separation cost measured by EMD(P,Q)

Rounding algorithm guarantees
Pr[h(/o)://] :p/'
E[d(A(P)A(Q)] < O(log nlog log n) EMD(P.Q)




Rounding details

Probabilistically approximate metric on
L by tree metric (HST)

Expected distortion O(log n log log n)
EMD on tree metric has nice form:

T subtree

P(T): sum of probabilities for leaves in T

I+ ¢ length of edge leading up from T
EMD(P.Q) = X I1[P(T)-Q(T)
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Theorem: The rounding scheme gives a
hashing scheme such that

EMD(P.Q) < E[d(h(P) h(Q)]
< O(log n log log n) EMD(P,Q)

Prooif: Y, ; - Probability that 2(P) =1,,h(Q) =1,
y; ; give teasible solution to LP for EMD

Cost of this solution = E[d (/4(P), h(O)]
Hence EMD(P,0) < E[d(h(P),h(Q)]
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SPH for weighted sets

Weighted Set: (p,p,,...p,), weights in [0,1]

Kleinberg-Tardos rounding scheme for
uniform metric can be thought of as a hashing
scheme for weighted sets with

) _min(p;,q;)
Z max(pi ’ qi)

sim(P,Q) =

Generalization of minwise independent
permutations
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Conclusions and Future Work

Interesting connection between rounding
procedures for approximation algorithms and
hash functions for estimating similarity.

Better estimators for Earth Mover Distance

Ignored variance of estimators:
related to dimensionality reduction in L,

Study compact representation schemes in
general
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